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a b s t r a c t

In this article, thermal buckling analysis of moderately thick functionally graded annular sector plate is
studied. The equilibrium and stability equations are derived using first order shear deformation plate the-
ory. These equations are five highly coupled partial differential equations. By using an analytical method,
the coupled stability equations are replaced by four decoupled equations. Solving the decoupled equa-
tions and satisfying the boundary conditions, the critical buckling temperature is found analytically. To
this end, it is assumed that the annular sector plate is simply supported in radial edges and it has arbi-
trary boundary conditions along the circular edges. Thermal buckling of functionally graded annular sec-
tor plate for two types of thermal loading, uniform temperature rise and gradient through the thickness,
are investigated. Finally, the effects of boundary conditions, power law index, plate thickness, annularity
and sector angle on the critical buckling temperature of functionally graded annular sector plates are dis-
cussed in details.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGM’s) have gained much atten-
tion as advanced structural materials in recent years because of
their heat resistance properties. The concept of functionally graded
material was proposed in 1984 by the material scientists in the
Sendai area of Japan [1–3]. FGM’s are microscopically inhomoge-
neous in which their mechanical and thermal properties vary
smoothly and continuously from one surface to the other. This is
achieved by gradually varying the volume fraction of the material
constituents. Typically, these materials are made from a mixture of
ceramics and metal. The ceramic part of functionally graded (FG)
plate provides the high temperature resistance due to its low ther-
mal conductivity and its metal constituent resists the failure of the
plate. FGM’s are high performances heat resistant which are mate-
rials able to withstand ultra high temperature and extremely large
thermal gradients used in aerospace industries. Designs of air-
frames for high speed flight and spacecraft structures have to con-
sider carefully the effect of the thermal environment on structural
and material behavior. The FG plates are used as thermal barriers
in aerospace missiles in which the ceramic face of the plate is ex-
posed to high temperature. The annular sector plates have differ-
ent applications especially for space vehicles, defense industries,
chemical plants, semiconductors and biomedical sectors [4].
ll rights reserved.

: +98 341 2120964.
Bending, buckling and thermal buckling of FG structural compo-
nents have been extensively studied in the literatures. Javaheri and
Eslami [5,6] presented the thermal buckling analysis of function-
ally graded simply supported rectangular plates based on classical
and third order shear deformation plate theories. They obtained
closed form solutions for four types of thermal loads. Najafizadeh
and Eslami [7] investigated closed form solutions for thermoelastic
stability of orthotropic circular plates based on classical plate
theory. They also studied the thermoelastic stability of simply sup-
ported and clamped FG circular plates based on first order shear
deformation plate theory [8]. Najafizadeh and Heydari [9] studied
the thermal buckling of functionally graded circular plates based
on higher order shear deformation plate theory and presented a
closed form solution for clamped circular plates. Lanhe [10] per-
formed closed form solution for the thermal buckling analysis of
a simply supported moderately thick rectangular FG plate based
on first order shear deformation plate theory. Yang et al. [11] stud-
ied second-order statistics of the elastic buckling of functionally
graded rectangular plates. Ganapathi and Prakash [12] investigated
thermal buckling analysis of simply supported functionally graded
skew plates. They used the first order shear deformation theory in
conjunction with the finite element approach. Morimoto et al. [13]
studied the thermal buckling of functionally graded rectangular
plates subjected to partial heating. Abrate [14] showed that the
natural frequencies of FG plates are proportional to those of homo-
geneous isotropic plates. He also obtained the same results for
buckling loads and static deflection of FG plates. Shariat and Eslami
[15] presented a closed form solution for thermal buckling of
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imperfect FG rectangular plates based on classical plate theory.
Also, they [16] studied buckling of thick functionally graded plates
under mechanical and thermal loads based on third order shear
deformation plate theory and obtained closed form solution for
each loading case.

Saidi et al. [17] performed the axisymmetric bending and buck-
ling analysis of thick functionally graded circular plates based on
unconstrained third order shear deformation plate theory. Using
fourth order shear deformation theory, Sahraee and Saidi [18] pre-
sented a closed form solution for axisymmetric bending of func-
tionally graded circular plates under clamped boundary
conditions. Jomehzadeh et al. [19] investigated the stress analysis
of functionally graded annular sector plates based on first order
shear deformation theory for different boundary conditions. They
found the bending–stretching equilibrium equations and solved
them to find the stresses and deflection of the FG annular sector
plates under transverse mechanical loads. Zhao et al. [20] studied
the mechanical and thermal buckling analysis of functionally
graded rectangular plates using the first order shear deformation
theory. They employed the formulation by conjunction with the
element-free KP-Ritz method. Matsunaga [21] performed thermal
buckling of functionally graded rectangular plates according to a
2D higher-order deformation theory.

To the best of author’s knowledge, the subject of thermal buck-
ling of functionally graded annular sector plates has not been per-
formed in a specified work, yet.

In this work, an analytical solution for thermal buckling of func-
tionally graded annular sector plates based on first order shear
deformation plate theory is presented. Five coupled stability equa-
tions of FG annular sector plates are converted to four decoupled
equations in terms of displacement components and a new func-
tion. Solving the decoupled equations and satisfying the boundary
conditions yields the critical buckling temperature for FG annular
sector plate. Finally, the effect of boundary conditions, power law
index, plate thickness, sector angle and annularity on critical buck-
ling temperature of FG annular sector plates for two types of ther-
mal loading are discussed in detail.

2. Fundamental equations for functionally graded annular
sector plates

Consider a FG annular sector plate with inner radius a, outer ra-
dius b, uniform thickness h and sector angle b (Fig. 1). It is assumed
that the overall material properties of the FG plate vary through
the thickness coordinate zð�h=2 6 z 6 h=2Þ as follow:
Fig. 1. Geometry and coordinate system of an annular sector plate.
PðzÞ ¼ Pm þ ðPc � PmÞ
1
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� z
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where PðzÞ denotes a material property of FG plate which may be
substituted with modulus of elasticity, EðzÞ, the coefficient of ther-
mal expansion, aðzÞ, or the coefficient of thermal conductivity, KðzÞ.
The subscripts m and c refer to the metal and ceramic constituents,
respectively. Also n is the power law index which takes values
greater than or equal to zero. Due to small changes of the Poisson
ratio m, it is assumed to be a constant through the thickness (see
e.g. Refs. [5–10,17,18]).

Based on the first order shear deformation plate theory, the dis-
placement components of the plate in r; h and z directions are as-
sumed to be [25]

urðr; h; zÞ ¼ uðr; hÞ þ zwrðr; hÞ
uhðr; h; zÞ ¼ vðr; hÞ þ zwhðr; hÞ
uzðr; h; zÞ ¼ wðr; hÞ

ð2Þ

where u, v and w are the displacements components in r; h and z
directions, respectively and wr;wh are the rotation functions of the
middle surface. The nonlinear strain–displacement components
are defined as [25]
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where err and ehh are the normal strain components and erh; ehz and
erz are the shear strains. Considering the thermal effects, the
Hooke’s law for a FG annular sector plates requires [25]

rrr ¼
EðzÞ

1� m2 ðerr þ mehh � ð1þ mÞaðzÞTðr; h; zÞÞ

rhh ¼
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rrh ¼
EðzÞ

2ð1þ mÞ ð2erhÞ ð4Þ

rhz ¼
EðzÞ

2ð1þ mÞ ð2ehzÞ

rrz ¼
EðzÞ

2ð1þ mÞ ð2erzÞ

where rrr ;rhh and rrh;rhz;rrz are the normal and shear stress com-
ponents, respectively. By using the principle of minimum total po-
tential energy for a FG annular sector plate, the equilibrium
equations can be obtained as [22,23]
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where Nrr ;Nhh and Nrh are the in-plane resultant forces, Mrr ;Mhh and
Mrh are the bending and twisting moment intensities and Qr and Q h

are the out of plane resultant forces. These parameters are defined
as

ðNrr;Nhh;NrhÞ ¼
Z h=2

�h=2
ðrrr ;rhh;rrhÞdz

ðMrr ;Mhh;MrhÞ ¼
Z h=2

�h=2
ðrrr;rhh;rrhÞzdz ð6Þ

ðQr ;Q hÞ ¼ k2
Z h=2

�h=2
ðrrz;rhzÞdz

In the third equation of (6), k2 is the shear correction factor,
which is assumed to be 5/6. Substituting Eqs. (1), (3) and (4) into
Eq. (6) gives us the following relations for resultant forces and
moments
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where A11;B11;D11; . . . are the material stiffness coefficients of the
plate which can be defined in the form
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Also, the thermal terms TN and TM are defined as
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3. Stability equations

In this section, the stability equations of the FG plate are derived
by using the adjacent equilibrium criterion [24]. It is assumed that
the plate is in the equilibrium configuration ðu0;v0;w0Þ whose sta-
bility is under investigation. The displacement components of a
neighboring configuration of the stable state can be expressed as
follows:
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where u1;v1 and w1 are the infinitesimal increments from the sta-
ble configuration. Similarly, the resultant forces of a neighboring
state can be expressed as
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where N0
rr ;N

0
hh and N0

rh corresponding to u0;v0 and w0, and N1
rr ;N

1
hh

and N1
rh are the variations in the in-plane resultants corresponding

to u1; v1 and w1. The stability equations can be obtained by substi-
tuting Eqs. (10) and (11) into Eq. (5). Upon substitution, the terms in
the consequent equations with subscript 0 satisfy the equilibrium
conditions and therefore drop out of the equations. Also the nonlin-
ear terms with subscript 1 are ignored because they are small with
the linear terms. The remaining terms from the stability equations
of an annular sector plate under thermal loads yields the following
partial differential equations

@N1
rr

@r
þ 1

r
@N1

rh

@h
þ N1

rr � N1
hh

r
¼ 0

@N1
rh

@r
þ 1

r
@N1

hh

@h
þ 2N1

rh

r
¼ 0

@M1
rr

@r
þ 1

r
@M1

rh

@h
þM1

rr �M1
hh

r
� Q 1

rr ¼ 0

@M1
rh

@r
þ 1

r
@M1

hh

@h
þ 2M1

rh

r
� Q 1

hh ¼ 0

ð12Þ

@Q 1
rr

@r
þ 1

r
@Q1

hh

@h
þ Q 1

rr

r
þ 1

r
@

@r
rN0

rr
@w1

@r

� �
þ 1

r2

@

@h
N0

hh

@w1

@h

� �
¼ 0

Substituting the resultant forces and moments from Eq. (7) into
Eq. (12), the stability equations are obtained as
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Eq. (13) are five highly coupled partial differential equations in
terms of in-plane displacements, rotation functions and transverse
displacement. These equations can not be solved easily. For solving
these equations analytically, it is desirable to find a method for
decoupling them. Using the following analytical method, these sta-
bility equations will be decoupled.

Eq. (13) can be easily rewritten in the form
A11
@u1

@r
þ A33

1
r
@u2

@h
þ B11

@u3

@r
þ B33

1
r
@u4

@h
¼ 0 ð14aÞ

A11
1
r
@u1

@h
� A33

@u2

@r
þ B11

1
r
@u3

@h
� B33

@u4

@r
¼ 0 ð14bÞ

B11
@u1

@r
þ B33

1
r
@u2

@h
þ D11

@u3

@r
þ D33

1
r
@u4

@h

� k2A33
@w1

@r
þ w1

r

� �
¼ 0 ð14cÞ

B11
1
r
@u1

@h
� B33

@u2

@r
þ D11

1
r
@u3

@h
� D33

@u4

@r

� k2A33
1
r
@w1

@h
þ w1

h

� �
¼ 0 ð14dÞ

k2A33ðr2w1 þu3Þ þ
1
r
@

@r
rN0

rr
@w1

@r

� �
þ 1

r2

@

@h
N0

hh

@w1

@h

� �
¼ 0

ð14eÞ
where r2 is the Laplace operator in polar coordinates
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From relations (8) it is easy to show that the material coeffi-
cients are related to each other via the relation
B33 ¼ ðA33B11Þ=A11. Then, Eqs. (14a) and (14b) can be rewritten in
the form
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Substituting Eqs. (16a) and (16b) into Eqs. (14c) and (14d), respec-
tively give us the following relations
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By differentiating Eqs. (17a) and (17b) with respect to r and h,
respectively and doing some algebraic calculations, the following
decoupled partial differential equations are obtained
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bCr2u4 � k2A33u4 ¼ 0 ð18bÞ

where the parameters bD and bC denote the equivalent flexural rigid-
ities of FG plate which are defined as
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Substituting Eq. (1) into Eq. (8) and integration yield
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where the parameter Ecm is defined as Ecm ¼ Ec � Em. Doing some
algebraic calculations on Eq. (17), it can be concluded that
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w1
r ¼ �

@

@r
w1 þ

bD
k2A33

r2w1 þ
bD

k4A2
33

 

� 1
r
@

@r
rN0

rr
@w1

@r

� �
þ 1

r2

@

@h
N0

hh

@w1

@h

� �� ��
þ

bC
k2A33

1
r
@u4

@h

� �
ð21aÞ

w1
h ¼ �

1
r
@

@h
w1 þ

bD
k2A33

r2w1 þ
bD

k4A2
33

1
r
@

@r
rN0

rr
@w1

@r

� �� 

þ 1
r2

@

@h
N0

hh

@w1

@h

� ���
�

bC
k2A33

@u4

@r

� �
ð21bÞ

Using Eqs. (14a) and (14b), it is easy to show that

r2u2 ¼ �
B11

A11
r2u4 ð22Þ

r2u1 ¼ �
B11

A11
r2u3 ð23Þ

Substituting the definition of parameters ui ði ¼ 1; . . . ;4Þ from
relations (15) into Eqs. (22) and (23), the following relations can
be obtained

u1 ¼ � B11

A11
w1

r

v1 ¼ � B11

A11
w1

h

ð24Þ

Therefore, the five coupled partial differential equations (13)
have been converted to two decoupled equations (18) and two
algebraic equations (24). For thermal buckling analysis of FG annu-
lar sector plate, Eqs. (18) and (24) should be solved under various
boundary conditions.
4. Thermal buckling analysis of functionally graded annular
sector plate

In this section, thermal buckling analysis for two types of ther-
mal loading, uniform temperature rise and nonlinear temperature
change across the thickness, are studied. The FG annular sector
plate is assumed to have simply supported radial edges and arbi-
trary boundary conditions along the circular edges.
4.1. Thermal buckling analysis under uniform temperature rise

To find the critical buckling temperature, Tcr , the pre-buckling
thermal stresses should be evaluated. Solving the membrane form
of equilibrium equations and using the method developed by
Meyers and Hyer [26], gives us the pre-buckling resultant forces as

N0
rr ¼ �

TN

1� m

N0
hh ¼ �

TN

1� m
N0

rh ¼ 0

ð25Þ

Substituting Eq. (25) into Eq. (18) yield

bD 1� TN

k2A33ð1� mÞ

 !
r4w1 þ TN

1� m
r2w1 ¼ 0

bCr2u4 � k2A33u4 ¼ 0

ð26Þ

Based on the Levy solution, for a plate with simply supported
boundary conditions in radial edges, the transverse displacement
w1 and the function u4 are defined as [19]
w1 ¼
X1
m¼1

wmðrÞ sinðlmhÞ

u4 ¼
X1
m¼1

umðrÞ cosðlmhÞ
ð27Þ

where lm denotes mp
b . By substituting Eq. (27) into Eq. (26), two or-

dinary differential equations are obtained. The solutions of these
differential equations are as follows

wmðrÞ ¼ C1rlm þ C2r�lm

þ C3Jlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2A33TNbDðk2A33ð1� mÞ � TNÞ

vuut r

0@ 1A
þ C4Ylm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2A33TNbDðk2A33ð1� mÞ � TNÞ

vuut r

0@ 1A ð28aÞ

umðrÞ ¼ C5Ilm

ffiffiffiffiffiffiffiffiffiffiffiffi
k2A33bC

s
r

0@ 1Aþ C6Klm

ffiffiffiffiffiffiffiffiffiffiffiffi
k2A33bC

s
r

0@ 1A ð28bÞ

where J and Y are the Bessel functions. Also, I and K are the modified
Bessel functions [27] and Ci ði ¼ 1; . . . ;6Þ are six unknown con-
stants. By satisfying the arbitrary boundary conditions in circular
edges, six algebraic equations in terms of unknown coefficients Ci

are obtained. Setting the determinant of coefficients of these equa-
tions equal to zero, the critical buckling temperature for FG annular
sector plates under uniform temperature rise is determined.

4.2. Thermal buckling analysis under nonlinear temperature change
across the thickness

For functionally graded plates, the coefficient of thermal con-
duction KðzÞ is a function of thickness coordinate. In the nonlinear
temperature changes, the temperature through the thickness is
governed by the one-dimensional Fourier equation of heat conduc-
tion. Based on Eq. (1), the coefficient of thermal conduction is de-
fined as follows

KðzÞ ¼ Km þ ðKc � KmÞ
1
2
� z

h

� �n

ð29Þ

The heat conduction equation and the boundary conditions
across the plate thickness are
d
dz

KðzÞ dT
dz

� �
¼ 0 ð30aÞ

T ¼ Tm at z ¼ h=2
T ¼ Tc at z ¼ �h=2

ð30bÞ

Substituting Eq. (29) into Eq. (30a) yields a second order differ-
ential equation in terms of temperature which can be written in
term of the non dimensional variable s as

�d2T

ds2 þ
nKcmsn�1

Km þ Kcmsn

dT
ds
¼ 0 ð31aÞ

where

s ¼ h� 2z
2h

ð31bÞ

The solution of differential equation (31a) can be easily ob-
tained by using the polynomial series in the form [6]

TðzÞ ¼ Tm þ sDT

P1
k¼0

1
nkþ1

�Kcmsn

Km

� �k
� �

P1
k¼0

1
nkþ1

�Kcm
Km

� �k
� � ð32Þ



Table 2
Critical buckling temperature of simply supported; (SSSS) functionally graded annular
sector plate under uniform temperature rise (U) and nonlinear temperature change
across the thickness (NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 147.455 898.366 3297.247 9926.534
NL 284.911 1786.733 6584.494 19843.068

0.5 U 83.589 510.670 1890.898 5834.841
NL 207.293 1333.786 4974.359 15377.143

1 U 68.557 419.345 1558.889 4865.115
NL 165.460 1078.674 4045.270 12652.433

2 U 60.776 371.652 1380.365 4296.961
NL 134.661 885.206 3320.541 10362.068

5 U 62.648 381.419 1396.871 4180.369
NL 124.099 810.323 2996.299 8988.369

20 U 61.603 373.571 1351.128 3910.857
NL 113.679 740.220 2703.494 7844.322

Table 3
Critical buckling temperature of clamped; (SSCC) functionally graded annular sector
plate under uniform temperature rise (U) and nonlinear temperature change across
the thickness (NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 284.894 1672.105 5546.823 13632.376
NL 559.789 3334.210 11083.647 27254.752

0.5 U 161.637 954.844 3221.010 8169.818
NL 413.157 2505.368 8482.745 21536.022

1 U 132.620 785.695 2670.752 6875.786
NL 332.234 2032.398 6939.807 17886.853

2 U 117.558 696.014 2361.832 6059.909
NL 271.749 1668.314 5690.093 14618.348

5 U 121.015 709.128 2342.816 5715.268
NL 249.746 1515.785 5032.647 12292.566

20 U 118.851 690.069 2228.160 5220.301
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where DT ¼ Tc � Tm is the temperature difference between the
ceramic-rich and metal-rich surfaces of the plate. Using the temper-
ature distribution (32) together with Eq. (28) and doing a similar
procedure as previous section, the critical buckling temperature
for nonlinear temperature across the thickness is obtained. The
pre-buckling resultant forces for this case are the same as the pre-
ceding case which are given by Eq. (25). Substituting TðzÞ from Eq.
(32) into Eqs. (9) and (26), the buckling temperature for a FG annu-
lar sector plate under nonlinear temperature change across the
thickness is obtained.

5. Boundary conditions

For circular edges, the possible boundary conditions are simply
supported, clamped and free. Simply supported boundary condi-
tions in circular edges require

w1
m ¼ M1

rr ¼ w1
h ¼ 0 ð33aÞ

where

M1
rr ¼ bD @wr

@r
þ bC wr

r
þ 1

r
@wh

@h

� �
ð33bÞ

Also, for clamped boundary conditions in circular edges, it can
be written

w1
m ¼ w1

r ¼ w1
h ¼ 0 ð34Þ

If the circular edges are free, it is reasonable to have

M1
rr ¼ M1

rh ¼ Q 1
r þ N0

rr
@w1

@r
¼ 0 ð35Þ

where Qr and Mrh are defined as follows [28]:

Q1
r þ N0

rr
@w1

@r
¼ k2A33

@w1

@r
þ w1

r

� �
� TN

1� m
@w1

@r

M1
rh ¼ bC 1

r
@w1

r

@h
þ @w

1
h

@r
� w1

r

r

 ! ð36Þ

It is assumed that the radial edges of FG annular sector plate are
simply supported and the boundary conditions along the circular
edges are identified according to the inner and outer radius of
the plate (e.g. SSCF denotes a plate with simply supported radial
edges, clamped inner and free outer circular edges). The nine pos-
sible boundary conditions containing SSSS, SSCC, SSFF, SSCF, SSFC,
SSCS, SSSC, SSSF and SSFS have been considered for obtaining the
numerical results.
NL 228.652 1375.858 4464.881 10474.142

Table 4
Thermal buckling temperature of free; (SSFF) functionally graded annular sector plate
under uniform temperature rise (U) and nonlinear temperature change across the
thickness (NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 25.088 154.358 596.634 2171.203
NL 40.176 298.716 1183.268 4332.406
6. Numerical results and discussions

For numerical calculations, a functionally graded annular sector
plate composed of aluminum (as metal) and alumina (as ceramic)
is considered. Young’s modulus, coefficient of thermal expansion
and thermal conductivity for aluminum are Em ¼ 70 GPa; am

¼ 23� 10�6 �C�1; Km ¼ 204 W=m K and for alumina are
Ec ¼ 380 GPa; ac ¼ 7:4� 10�6 �C�1; Kc ¼ 10:4 W=m K, respec-
Table 1
Thermal buckling temperature for uniform temperature rise, comparison of annular
sector plates and square plate.

n Present (annular sector
plate)

Ref. [6] (square
plate)

Ref. [10] (square
plate)

0 17.089 17.088 17.091
1 7.940 7.939 7.940
5 7.261 7.260 7.262

10 7.464 7.462 7.465
tively. Poisson’s ratio of the plate is assumed to be constant
through the thickness and equal to 0.3.

Since, there is not any similar results for thermal buckling of
sector plates in the literature, the results have been compared with
the available results for square plates in Refs. [6,10]. For this pur-
pose, the sector angle is considered to be very small (e.g.
b ¼ p=240Þ. Also the inner and outer radius are considered to be
very close to each other (e.g. a ¼ 0:987 ðmÞ; b ¼ 1 ðmÞ) and the
plate thickness is h ¼ 10�4 ðmÞ. Based on the results in Table 1
0.5 U 14.221 87.598 339.508 1245.207
NL 24.324 217.867 882.320 3271.245

1 U 11.664 71.881 278.935 1026.672
NL 17.349 174.114 713.140 2659.739

2 U 10.340 63.716 247.182 909.074
NL 12.893 141.758 584.699 2182.703

5 U 10.659 65.563 253.251 919.841
NL 12.183 130.375 534.414 1969.391

20 U 10.482 64.374 247.721 890.004
NL 11.010 119.245 487.468 1777.397
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the present results are in good agreement with those of Refs.
[6,10].

In Tables 2–10, the results of thermal buckling analysis for FG
annular sector plate under both uniform temperature rise (U)
and nonlinear temperature change across the thickness (NL), for
nine possible boundary conditions, are presented. In these Tables,
it is assumed that the initial temperature rise is equal to 5 �C in
the metal-rich surface of the plate [10].
Table 5
Thermal buckling temperature of SSCF functionally graded annular sector plate under
uniform temperature rise (U) and nonlinear temperature change across the thickness
(NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 29.065 177.867 678.458 2414.985
NL 48.130 345.735 1346.916 4819.971

0.5 U 16.478 101.005 386.667 1387.604
NL 30.275 253.229 1006.710 3646.840

1 U 13.515 82.907 317.908 1145.128
NL 22.168 202.816 814.601 2968.118

2 U 11.981 73.484 281.673 1013.748
NL 16.855 165.342 667.970 2435.417

5 U 12.348 75.537 287.876 1022.687
NL 15.819 151.846 608.952 2190.789

20 U 12.141 74.101 281.015 987.334
NL 14.342 138.779 554.333 1972.870

Table 6
Thermal buckling temperature of SSCS functionally graded annular sector plate under
uniform temperature rise (U) and nonlinear temperature change across the thickness
(NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 174.096 1046.822 3717.667 10573.946
NL 338.192 2083.645 7425.334 21137.892

0.5 U 98.722 595.994 2140.317 6246.007
NL 247.206 1558.843 5632.243 16461.661

1 U 80.979 489.758 1767.701 5220.474
NL 197.798 1261.980 4588.876 13577.546

2 U 71.786 433.987 1564.625 4608.280
NL 161.242 1035.702 3765.399 11113.685

5 U 73.961 444.278 1573.512 4448.006
NL 148.453 945.639 3376.557 9564.516

20 U 72.695 434.178 1514.141 4136.780
NL 135.955 861.939 3030.881 8298.055

Table 7
Thermal buckling temperature of SSFC functionally graded annular sector plate under
uniform temperature rise (U) and nonlinear temperature change across the thickness
(NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 191.888 1156.959 4113.265 11443.021
NL 373.776 2303.918 8216.531 22876.042

0.5 U 108.802 658.530 2368.823 6782.925
NL 273.794 1723.791 6234.964 17877.869

1 U 89.244 541.081 1956.630 5678.153
NL 219.315 1395.591 5080.718 14769.031

2 U 79.114 479.478 1731.813 5010.517
NL 178.934 1145.532 4169.040 12084.805

5 U 81.521 491.050 1740.785 4809.507
NL 164.727 1046.326 3736.646 10342.722

20 U 80.135 480.042 1673.988 4451.660
NL 150.897 954.050 3351.910 8930.444
Tables 2–4 illustrate the critical buckling temperature for sym-
metric boundary conditions SSSS, SSCC and SSFF, respectively. It can
be seen that the critical buckling temperature increases with
decreasing the radius–thickness ratio b/h and decreases with
increasing the power law index n. Also, the buckling temperature
changes very slowly when the power law index n is greater than
2. Moreover, it increases rapidly with decreasing b/h for
b=h 6 10. By comparing the results of these Tables, it can be
Table 8
Thermal buckling temperature of SSFS functionally graded annular sector plate under
uniform temperature rise (U) and nonlinear temperature change across the thickness
(NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 130.621 797.962 2955.943 9135.503
NL 251.242 1585.925 5901.886 18261.006

0.5 U 74.042 453.433 1693.015 5353.664
NL 182.110 1182.814 4452.411 14107.963

1 U 60.725 372.285 1394.953 4457.620
NL 145.072 956.162 3618.494 11591.593

2 U 53.834 329.955 1235.362 3938.312
NL 117.900 784.539 2970.461 9496.185

5 U 55.496 338.821 1252.669 3850.012
NL 108.704 718.621 2685.874 8277.207

20 U 54.574 332.022 1213.813 3616.08
NL 99.563 656.774 2427.717 7252.321

Table 9
Thermal buckling temperature of SSSC functionally graded annular sector plate under
uniform temperature rise (U) and nonlinear temperature change across the thickness
(NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 228.678 1369.114 4766.860 12641.480
NL 447.357 2728.228 9523.720 25272.961

0.5 U 129.682 779.976 2752.674 7529.671
NL 328.870 2044.124 7247.433 19847.530

1 U 106.379 641.120 2276.494 6317.855
NL 263.922 1656.024 5913.426 16434.381

2 U 94.302 568.077 2014.364 5572.066
NL 215.602 1359.437 4851.203 13440.550

5 U 97.147 580.968 2016.065 5307.219
NL 198.367 1239.895 4329.246 11414.155

20 U 95.474 567.228 1931.511 4882.664
NL 181.704 1129.151 3869.105 9796.051

Table 10
Thermal buckling temperature of SSSF functionally graded annular sector plate under
uniform temperature rise (U) and nonlinear temperature change across the thickness
(NL) for some values of n and b=hðb ¼ 60; b=a ¼ 3Þ.

n b=h ¼ 50 b=h ¼ 20 b=h ¼ 10 b=h ¼ 5

0 U 26.324 162.124 627.489 2288.811
NL 42.649 314.248 1244.979 4567.621

0.5 U 14.922 91.998 357.017 1312.295
NL 26.171 229.471 928.503 3448.201

1 U 12.238 75.488 293.301 1081.851
NL 18.843 183.504 750.540 2803.389

2 U 10.849 66.914 259.916 957.959
NL 14.122 149.479 615.444 2300.727

5 U 11.184 68.863 266.357 969.732
NL 13.313 137.479 562.627 2076.791

20 U 10.999 67.622 260.587 938.638
NL 12.049 125.768 513.308 1875.071



Table 11
Thermal buckling temperature of simply supported; SSSS functionally graded annular sector plate under uniform temperature rise for some values of n and bðb=a ¼ 3; b=h ¼ 50Þ.

n b ¼ 30 b ¼ 45 b ¼ 60 b ¼ 90 b ¼ 120 b ¼ 180 b ¼ 210 b ¼ 270 b ¼ 360

0 333.984 198.367 147.455 111.024 98.793 90.496 88.805 86.991 85.798
0.5 189.455 112.470 83.589 62.929 55.994 51.290 50.331 49.303 48.627
1 155.430 92.952 68.557 51.609 45.921 42.062 41.276 40.433 39.878
2 137.781 81.780 60.776 45.753 40.710 37.289 36.592 35.845 35.353
5 141.873 84.274 62.648 47.171 41.975 38.450 37.731 36.961 36.454
20 139.371 82.847 61.603 46.393 41.285 37.819 37.113 36.355 35.857

Fig. 3. Critical buckling temperature of FG plate under uniform temperature rise
versus aspect ratio b=a for non-symmetric boundary conditions ðb ¼ 60;n ¼ 1;
b=h ¼ 20Þ.
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said that the SSCC plate has the maximum critical buckling tem-
perature and the SSFF plate has the minimum critical buckling
temperature.

In Tables 5–11 the results of thermal buckling analysis for non-
symmetric boundary conditions are presented. It can be concluded
that the critical buckling temperature increases by decreasing the
radius–thickness ratio, b=h, and decreases with increasing the
power law index n . For all of these cases, when the power law in-
dex n is greater than 2, the change of the critical buckling temper-
ature is slight.

By comparing the buckling temperatures for two different types
of loading, it can be concluded that the buckling temperature for
nonlinear temperature change is greater than that of the uniform
temperature rise.

To study the effects of sector angle on buckling temperature of
FG annular sector plate, the critical buckling temperature under
uniform temperature rise for SSSS boundary condition are pre-
sented in Table 11. This Table shows that the buckling temperature
decreases by increasing the sector angle for all different sector
angles.

In the case of uniform temperature rise, Fig. 2 shows the critical
buckling temperature Tcr versus the aspect ratio b=a and power law
index n for symmetric boundary conditions. The parameters are ta-
ken to be b ¼ 60; n ¼ 1 and b=h ¼ 20. It can be seen form this figure
that increasing the aspect ratio b=a, decreases the critical buckling
temperature, Tcr , except for SSFF boundary condition.

In addition, for non-symmetric boundary conditions, Fig. 3 de-
picts the critical buckling temperature Tcr versus the aspect ratio
b=a and power law index n. From this figure, it can be seen that
by increasing the aspect ratio b=a, the critical buckling tempera-
ture, Tcr , decreases except for the plates with free inner circular
Fig. 2. Critical buckling temperature of FG plate under uniform temperature
rise versus aspect ratio b=a for symmetric boundary conditions ðb ¼ 60;n ¼ 1;
b=h ¼ 20Þ.
edges. Also, the critical buckling temperature for SSCF and SSSF
boundary conditions are close to each other and lower than that
of other boundary conditions. Moreover, for large amounts of
b=a, the boundary condition in inner circular edges does not affect
the critical buckling load.
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Fig. 4. Critical buckling temperature of FG plate under uniform temperature rise
versus power law index n for boundary conditions containing free outer edge
ðb=h ¼ 20; b=a ¼ 5;b ¼ 60Þ.
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Fig. 5. Critical buckling temperature of FG plate under uniform temperature rise
versus power law index n for various boundary conditions ðb=h ¼ 20; b=a ¼ 5;
b ¼ 60Þ.
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Furthermore, Figs. 4 and 5 show the critical buckling tempera-
ture versus the power law index n for FG plates with free outer
edge and other boundary conditions, respectively. It can be seen
that by increasing n, the critical buckling temperature decreases
for ðn 6 2Þ and increases for ð2 < n < 12Þ and then decreases for
ðn P 12Þ. This behavior can be also seen from Tables 2–11.

7. Conclusions

In this paper, the equilibrium and stability equations for FG
annular sector plates under both uniform temperature rise and
nonlinear temperature change across the thickness have been de-
rived based on the first order shear deformation plate theory. It
is assumed that the annular sector plate has simply supported
boundary conditions in radial edges and arbitrary boundary condi-
tions along the circular edges. The coupled stability equations have
been converted to two decoupled partial differential equations and
two algebraic equations. The critical buckling temperature has
been obtained for nine different boundary conditions along the cir-
cular edges. The following conclusions can be remarked:

1. The critical buckling temperatures for functionally graded
plates are generally lower than the corresponding values for
homogeneous ceramic plates.

2. The critical buckling temperature of a FG annular sector plate
increases when the radius–thickness ratio b=h and/or the power
law index ndecreases.

3. The critical buckling temperature of FG annular sector plates
decreases by increasing the aspect ratio b=a except for the
plates with free inner circular edge.

4. The critical buckling temperature of FG annular sector plates
decreases by increasing the sector angle.

5. For FG plates under nonlinear temperature change across the
thickness, the critical buckling temperature is greater than that
of uniform temperature distribution.

6. For uniform temperature rise when the power law index n is
greater than 2, the critical buckling temperature changes very
slowly by changing n.
7. For FG plates under uniform temperature rise, by increasing the
power law index n, the critical buckling temperature decreases
for ðn 6 2Þ and increases for ð2 < n < 12Þ and then decreases for
ðn P 12Þ.

8. For the plates with free outer radius, the critical buckling tem-
peratures are close to each other in all aspect ratios.
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