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Abstract: The aim of this article is to find an exact analytical solution for free vibration char-
acteristics of thin functionally graded rectangular plates with different boundary conditions.
The governing equations of motion are obtained based on the classical plate theory. Using an
analytical method, three partial differential equations of motion are reformulated into two new
decoupled equations. Based on the Navier solution, a closed-form solution is presented for nat-
ural frequencies of functionally graded simply supported rectangular plates. Then, considering
Levy-type solution, natural frequencies of functionally graded plates are presented for various
boundary conditions. Three mode shapes of a functionally graded rectangular plate are also pre-
sented for different boundary conditions. In addition, the effects of aspect ratio, thickness–length
ratio, power law index, and boundary conditions on the vibration characteristics of functionally
graded rectangular plates are discussed in details. Finally, it has been shown that the effects
of in-plane displacements on natural frequencies of functionally graded plates under different
boundary conditions have been studied.

Keywords: free vibration, functionally graded material, rectangular plate, exact solution, Levy
solution, Navier solution

1 INTRODUCTION

Functionally graded materials (FGMs) are new micro-
scopically inhomogeneous materials in which the
mechanical properties vary smoothly and continu-
ously from one surface to the other [1–4]. The concept
of FGM was first proposed in 1984 by the mate-
rial scientists in the Sendai area of Japan. Typically,
these materials are made from a mixture of metal
and ceramic, or a combination of different metals.
They are high-performance heat-resistant materials
that are able to withstand the ultra-high temperature
and the extremely large thermal gradients. FGMs are
used in the industry extensively. For example, they
are used as thermal barriers in aerospace missiles in
which the ceramic face of the plate is exposed to high
temperature.
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Many researches for static and dynamic analyses of
FG plates are available in the literature. Yang and Shen
[5] investigated dynamic response of initially stressed
functionally graded (FG) rectangular thin plates. Some
studies developed the meshless method for static
and dynamic analyses of FG elastic rectangular plates
[6–9]. He et al. [10], by using the finite-element
method, investigated the active control of FG plates
with integrated piezoelectric sensors and actuators.
There are some three-dimensional (3D) solutions for
free vibration analysis of FG rectangular plates in the
literature. For example,Vel and Batra [11] presented an
analytical 3D solution for free vibration of simply sup-
ported rectangular plates. Also, 3D vibration analysis
of FG plates was studied using the numerical meth-
ods by some researchers [12, 13]. Kim [14] presented
temperature-dependent vibration analysis of FG rect-
angular plates. The frequency equation was solved
using the Rayleigh–Ritz procedure based on the third-
order shear deformation plate theory. Matsunaga [15]
performed free vibration and stability of FG plates
according to a 2D higher-order deformation theory.
Zhang and Zhou [16] analysed FG thin plates based on
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the concept of physical neutral surface. They defined a
new physical neutral surface and, by using this surface,
non-linear equations were obtained. Fares et al. [17]
performed the efficient and simple refined theory for
bending and vibration of FG plates. Hosseini-Hashemi
et al. [18] studied the free vibration of FG rectangu-
lar plates using first-order shear deformation plate
theory. They neglected the effects of in-plane displace-
ment on free vibration of rectangular plates. Zhao
et al. [19] performed free vibration analysis of FG
plates using the element-free kp-Ritz method. Using
the classical plate theory, Liu et al. [20] studied the
free vibration of FG rectangular plates by assuming the
in-plane variation of material properties of the plate
in which the bending/stretching equations are not
coupled.

It is more convenient to use the decoupled form
of governing equations for solving the mechanical
analysis of the plates. For free vibration analysis, Jome-
hzadeh and Saidi [21, 22] decoupled the governing
equations of motion of transversely isotropic sec-
torial and annular sector plates. The decoupling of
bending–stretching governing equations of FG rect-
angular plates was first investigated by Saidi and
Jomehzadeh [23]. Also, Mohammadi et al. [24, 25] pre-
sented a decoupling method for buckling analysis of
thin and moderately thick FG rectangular plates with
two opposite edges simply supported.

Most of the works concerning the analytical solution
for vibration of FG plates are limited to all edges of
simply supported plates. Also, some studies presented
Levy solution for free vibration of FG plates with-
out considering the in-plane displacements [18, 20].
To the best of authors’ knowledge, there is no work
in the literature on analytical solution for vibration
of FG plates with considering the effect of in-plane
displacements.

In the present article, an exact analytical solution for
free vibration of thin FG rectangular plates is presented
based on classical plate theory and the effects of in-
plane displacement on the vibration of FG rectangular
plates are studied. By using an analytical method, the
coupled equations of motion are decoupled. A closed-
form solution for finding the natural frequencies of
FG simply supported rectangular plates is presented.
Also, a Levy-type solution is presented for FG plates
that have simply supported boundary conditions in
x-direction and arbitrary boundary conditions at the
edges in y-direction. Finally, the effects of aspect ratio,
thickness–length ratio, power law index, and bound-
ary conditions on the vibration characteristics of FG
rectangular plates are discussed in details. The novelty
of this work is that all terms in the governing equations
are considered and no simplification is done for find-
ing and solving the governing equations. It has been
shown that the in-plane displacements have signifi-
cant effects on natural frequencies of FG rectangular
plates and cannot be neglected.

Fig. 1 Geometry and coordinate of FG rectangular plate

2 GOVERNING EQUATION

Here, an FG rectangular plate of length a, width b, and
thickness h is considered. The geometry of the plate
and the coordinate system are shown in Fig. 1. It is
assumed that the properties of FG plate vary smoothly
and continuously through the thickness from the
ceramic surface to metal surface. E(z) is Young mod-
ulus and ρ(z) is the density of the plate, which are
expressed as

E(z) = Em + (Ec − Em)

(
1
2

− z
h

)n

ρ(z) = ρm + (ρc − ρm)

(
1
2

− z
h

)n

(1)

where n is the power law index of FG rectangular plate,
Em is the Young modulus of metal surface, and Ec is
the Young modulus of ceramic surface. Based on the
classical plate theory, the displacement components
are assumed to be

ux(x, y, z, t) = u0(x, y, t) − z
∂w0(x, y, t)

∂x

uy(x, y, z, t) = v0(x, y, t) − z
∂w0(x, y, t)

∂y

uz(x, y, z, t) = w0(x, y, t)
(2)

where u0 and v0 are the displacement of mid-plane
in x- and y-directions, respectively; w0 is the trans-
verse displacement in the z-direction; and t is the
time. Using the strain–displacement relations, the
displacement components are defined as

εxx = ∂u0

∂x
− z

∂2w0

∂x2

εyy = ∂v0

∂y
− z

∂2w0

∂y2

2εxy = ∂u0

∂y
+ ∂v0

∂x
− 2Z

∂2w0

∂x∂y
(3)
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Based on the Hooke’s law for FG rectangular plates
in plane stress state, the stress–strain relations are
expressed as

σxx = E(z)

1 − ν2
(εxx + νεyy)

σyy = E(z)

1 − ν2
(εyy + νεxx)

σxy = E(z)

2(1 + ν)
(2εxy)

(4)

where ν is the Poisson’s ratio which is assumed to
be a constant. By considering equations (2) and (3)
and using the Hamilton’s principle, the equations of
motion for an FG rectangular plate are obtained as [26]

∂Nxx

∂x
+ ∂Nxy

∂y
= I0ü0 − I1

∂ẅ0

∂x

∂Nxy

∂x
+ ∂Nyy

∂y
= I0v̈0 − I1

∂ẅ0

∂y

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
= I0ẅ0 + I1

(
∂ü0

∂x
+ ∂ v̈0

∂y

)

− I2

(
∂2ẅ0

∂x2
+ ∂2ẅ0

∂y

)
(5)

where Nxx , Nyy , and Nxy are the in-plane resultant
forces, Mxx , Myy , and Mxy are the resultant moments
and I0, I1, and I2 are mass parameters that are
defined as

(Nxx , Nyy , Nxy) =
∫h/2

−h/2
(σxx , σyy , σxy) dz

(Mxx , Myy , Mxy) =
∫h/2

−h/2
(σxx , σyy , σxy)z dz

(I0, I1, I2) =
∫h/2

−h/2
ρ(z)(1, z, z2) dz

(6)

By substituting equations (3) and (4) into equation
(6), the resultant forces and moments are expressed in
terms of displacement components as

Nxx = A11
∂u0

∂x
+ A12

∂v0

∂y
− B11

∂2w0

∂x2
− B12

∂2w0

∂y2

Nyy = A11
∂v0

∂y
+ A12

∂u0

∂x
− B11

∂2w0

∂y2
− B12

∂2w0

∂x2

Nxy = A33

(
∂u0

∂y
+ ∂v0

∂y

)
− 2B33

(
∂2w0

∂x∂y

)

Mxx = B11
∂u0

∂x
+ B12

∂v0

∂y
− D11

∂2w0

∂x2
− D12

∂2w0

∂y2

Myy = B11
∂v0

∂y
+ B12

∂u0

∂x
− D11

∂2w0

∂y2
− D12

∂2w0

∂x2

Mxy = B33

(
∂u0

∂y
+ ∂v0

∂y

)
− 2D33

(
∂2w0

∂x∂y

)
(7)

where the parameters Aij , Bij , and Dij are defined as

(A11, B11, D11) =
∫h/2

−h/2

E(z)

1 − ν2
(1, z, z2) dz

(A12, B12, D12) =
∫h/2

−h/2

ν E(z)

1 − ν2
(1, z, z2) dz

(A33, B33, D33) =
∫h/2

−h/2

E(z)

2(1 + ν)
(1, z, z2) dz

(8)

By substituting resultant forces and moments
obtained from equation (7) into equation (5), the gov-
erning equations of motion for an FG rectangular plate
are obtained as

A11

(
∂2u0

∂x2
+ ∂2v0

∂x∂y

)
+ A33

(
∂2u0

∂y2
− ∂2v0

∂x∂y

)

− B11

(
∂3w0

∂x3
+ ∂3w0

∂x∂y2

)
= I0ü0 − I1

∂ẅ0

∂x

A11

(
∂2v0

∂y2
+ ∂2u0

∂x∂y

)
+ A33

(
∂2v0

∂x2
− ∂2u0

∂x∂y

)

− B11

(
∂3w0

∂y3
+ ∂3w0

∂y∂x2

)
= I0v̈0 − I1

∂ẅ0

∂y

B11

(
∂3u0

∂x3
+ ∂3v0

∂y3
+ ∂3v0

∂x2∂y
+ ∂3u0

∂x∂y2

)

− D11

(
∂4w0

∂x4
+ ∂4w0

∂y4
+ 2

∂4w0

∂x2∂y2

)

= I0ẅ0 + I1

(
∂ü0

∂x
+ ∂ v̈0

∂y

)
− I2

(
∂2ẅ0

∂x2
+ ∂2ẅ0

∂y2

)
(9)

Equation (9) consists of three highly coupled par-
tial differential equations in terms of the in-plane and
transverse displacements. For solving these equations,
it is reasonable to find a method for decoupling them.
Equation (9) can be rewritten as

A11
∂φ1

∂x
+ A33

∂φ2

∂y
− B11

∂

∂x
(∇2w0) = I0ü0 − I1

∂ẅ0

∂x
(10a)

A11
∂φ1

∂y
− A33

∂φ2

∂x
− B11

∂

∂y
(∇2w0) = I0v̈0 − I1

∂ẅ0

∂y
(10b)

B11∇2φ1 − D11∇2∇2w0 = I0ẅ0 + I1φ̈1 − I2∇2ẅ0 (10c)
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where ∇2 is the Laplace operator and the variables φ1

and φ2 are defined as

φ1 = ∂u0

∂x
+ ∂v0

∂y

φ2 = ∂u0

∂y
− ∂v0

∂x
(11)

Differentiating equations (10a) and (10b) with
respect to x and y and doing some algebraic opera-
tions, one obtains

A11∇2φ1 − B11∇4w0 = I0φ̈1 + I1∇2ẅ0 (12a)

A33∇2φ2 − I0φ̈2 = 0 (12b)

By considering equations (12a) and (10c) and doing
some algebraic processing, it can be shown that

φ̈1 = 1
(I1 − (B11/A11)I0)

[(
B2

11

A11
− D11

)
∇4w0

+
(

I2 − B11I1

A11

)
∇2ẅ0 − I0ẅ0

]
(13)

By substituting equation (13) into equation (12a), it
is easy to show that

D̂∇6w0 +
(

B11

A11
J1 − D̂I0

A11
− J2

)
∇4ẅ

+
(

I0J2

A11
− I1J1

A11

)
∇2 ¨̈w0 + I0∇2ẅ0 − I 2

0

A11

¨̈w0 = 0

(14)

where the parameters D̂, J1, and J2 are defined as

D̂ = D11 − B2
11

A11

J1 = I1 − B11I 0

A11

J2 = I2 − B11I1

A11
(15)

Therefore, by using the analytical method the equa-
tions of motion are converted into two decoupled
equations (12b) and (14).

By using equations (10a) and (10b), the following
relations can be found, which result in the in-plane
displacement components

ü0 = 1
I0

(
A11

∂φ1

∂x
+ A33

∂φ2

∂y
− B11

∂

∂x
(∇2w0) + I1

∂ẅ0

∂x

)

v̈0 = 1
I0

(
A11

∂φ1

∂y
− A33

∂φ2

∂x
− B11

∂

∂y
(∇2w0) + I1

∂ẅ0

∂y

)
(16)

3 NAVIER SOLUTION

In this section, an FG simply supported rectangular
plates is considered. Based on the Navier method,
the transverse displacement w and function φ2 are
defined as

w(x, y) =
∞∑

κ=1

∞∑
m=1

wmκ sin(βmx) sin(ηκy)eiωmκ t

φ2(x, y) =
∞∑

κ=1

∞∑
m=1

φmκ cos(βmx) cos(ηκy)eiωmκ t

(17)

where βm and ηκ are denoted by mπ/a and κπ/b,
respectively. Also ωmκ is the natural frequency. By sub-
stituting equation (17) into equations (14) and (12), the
natural frequencies for simply supported rectangular
plate can be obtained

ωss1 = −
√

2
2β1

√
χ1(−χ2 +

√
χ2

2 − 4χ1χ3)

ωss2 = −
√

2
2β1

√
−χ1(χ2 +

√
χ2

2 − 4χ1χ3)

ωss3 = 1
I0

√
I0A33(β2

m + η2
n)

(18)

The fundamental frequency for simply supported
FG rectangular plate is the smallest value of above fre-
quencies (ωss1). Also, the variables χj (j = 1 . . . 3) are
defined as

χ1 = (I 2
1 − I0I2)(β

2
m + η2

κ) − I 2
0

χ2 = (η4
κ + 2η2

κβ
2
m + β4

m)(I0D11 + I2A11 − 2B11I1)

+ I0A11(β
2
m + η2

κ)

χ3 = (B2
11 − A11D11)(β

6
m + 3β4

mη2
κ + 3β2

mη4
κ + η6

κ)

(19)

Therefore, by considering the closed form (18) it
is easy to obtain the natural frequency of simply
supported FG rectangular plates.

4 LEVY SOLUTION

In this section, the free vibration analysis of FG rectan-
gular plates with Levy boundary conditions is studied.
It is assumed that the edges of the plate at x = 0 and
a are simply supported; therefore, the solutions are
considered as

w(x, y, z, t) =
∞∑

m=1

wm(y) sin(βmx)eiωmt

φ2(x, y, z, t) =
∞∑

m=1

φm(y) cos(βmx)eiωmt

(20)
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Substituting equation (20) into equations (12b) and
(14) yields

μ1
d6wm

dy6
+ (μ2 − 3μ1β

2
m)

d4wm

dy4

+ (3μ1β
4
m − 2μ2β

2
m + μ3)

d2wm

dy2

+ (μ4 − μ3β
2
m − μ1β

6
m + μ2β

4
m)wm(y) = 0 (21a)

A33
d2φm

dy4
+ (ω2

mI0 − A33β
2
m)φm = 0 (21b)

Equations (21) consist of two ordinary differential
equations whose solutions are

wm(y) = c1 sinh(λ1y) + c2 cosh(λ1y)

+ c3 sinh(λ2y) + c4 cosh(λ2y)

+ c5 sinh(λ3y) + c6 cosh(λ3y) (22a)

φm(y) = c7 sinh(λ4y) + c8 cosh(λ4y) (22b)

where cj (j = 1 . . . 8) are the eight unknown constants.
The variables of λj (j = 1 . . . 4) are expressed as

λ1 =
√

3
6a

√
−a2T 2 + 12a2D̂μ2 − 4a2μ2

1 − 4Tμ1a2 + 12T D̂m2π2 − √
3a2T 2i − 12i

√
3a2D̂μ2 + 4i

√
3a2μ2

1

D̂T

λ2 =
√

3
6a

√
−a2T 2 + 12a2D̂μ2 − 4a2μ2

1 − 4Tμ1a2 + 12T D̂m2π2 − √
3a2T 2i − 12i

√
3a2D̂μ2 + 4i

√
3a2μ2

1

D̂T

λ3 =
√

6
6a

√
a2T 2 − 12a2D̂μ2 + 4a2μ2

1 − 2μ1Ta2 + 6T D̂m2π2

D̂T

λ4 =
√

A33m2π2 − ω2
mI0a2

a
√

A33
(23)

and the parameters μj (j = 1 . . . 3) and T are defined
as

μ1 = −ω2
m

(
B11

A11
J1 − D̂I0

A11
− J2

)

μ2 = ω2
m

(
I0J2ω

2
m

A11
− I1J1ω

2
m

A11
− I0

)

μ3 = − I 2
0 ω4

m

A11

T = (36D̂μ1μ2 − 108D̂2μ3 − 8μ3
1

+ 12
√

3D̂

√√√√4D̂μ2
2 − μ2

2μ
2
1 − 18D̂μ1μ2μ3

+27D̂2μ2
3 + 4μ3μ

3
1)

(1/3)

(24)

The general solutions (22) are valid for real λj (j =
1 . . . 4). If these parameters become imaginary, the cor-
responding terms sinh and cosh are converted to sin
and cos.

5 BOUNDARY CONDITIONS

Six possible boundary conditions in y-direction are
considered, which are combinations of simply sup-
ported, clamped, and free boundary conditions.

For simply supported edges, the boundary condi-
tions can be rewritten as

w = Myy = Nyy = u = 0 (25)

For clamped boundary conditions, it can be written
that

w = u = v = dw
dy

= 0 (26)

and the boundary conditions of free edges require

Myy = Nyy = Nxy = Vyy − I1ω
2
nv = 0 (27)

where

Vyy = ∂Myy

∂y
+ 2

∂Mxy

∂x
(28)

Applying arbitrary boundary conditions at two
edges of the FG plate in y-direction, a system of six

Table 1 Properties of the FGM components

Properties

Material E (N/m2) ν ρ (kg/m3)

Aluminium (Al) 70 × 109 0.3 2707
Alumina (Al2O3) 380 × 109 0.3 3800
Ti–6Al–4V 105.7 × 109 0.298 4429
Aluminium oxide 320.2 × 109 0.26 3750
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Table 2 Comparison of the natural frequency, � = ωa2
√

12ρ(1 − ν2)/Eh3 for all
boundary conditions square plate (a/b = 1, h/a = 0.005)

SSSS SCSC SFSF SSSC SCSF SSSF

ω11 Reference [28] 19.74 28.95 9.63 23.65 12.69 11.68
Present 19.76 29.01 9.64 23.66 12.69 11.70

ω12 Reference [28] 49.35 69.32 16.13 58.64 33.06 27.76
Present 49.37 69.33 16.19 58.69 33.11 27.76

ω13 Reference [28] 98.70 129.09 36.72 113.22 72.40 61.86
Present 98.74 129.08 36.75 113.28 72.44 61.87

Table 3 Comparison of the natural frequency ω (Hz) for simply supported square
Ti–Al–4V/aluminium oxide FG plate (a/b = 0.4, h/a = 0.005)

n Mode Present Reference [19] Reference [28] Reference [10]

0 1 143.40 143.67 145.04 144.66
2 358.42 360.64 362.61 360.53

2000 1 273.906 268.60 271.23 268.92
2 685.003 674.38 678.06 669.40

homogeneous algebraic equations is obtained. Setting
the determinant of coefficient matrix equal to zero, the
natural frequencies of the plate can be determined.

6 NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical results have been pre-
sented for FG rectangular plates with all possible six
boundary conditions along the edges in y-direction.
The material properties have been listed in Table 1.

Table 4 Fundamental frequency parameter
β̄ = ωπ2(a2/h)

√
ρm/Em for simply supported

FG rectangular plate (h/a = 0.01)

n b/a m = 1 m = 2 m = 3

0 1 115.8695(1,1) 289.7708(1,2) 463.4781(2,2)
2 72.3942(1,1) 115.8695(2,1) 188.2637(3,1)

0.5 1 98.0136(1,1) 245.3251(1,2) 392.4425(2,2)
2 61.3313(1,1) 98.0136(2,1) 159.3448(3,1)

1 1 88.3093(1,1) 221.0643(1,2) 353.6252(2,2)
2 55.1205(1,1) 88.3093(2,1) 143.6239(3,1)

2 1 80.3517(1,1) 200.8793(1,2) 321.4069(2,2)
2 50.0743(1,1) 80.3517(2,1) 130.6201(3,1)

Table 5 Fundamental frequency parameters
β̄ = ωπ2(a2/h)

√
ρm/Em for SCSC FG

rectangular plate (h/a = 0.01)

n b/a m = 1 m = 2 m = 3

0 1 170.0196(1,1) 321.4069(1,2) 555.2809(2,2)
2 80.3517(1,1) 138.7717(2,1) 227.0810(3,1)

0.5 1 143.8179(1,1) 272.1090(1,2) 470.0770(2,2)
2 67.9302(1,1) 117.4222(2,1) 192.3395(3,1)

1 1 129.6496(1,1) 245.1310(1,2) 423.6904(2,2)
2 61.1372(1,1) 105.7770(2,1) 173.3191(1,3)

2 1 117.8104(1,1) 222.8111(1,2) 385.0672(2,2)
2 55.7028(1,1) 96.2668(2,1) 157.5981(3,1)

To verify the accuracy of the formulations, a com-
parison study of the results is performed with those
available in the literature. In Table 2, for the special
case of n = 0, the frequencies of FG rectangular plate
with various boundary conditions are compared with
those reported by Leissa [27] for isotopic plates and a
good agreement can be seen. Also, for the special case
of simply supported FG plate, the obtained results are
compared with those reported by some references in
Table 3. It can be seen that there is good agreement
between the results and the small differences are due
to the variation of Poisson ratio.

Table 6 Fundamental frequency parameters
β̄ = ωπ2(a2/h)

√
ρm/Em for SFSF FG

rectangular plate (h/a = 0.01)

n b/a m = 1 m = 2 m = 3

0 1 56.4791(1,1) 94.7141(2,1) 215.6299(3,1)
2 57.0614(1,1) 68.5125(2,1) 103.8362(3,1)

0.5 1 47.7452(1,1) 80.1576(2,1) 182.4411(3,1)
2 48.3275(1,1) 58.0318(2,1) 87.9211(3,1)

1 1 43.0872(1,1) 72.2001(2,1) 164.3911(3,1)
2 43.4753(1,1) 52.2092(2,1) 79.1872(3,1)

2 1 39.1666(1,1) 65.6400(2,1) 149.0583(3,1)
2 39.5936(1,1) 47.5511(2,1) 72.0060(3,1)

Table 7 Fundamental frequency parameters
β̄ = ωπ2(a2/h)

√
ρm/Em for SSSC FG

rectangular plate (h/a = 0.01)

n b/a m = 1 m = 2 m = 3

0 1 138.7717(1,1) 303.3569(1,2) 505.5948(2,2)
2 75.6937(1,1) 126.3502(2,1) 206.7019(3,1)

0.5 1 117.4222(1,1) 256.7762(1,2) 428.1544(2,2)
2 64.2426(1,1) 106.9415(2,1) 175.0658(3,1)

1 1 105.7770(1,1) 231.3509(1,2) 385.8435(2,2)
2 57.8377(1,1) 96.4609(2,1) 157.5981(3,1)

2 1 96.2668(1,1) 210.3895(1,2) 350.7139(2,2)
2 52.5974(1,1) 87.5329(2,1) 143.4298(3,1)
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Table 8 Fundamental frequency parameters
β̄ = ωπ2(a2/h)

√
ρm/Em for SSSF FG

rectangular plate (h/a = 0.01)

n b/a m = 1 m = 2 m = 3

0 1 68.5125(1,1) 162.8384(2,1) 346.8322(2,2)
2 60.3608(1,1) 86.5625(2,1) 138.5776(3,1)

0.5 1 58.0318(1,1) 137.9954(2,1) 293.6526(2,2)
2 51.0447(1,1) 73.3646(2,1) 117.4222(3,1)

1 1 52.2092(1,1) 124.2152(2,1) 264.5396(2,2)
2 45.9985(1,1) 65.9893(2,1) 105.7770(3,1)

2 1 47.5511(1,1) 112.9582(2,1) 251.9240(3,1)
2 41.9226(1,1) 59.9727(2,1) 96.0727(3,1)

Table 9 Fundamental frequency parameters
β̄ = ωπ2(a2/h)

√
ρm/Em for SSCF FG

rectangular plate (h/a = 0.01)

n b/a m = 1 m = 2 m = 3

0 1 74.3350(1,1) 194.0863(2,1) 369.9285(2,2)
2 61.1372(1,1) 92.3851(2,1) 151.3873(3,1)

0.5 1 63.0780(1,1) 164.3911(2,1) 313.2553(2,2)
2 51.8210(1,1) 78.2168(2,1) 128.0969(3,1)

1 1 56.6732(1,1) 148.0878(2,1) 282.2015(2,2)
2 46.5807(1,1) 70.4533(2,1) 115.4813(3,1)

2 1 51.6270(1,1) 134.6959(2,1) 256.5821(2,2)
2 42.3108(1,1) 64.0485(2,1) 105.0007(3,1)

The non-dimensional frequency parameter β̄ =
ωπ2a2

√
ρm/Em/h for an FG plate consisting of Al/Al2O3

materials is shown in Tables 4 to 9 for various val-
ues of FG index n. The thickness–length ratio h/a =
0.01 and aspect ratio b/a = 1 and 2 are considered.
In these tables, the first three non-dimensional fre-
quencies are shown and the numbers in parenthesis
present the wave numbers in the x- and y-direction,
respectively. The boundary conditions are identi-
fied according to the edges of the plate. The six

possible boundary conditions for FG rectangular plate
containing SCSC, SCSS, SCSF, SSSF, SSSS, and SFSF
have been considered in which S, C, and F stand
for simply supported, clamped, and free boundary
conditions, respectively. For example SCSF denotes a
plate with simply supported boundary conditions in x-
direction and clamped and free boundary conditions
in y-direction. Also, the mode number of the natu-
ral frequency is shown in parenthesis in front of the
natural frequencies.

It is observed that the non-dimensional frequency
decreases as the aspect ratio increases except for the
FG plates with free edge. When one edge of the plate
becomes longer, the stiffness of the rectangular plate
decreases. However, when the edge of the rectangu-
lar plate is free, the free edge gets smaller and causes
an increase in the frequency, especially in the lower
modes.

Also, it can be seen that for a constant aspect ratio,
the frequency parameter decreases for all modes as
the power of FGM, n, increases. The reason is that
with increasing the power of FGM, the stiffness of the
plate decreases and results in a decrease in the natural
frequency of the FG rectangular plate.

In the most published articles concerning the ana-
lytical approaches to find the natural frequencies of
FG plates, the effects of in-plane displacements have
been neglected (see e.g. references [18], [29], and
[30]). To study the effects of in-plane displacements
on natural frequency of the FG plates, a compari-
son has been investigated with the results reported
by Hosseini-Hashemi et al. [18]. They used the first-
order shear deformation theory and ignored the in-
plane displacements. Table 10 shows this comparison
for an FG rectangular plate with different boundary
conditions.

Table 10 Effect of in-plane displacements on non-dimensional fundamental frequencies � = ωh
√

ρc/Ec for different
boundary conditions, some thickness–length ratio and power law index (a/b = 1.5)

SSSS SSSC SCSC

Reference Difference Reference Difference Reference Difference
h/a n Present [18] (%) Present [18] (%) Present [18] (%)

0.05 0 0.024 19 0.023 92 1.116 0.032 06 0.031 29 2.402 0.042 465 0.040 76 4.015
1 0.018 45 0.021 56 −16.856 0.024 455 0.026 67 −9.061 0.032 395 0.032 50 −0.324
5 0.015 90 0.021 80 −37.107 0.021 070 0.026 77 −27.053 0.027 905 0.032 39 −16.072

0.1 0 0.095 800 0.091 88 4.09 0.126 840 0.116 39 8.238 0.167 930 0.145 80 13.178
1 0.073 020 0.081 55 −11.682 0.096 66 0.097 34 −0.703 0.127 970 0.114 53 10.502
5 0.062 810 0.081 71 −30.09 0.083 130 0.096 46 −16.035 0.110 040 0.112 34 −2.090

SFSF SCSF SSSF

Reference Difference Reference Difference Reference Difference
h/a n Present [18] (%) Present [18] (%) Present [18] (%)

0.05 0 0.007 28 0.007 19 1.236 0.012 72 0.012 49 1.808 0.010 365 0.010 24 1.206
1 0.005 55 0.006 74 −21.441 0.009 705 0.011 32 −16.641 0.007 910 0.009 48 −19.848
5 0.004 79 0.006 85 −43.006 0.008 360 0.011 46 −37.081 0.006 815 0.009 63 −41.306

0.1 0 0.029 05 0.028 35 2.409 0.050 740 0.048 17 5.065 0.041 33 0.040 01 3.194
1 0.022 16 0.026 41 −19.178 0.038 690 0.043 27 −11.837 0.031 520 0.036 79 −16.719
5 0.019 09 0.026 77 −40.230 0.033 310 0.043 52 −30.651 0.027 140 0.037 18 −36.994
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Fig. 2 First natural frequency of FG rectangular plate
versus the thickness–length ratio for all boundary
conditions (n = 1, a/b = 1)

It can be seen that there are major differences
between the results of the present work and those
of reference [18]. Two reasons cause the differences.
The first reason is because of the difference of the
classical and first-order shear deformation plate the-
ories. The second reason is due to the effects of
in-plane displacements. For the case n = 0, the plate
is a homogenous isotropic plate and therefore the
in-plane displacements are ineffective on natural fre-
quencies of the plate. Thus, in this case the differences
are due to the first reason, which has a small effect on
natural frequency of thin plates. It can be seen that
for isotropic plates (n = 0), the difference is positive.
This is due to the fact that the classical plate theory
overestimates the natural frequency. From Table 10,
it can be seen that for FG plates (i.e. n > 0), the
difference is negative and its magnitude increases
greatly with increasing the power law index n. In
other words, the natural frequencies reported in ref-
erence [18], based on first-order shear deformation
theory, are greater than those obtained in this study.
This significant difference is because of neglecting the
in-plane displacements in reference [18]. Thus, the in-
plane displacements have a substantial role in natural
frequencies of FG plates.

In order to find the effects of boundary conditions
on the natural frequencies of the plate, variation of first
natural frequency versus the variation of thickness–
length ratio h/a is shown in Fig. 2. It can be concluded
that more constrains at the edges of the FG plate
increase natural frequency of the rectangular plate.
Therefore, the SCSC plate has the highest and the SFSF
rectangular plate has the lowest natural frequencies.
Also, variation of first natural frequency versus the
variation of aspect ratio a/b is depicted in Fig. 3 for
different boundary conditions. It can be seen that for
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1200 SCSC
SSSC
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SFSF

Fig. 3 First natural frequency of FG rectangular plate
versus the aspect ratio for all boundary condi-
tions (n = 1, h/a = 0.01, a = 1)
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Fig. 4 First natural frequency of FG rectangular plate
versus the thickness–length ratio for SSSC bound-
ary condition (a/b = 1)

higher values of aspect ratio, the effect of boundary
condition is more significant.

The variation of natural frequency versus the vari-
ation of thickness–length ratio is shown in Fig. 4
for different power law indexes. It can be concluded
that as the thickness of the plate increases, the effect
of non-homogeneity in the material properties of
the plate on the natural frequency becomes more
considerable. Also, the mode shape counter plates
are shown for an FG rectangular plate for all pos-
sible boundary conditions along the y-direction in
Fig. 5.

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science



534 A Hasani Baferani, A R Saidi, and E Jomehzadeh

Fig. 5 Mode shape plots of the rectangular plate for various boundary conditions
(n = 0.5, h/a = 0.01, a/b = 1)

7 CONCLUSION

The analytical solution has been presented for free
vibration analysis of FG thin plates. Three coupled
partial differential equations of motion have been

reformulated into two decoupled equations. By using
the Navier method, a closed-form solution for FG rect-
angular plates has been presented. The Levy approach
has been used to find the natural frequencies of FG
plates with different boundary conditions. Accurate
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non-dimensional frequency parameter has been tabu-
lated for different boundary conditions, some powers
of FGM, and aspect ratios. The following conclusions
can be made.

1. The non-dimensional frequency decreases as the
aspect ratio increases except for the FG plates with
free edge.

2. For a constant aspect ratio, the frequency parameter
decreases for all modes as the power of FGM (n)

increases.
3. The in-plane displacements have a substantial role

in natural frequencies of FG plates.
4. It can be seen that for higher values of the aspect

ratio, the effect of boundary condition is more
significant.

5. As the thickness of the plate increases, the effect of
material non-homogeneity on the natural frequency
becomes more considerable.

© Authors 2010

REFERENCES

1 Koizumi, M. FGM activities in Japan. Compos. B, 1997,
28(1–2), 1–4.

2 Chi, S. and Chung, Y. Mechanical behavior of func-
tionally graded material plates under transverse load.
Part 1: analysis. Int. J. Solids Struct., 2006, 43, 3657–
3674.

3 Chi, S. and Chung, Y. Mechanical behavior of func-
tionally graded material plates under transverse load.
Part 2: numerical results. Int. J. Solids Struct., 2006, 43,
3675–3691.

4 Birman,V. and Byrd, L.W. Modeling and analysis of func-
tionally graded materials and structures. ASME J. Appl.
Mech., 2007, 60, 195–216.

5 Yang, J. and Shen, H. S. Dynamic response of initially
stressed functionally graded rectangular thin plates.
Compos. Struct., 2001, 54, 497–508.

6 Qian, L. F., Batra, R. C., and Chen, L. M. Static and
dynamic deformations of thick functionally graded elas-
tic plates by using higher-order shear and normal
deformable plate theory and meshless local Petrov–
Galerkin method. Compos. B, 2004, 35, 685–697.

7 Gilhooley, D. F., Batra, R. C., Xiao, J. R., McCarthy,
M. A., and Gillespie, J. W. Analysis of thick function-
ally graded plates by using higher-order shear and
normal deformable plate theory and MLPG method
with radial basis functions. Compos. Struct., 2007, 80,
539–552.

8 Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian,
L. F., and Martins, P. A. L. S. Static analysis of function-
ally graded plates using third-order shear deformation
theory and a meshless method. Compos. Struct., 2005,
69, 449–457.

9 Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian,
L. F., and Jorge, R. M. N. Natural frequencies of function-
ally graded plate by a meshless method. Compos. Struct.,
2006, 75, 593–600.

10 He, X. Q., Ng,T. Y., Sivashanker, S., and Liew, K. M. Active
control of FGM plates with integrated piezoelectric
sensors and actuators. Int. J. Solids Struct., 2001, 38,
1641–1655.

11 Vel, S. S. and Batra, R. C. Three-dimensional exact solu-
tion for the vibration of functionally graded rectangular
plates. J. Sound Vibr., 2004, 272, 703–730.

12 Malekzadeh, P. Three-dimensional free vibration analy-
sis of thick functionally graded plates on elastic founda-
tions. Compos. Struct., 2009, 89, 367–373.

13 Li, Q., Iu,V. P.,and Kou, K. P. Three-dimensional vibration
analysis of functionally graded material plates in thermal
environment. J. Sound Vibr., 2009, 324, 733–750.

14 Kim, Y. W. Temperature dependent vibration analyses
of functionally graded rectangular plates. J. Sound Vibr.,
2005, 284, 531–549.

15 Matsunaga, H. Free vibration and stability of func-
tionally graded plates according to a 2-D higher-order
deformation theory. Compos. Struct., 2008, 82, 499–512.

16 Zhang, D. G. and Zhou, Y. H. A theoretical analysis
of FGM thin plates based on physical neutral surface.
Comput. Mater. Sci., 2008, 44, 716–720.

17 Fares, M. E., Elmarghany, M. K., and Atta, D. An efficient
and simple refined theory for bending and vibration of
functionally graded plates. Compos. Struct., 2009, 91,
296–305.

18 Hosseini-Hashemi, S., Rokni Damavandi Taher, H.,
Akhavan, H., and Omidi, M. Free vibration of func-
tionally graded rectangular plates using first-order shear
deformation plate theory. Appl. Math. Model., 2010, 34,
1276–1291.

19 Zhao, X., Lee,Y. Y., and Liew, K. M. Free vibration analysis
of functionally graded plates using the element-free kp-
Ritz method. J. Sound Vibr., 2009, 319, 918–939.

20 Liu, D. Y., Wang, C. Y., and Chen, W. Q. Free vibration
of FGM plates with in-plane material inhomogeneity.
Compos. Struct., 2010, 92, 1047–1051.

21 Jomehzadeh, E. and Saidi, A. R. Analytical solution for
free vibration of transversely isotropic sector plates using
a boundary layer function. Thin-Walled Struct., 2009, 47,
82–88.

22 Jomehzadeh, E. and Saidi, A. R. Accurate natural
frequencies of transversely isotropic moderately thick
annular sector plates. Proc. IMechE, Part C: J. Mechan-
ical Engineering Science, 2009, 223, 307–317. DOI:
10.1243/09544062JMES1199.

23 Saidi, A. R. and Jomehzadeh, E. On analytical approach
for the bending/stretching of linearly elastic function-
ally graded rectangular plates with two opposite edges
simply supported. Proc. IMechE, Part C: J. Mechan-
ical Engineering Science, 2009, 223, 2009–2016. DOI:
10.1243/09544062JMES1431.

24 Mohammadi, M., Saidi, A. R., and Jomehzadeh, E. Levy
solution for buckling analysis of functionally graded
rectangular plates. Appl. Compos. Mater., 2010, 17, 81–93.

25 Mohammadi, M., Saidi, A. R., and Jomehzadeh, E. A
novel analytical approach for buckling analysis of mod-
erately thick functionally graded rectangular plates with
two opposite edges simply supported. Proc. IMechE, Part
C: J. Mechanical Engineering Science, 2009, in press. DOI:
10.1243/09544062JMES1804.

26 Reddy, J. N. Theory and analysis of elastic plates, 1999
(Taylor & Francis, Philadelphia).

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science



536 A Hasani Baferani, A R Saidi, and E Jomehzadeh

27 Leissa, A. W. Vibration of plates. NASA report SP-160,
Washington, DC, 1969.

28 Bishop, R. E. D. The mechanics of vibration, 1979 (Cam-
bridge University Press, New York).

29 Ebrahimi, F., Rastgoo, A., and Atai, A. A. A theoreti-
cal analysis of smart moderately thick shear deformable

annular functionally graded plate. Eur. J. Mech. A, Solids,
2009, 28, 962–973.

30 Ebrahimi, F. and Rastgoo, A. An analytical study on the
free vibration of smart circular thin FGM plate based
on classical plate theory. Thin-Walled Struct., 2008, 46,
1402–1408.

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science


