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Abstract

This article introduces an exact analytical method for free vibration analysis of functionally graded (FG) thin annular
sector plates resting on Winkler and Pasternak elastic foundations. The annular sector plate has simply supported radial
edges and arbitrary boundary conditions along the circular edges. Based on the displacement field of Kirchhoff plate
theory, the governing equations of motion are obtained considering the in-plane displacements and rotary inertia. Using a
set of functions, the three coupled governing equations of motion are converted into two decoupled equations. By
applying the boundary conditions at inner and outer radii, an eigenvalue problem for finding the natural frequencies is
obtained. The nine distinct cases are considered involve all possible combinations of boundary conditions along the
circular edges. Accurate non-dimensional frequency is presented for over a wide range of sector angles, some inner to
outer radii (aspect ratio) and different powers of functionally graded material. Accurate natural frequencies of FG annular
sector plates resting on elastic foundations are presented for the first time and can be used as reference values for

numerical analyses.
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I. Introduction

Many problems of considerable practical importance
can be related to the solution of plates resting on elastic
foundations. Reinforced concrete pavement foundation
slabs of buildings are the well-known direct applica-
tions of plates on an elastic foundation.

Generally, the analysis of structures on the elastic
foundation is developed on the assumption that the reac-
tion forces of the foundation are proportional at every
point to the deflection of the structure at that point.

The functionally graded materials (FGMs) are newly
discovered materials which are used, because of their
remarkable mechanical properties, in many engineering
applications namely space structures, aerospace and
other industries. The mechanical properties of FGMs
vary smoothly and continuously from one surface to
the other (Shiota and Miyamoto, 1997). These mate-
rials are usually made from a mixture of metal and
ceramic, or a combination of different metals.

There are lots of studies for free vibration analysis of
homogenous annular sector plates in the literature.
Cheung and Kwok (1975) studied the dynamic analysis
of circular and sector thick, layered plates by using the
finite element method. Srinivasan and Thiruvekatachari
(1986) by using an integral equation technique studied
the free vibration analysis of laminated annular sector
plates. By using the Rayleigh-Ritz method, Kim and
Dickinson (1989) investigated the free vibration of
annular and circular thin plates subject to certain com-
plicating effects. Harik and Molaghasemi (1990)
employed an analytical method to investigate the free
vibration of isotropic annular sector plates resting on
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elastic foundations. By using the spline element
method, Mizusawa (1991) presented the free vibration
of stepped annular sector plates. He concluded that the
frequencies of the annular stepped sector plates are
influenced by the sector angles, the stepped width
ratios and the stepped thickness ratios. By using the
Rayleigh-Ritz procedure, Xiang et al. (1993) investi-
gated the free vibration of thick sector plates with dif-
ferent supporting edge conditions. McGee et al. (1993,
1995) presented the comprehensive exact solutions for
free vibration of thick annular sectorial plates with
simply supported radial edges. They presented exact
results for homogenous isotropic annular sector plates
under different boundary conditions. Based on Mindlin
theory, Huang et al. (1994) presented exact analytical
solutions for free vibrations of thick sectorial plates
with simply supported radial edges. Huang and Ho
(2004) studied the analytical solution for free vibrations
of a polarly orthotropic Mindlin sectorial plate with
simply supported radial edges, by using the Frobenius
method. Also by using the Ritz method and considering
stress singularities, Huang et al. (2006) studied the
vibrations of Mindlin sectorial plates. Wang and
Wang (2004) studied the free vibration analysis of
thin sector plates by a new version of differential quad-
rature method. Seok and Tiersten (2004a,b) investi-
gated the free vibration of annular sector cantilever
plates for in-plane and out of plane motion, respec-
tively. Yongqiang and Jian (2007) investigated the
free vibration analysis of circular and annular sectorial
thin plates using curve strip Fourier p-element. Zhou
et al. (2009) studied the three dimensional vibration
analysis of annular sector plates wusing the
Chebyshev—Ritz method. Based on the First order
shear deformation theory, Jomehzadeh and Saidi
(2009a,b) presented an analytical solution for free
vibration of transversely isotropic of complete sector
and annular sector plates. Malekzadeh (2009) investi-
gated three-dimensional free vibration analysis of thick
laminated annular sector plates using a hybrid method.

Although many studies have been carried out for
vibration analysis of homogenous sector plate, a little
article can be found on vibration of functionally graded
(FG) sector plates. Nie and Zhong (2008) presented the
free and forced vibration analysis of FG annular secto-
rial plates with simply supported radial edges by using
the differential quadrature method. They concluded
that the lowest non-dimensional frequency decreases
with the increase of the FG index for different thickness
ratios, radii ratios and sector angles and it increases
with the increase of thickness ratios, radii ratios and
the circumferential wave number. Hosseini-Hashemi
et al. (2010a) studied the buckling and free vibration
behaviors of radially FG circular and annular sector
thin plates subjected to uniform in-plane compressive

loads and resting on the Pasternak elastic foundation.
In the case of radially FGM, the bending and stretching
equations are decoupled and the plate equations can be
solved like the homogenous ones. Since the FG plates
are usually used where there is a temperature difference
in thickness direction, the material properties of FG
plate should vary through the thickness in which the
bending/stretching equations become coupled and find-
ing the analytical solution is difficult in this case.
Malekzadeh et al. (2010b) presented dynamic response
of thick laminated annular sector plates subjected to
moving load by using the finite difference method.
Malekzadeh et al. (2010a) studied the three-dimen-
sional layer—wise finite element free vibration analysis
of thick laminated annular plates on elastic foundation.
Hosseini-Hashemi et al. (2010b) presented the vibration
analysis of radially FG sectorial plates of variable
thickness on elastic foundations by using the differen-
tial quadratic method.

To the best of the authors” knowledge, the analytical
solutions for the free vibration of FG annular sector
plates have not been presented in the literature, yet.

The object of the present article is to give an exact
solution for free vibration analysis of FG sector plates
resting on an elastic foundation. The properties of
material are assumed to vary through the thickness
that makes the problem more complicated. The govern-
ing equations of motion are obtained using the
Hamilton’s principle. Three coupled bending/stretching
equations of motion are decoupled and solved by using
two auxiliary functions. For solving the decoupled
equations, it is assumed that the FG annular sector
plate has simply supported radial edges and arbitrary
boundary conditions along the circular edges. The non-
dimensional frequencies are tabulated for FG sector
plates with all nine different boundary conditions
along the circular edges. Finally, the effects of sector
angle, thickness-radius ratio, aspect ratio, material
properties and elastic foundation coefficients on the
vibration behavior of FG annular sector plate are stud-
ied in details. The presented results for natural frequen-
cies of FG annular sectorial plates are given for the first
time and can serve as reference values for numerical
analyses.

2. Elastic foundation

Many practical engineering problems can be related to
the solution of plates resting on an elastic foundation.
There exist various hypotheses models of elastic foun-
dation of which two simple models are Winkler and
Pasternak elastic foundations. Physically, the Winkler
model (Winkler, 1867) can be considered as an ideali-
zation of the soil medium by a number of mutually
independent spring elements. To account the more



248

Journal of Vibration and Control 18(2)

realistic interaction between the springs, two-parameter
models such as the Pasternak model (Pasternak, 1954)
which permit interaction among the springs were
proposed.

For accounting the Winkler foundation, it is
assumed that the foundation’s reaction ¢ (r,6) can be
describe by the following mathematical relation

q(r,0) =K, w(r,6) (1)

where w(r,0) is the deflection and K, is Winkler elastic
foundation parameter.

Also, for Pasternak model, the foundation’s reaction
is (Civalek, 2007)

q(r.0) = K, w(r,0) + K, V2w (r,6) )

where K, is the interaction parameter of Pasternak
foundation. Physically, these parameters represent the
interaction due to shear action among the spring
elements.

The physical difference between the Winkler and the
Pasternak foundations may be observed from a circular
plate with free edges under a transverse uniform load.
The plate will undergo a uniform rigid body settlement
when it rests on the former foundation whereas a
“dishing” type of deflection occurs with the latter
kind of foundation model.

3. Basic equations

Consider an FG annular sector plate with inner radius
a, outer radius b, uniform thickness /2 and sector angle «
(Figure 1). It is assumed that the annular sector plate is
made of a mixture of ceramic and metal. Also, the
Young modulus and mass density of the annular
sector plate vary through the thickness as a power
law, i.c.

1 z\

E(Z) = Em + (Ec - Em) E - Z

X 3)
p(2) = pm + (pe — pm)<2 - h)

where 7 is the power of the FG plate. Also, E,,, and E,
refer to Young modulus of metal and ceramic, respec-
tively. According to the small range of Poisson ratio
variation, it is assumed that it is constant through the
thickness of the FG annular sector plate.

For a thin sector plate, the displacement field is
assumed as

0 o,t
w(r.6.2.0 = utr0.0 — =2 CED )
0 o,t
o, 0,2, 1) = (1,0, 1) — 220D g
r 00
W 6,2, 1) = w (1,6, 1) (40)

Ceramic

Figure |. Geometry and coordinate system of an annular sector plate.
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Table 1. Comparison of the natural frequency of annular sector plate, @ = wmb? ’E)Lmh for all boundary conditions
(h/b=0.001, o = 195")
a/b=0.1 a/b=0.3 a/b=20.5 a/b=07
\ee 3-D-Zhou et al. 2009 - - 90.1125 -
Mindlin-McGee et al. 1995 28.6308 46.4445 90.0837 249.051
Present 28.6308 46.4447 90.0838 249.050
SSCS 3-D-Zhou et al. 2009 - - - -
Mindlin-McGee et al. 1995 19.11578 31.1848 60.8128 169.346
Present 19.1157 31.18496 60.81283 169.34556
SSCF 3-D-Zhou et al. 2009 - - - -
Mindlin-McGee et al. 1995 3.5409 6.5485 13.2435 374161
Present 3.54115 6.5486| 13.24361 3741634
SSSC 3-D-Zhou et al. 2009 - - - -
Mindlin-McGee et al. 1995 24.8439 35.5832 65.2605 175.352
Present 24.8442| 35.58331 65.26041 175.3509
SSSS 3-D-Zhou et al. 2009 - - 41.5301 -
Mindlin-McGee et al. 1995 16.3785 229819 41.5375 111.239
Present 16.37863 2298210 41.53744 111.2388
SSSF 3-D-Zhou et al. 2009 - - - -
Mindlin-McGee et al. 1995 2.5006 3.3374 4.7369 8.0567
Present 2.50087 3.33758 4.73706 8.05680
SSFC 3-D-Zhou et al. 2009 - - 21.4074 -
Mindlin-McGee et al. 1995 20.4360 18.6384 21.4263 45.0122
Present 20.43628 18.63861 21.42632 45.01249
SSFS 3-D-Zhou et al. 2009 - - 10.8522 -
Mindlin-McGee et al. 1995 13.2448 12.0356 10.8761 12.5616
Present 13.24493 12.03580 10.87624 12.56188
SSFF 3-D-Zhou et al. 2009 - - 0.1856 -
Mindlin-McGee et al. 1995 0.3442 0.2413 0.1850 0.1462
Present 0.34433 0.241562 0.185384 0.14639
Table 2. Comparison of the natural frequency (Hz) of annular sector plate with the results of ANSYS software
(b=1m, h=0.05m, K, =0, K, =0)
a/b=0.3 a/b=0.5
o Boundary condition ANSYS Present Difference ANSYS Present Difference
90° sscc 1199.60 1227.09 2.29% 2178.10 223431 2.58%
SSCF 186.84 191.58 2.53% 346.71 354.10 2.13%
SSFC 766.97 782.70 2.05% 744.63 772.11 3.69%
180° sscc 1109.10 1120.08 0.98% 2091.10 2161.50 3.36%
SSCF 156.82 157.82 0.63% 317.74 320.18 0.77%
SSFC 458.26 467.13 1.93% 520.75 529.85 1.74%
270° sscc 1089.40 1102.60 1.21% 2078.90 2148.60 3.35%
SSCF 158.19 158.35 0.10% 31523 316.31 0.34%
SSFC 37238 37949 1.90% 471.89 482.03 2.14%
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Table 3. Fundamental frequency parameter @, = wmkbz‘ /"DL" of SSCC FG annular sector plate for some values of n, «, K, Ks and

a/b (h/b = 0.05)

o a/b Ky, Ks) n=0 n=0.5 n=1 n=2 n=>5
z I x 1076 (0,0) 99.8879 84.5733 76.1855 69.2329 65.6266
(10,10) 108.2673 92.1786 83.7209 76.7626 72,5372
0.3 (0,0) 117.4868 99.4736 89.6067 81.42754 77.1851
(10,10) 125.0020 106.2991 96.3762 89.5335 83.3973
0.5 (0,0) 193.2422 163.6086 147.3621 133.8848 126.8958
(10,10) 199.6286 169.4148 153.1291 139.6624 132.1924
z I x 1076 (0,0) 68.3768 57.8950 52.1584 47.406 | 44.9407
(10,10) 76.4234 65.1903 59.3757 54.6067 51.5537
0.3 (0,0) 100.2056 84.8438 76.4343 69.4665 65.8518
(10,10) 106.7751 90.8099 82.3512 75.3850 71.2822
0.5 (0,0) 182.4571 154.4799 139.1482 126.4343 119.8405
(10,10) 188.3183 159.8089 144.4418 131.7381 124.7031
I I x 1076 (0,0) 54.438| 46.0936 41.5282 37.7472 35.7854
(10,10) 62.2488 53.1694 48.5204 447149 42.1877
0.3 (0,0) 94.9127 80.3630 72.3997 65.8027 62.3803
(10,10) 101.0057 85.8965 77.8878 712928 67.4177
0.5 (0,0) 178.9365 151.500 136.4670 124.0023 117.5374
(10,10) 184.5901 156.6404 141.5733 129.1189 122.2285
T I x 1076 (0,0) 42.9562 36.3721 32.7708 29.7891 282419
(10,10) 50.2392 42.9649 39.2789 36.2673 34.1969
0.3 (0,0) 91.4678 77.4466 69.7738 63.4182 60.1209
(10,10) 97.1616 82.6179 74.9030 68.5498 64.8293
0.5 (0,0) 176.5110 149.4472 134.6199 122.3268 115.9509
(10,10) 182.0082 154.4453 139.5851 127.3023 120.5126
in I x 1076 (0,0) 43.3790 36.7303 33.0944 30.0843 28.5223
(10,10) 49.3109 42.1050 38.4072 35.3802 33.3884
0.3 (0,0) 90.0398 76.2377 68.6853 62.4299 59.1844
(10,10) 95.5391 81.2325 73.6397 67.3868 63.7325
0.5 (0,0) 175.4581 148.5559 133.8180 121.5995 1152622
(10,10) 180.8834 153.4888 138.7185 126.5102 119.7645
27 I x 107® (0,0) 43.9409 37.2061 33.5233 30.4746 28.8925
(10,10) 49.4088 42.1619 38.4240 353618 33.3823
0.3 (0,0) 89.5562 75.8283 68.3166 62.0951 58.8672
(10,10) 94.9848 80.7589 73.2075 66.9886 63.3572
0.5 (0,0) 175.0932 148.2471 133.5401 121.3475 115.0236
(10,10) 180.4931 153.1567 138.4177 126.2352 119.5048

where u, v and w are the mid-plane displacement com-
ponents in r, 6 and z directions, respectively.

For vibration analysis of homogeneous isotropic
plates, neglecting the in-plane displacements does not
have any effect on the natural frequencies because the
stretching and bending equations are decoupled from
each other. However, in the analysis of FG plate based
on the coupling between bending and stretching

equations the in-plane displacements are the major
parameters. Therefore, in this article the effects of in-
plane displacement are considered. Also, the effects of
in-plane displacements are considered in detail in
Hasani Baferani et al. (2010).

Under the assumption of small deformation
and linear strain-displacement relations, the strain
components of a FG annular sector plate can be
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Table 4. Fundamental frequency parameter @, = a)mkbz‘ /%Lmh of SSSC FG annular sector plate for some values of n, «, K, Ks and
a/b (h/b = 0.05)

o a/b (K, Ks) n=0 n=0.5 n=1 n=2 n=>5
z I x 1076 (0,0) 99.8879 84.5733 76.1855 69.2329 65.6266
(10,10) 108.2673 92.1786 83.7209 76.7626 72,5372
0.3 (0,0) 106.8757 90.4895 81.5140 74.0739 70.2148
(10,10) 115.0137 97.8776 88.8370 81.3943 76.9322
0.5 (0,0) 152.7616 129.3364 116.4955 105.8445 1003210
(10,10) 160.4401 1363133 1234191 112.7741 106.6761
z I x 1076 (0,0) 68.3768 57.8950 52.1584 47.406 | 44.9407
(10,10) 76.4234 65.1903 59.3757 54.6067 51.5537
0.3 (0,0) 83.7409 70.9034 63.8761 58.0538 55.0334
(10,10) 91.2699 77.7355 70.6439 64.8150 61.2397
0.5 (0,0) 137.1715 116.1390 104.6148 95.0595 90.1037
(10,10) 144.4577 122.7587 111.1833 101.6332 96.1331
Z I x 1076 (0,0) 54.438| 46.0936 41.5282 37.7472 35.7854
(10,10) 62.2488 53.1694 48.5204 447149 42.1877
0.3 (0,0) 75.8626 64.2333 57.8689 52.5969 49.8617
(10,10) 83.0239 70.7308 64.3040 59.0244 55.7624
0.5 (0,0) 131.8727 111.6533 100.5765 91.3932 86.6302
(10,10) 138.9888 118.1182 106.9912 97.8129 92.5186
e I x 1076 (0,0) 42.9562 36.3721 32.7708 29.7891 282419
(10,10) 50.2392 42.9649 39.2789 36.2673 34.1969
0.3 (0,0) 70.4235 59.6284 53.7215 48.8291 46.2908
(10,10) 77.2381 65.8108 59.8438 54.9435 51.9045
0.5 (0,0) 128.1507 108.5024 97.7397 88.8178 84.1901
(10,10) 135.1326 114.8454 104.0333 95.1161 89.9673
in I x 1076 (0,0) 433790 36.7303 33.0944 30.0843 28.5223
(10,10) 493109 42.1050 38.4072 35.3802 33.3884
0.3 (0,0) 68.0796 57.6440 51.9342 47.2053 447518
(10,10) 747110 63.6600 57.8915 53.1548 50.2142
0.5 (0,0) 126.5152 107.1179 96.4932 87.6860 83.1178
(10,10) 133.4337 113.4032 102.7294 93.9269 88.8425
2 I x 107® (0,0) 43.9409 37.2061 33.5233 30.4746 28.8925
(10,10) 49.4088 42.1619 38.4240 353618 33.3823
0.3 (0,0) 67.2723 56.9605 51.3186 46.6460 442217
(10,10) 73.8347 62.9138 57.2138 52.5334 49.6272
0.5 (0,0) 125.9456 106.6357 96.0591 87.2918 82.7444
(10,10) 132.8413 112.9003 102.2748 93.5122 88.4502

expressed as
gey = LU v v 20w 2w
w Pw TR0 o 1 rore0 2o
Ep =7——Z (_)
or *r

)

In the classical plate theory, it is assumed that the
cross section perpendicular to the middle surface of
the plate remains normal and unscratched after
deformation.

1ov u 1 &w 1low
w=ra " T

ra0 - ) )

ror
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Table 5. Fundamental frequency parameter @, = a)mkbz‘ //JDL: of SSCS FG annular sector plate for some values of n, «, K, K; and
a/b (h/b = 0.05)

o a/b Ky, Ks) n=0 n=0.5 n=1 n=2 n=>5
z I x 1076 (0,0) 78.2450 66.2492 59.6803 542362 514123
(10,10) 87.8753 74.9803 683177 62.8527 59.3250
0.3 (0,0) 88.9937 75.3496 67.8771 61.6835 58.4709
(10,10) 98.0826 83.5947 76.0406 69.8345 65.9536
0.5 (0,0) 1389518 117.6445 105.9651 96.2779 91.2542
(10,10) 1472111 125.1467 113.4067 103.7223 98.0826
z I x 10-¢ (0,0) 50.2307 42.5309 38.3174 34.8274 33.0167
(10,10) 59.8038 51.1941 46.8653 433315 40.8347
0.3 (0,0) 71.0352 60.1456 54.1849 49.2466 46.6847
(10,10) 79.4850 67.8066 61.7642 56.8083 53.6292
0.5 (0,0) 126.4074 107.0252 96.4054 87.5999 83.0329
(10,10) 1342578 114.1554 103.4770 94.6735 89.5219
I I x 1076 (0,0) 38.1098 32.2683 29.0727 26.4265 25.0535
(10,10) 47.6335 40.8743 37.5466 34.8389 32.7933
0.3 (0,0) 65.3493 553317 49.8494 45.3082 42.952|
(10,10) 73.4202 62.6478 57.0857 52.5258 49.5814
0.5 (0,0) 122.2376 103.4954 93.2276 84.7149 80.2997
(10,10) 129.9135 110.4666 100.1414 91.6305 86.6440
T I x 1076 (0,0) 282498 23.9199 21.5518 19.5913 18.5740
(10,10) 37.4742 32.2412 29.7258 27.6860 26.0282
0.3 (0,0) 61.5905 52.1494 46.9833 42.7044 40.4844
(10,10) 69.3164 59.1519 53.9083 49.6105 46.828|
0.5 (0,0) 119.3413 101.0435 91.0203 82.7110 784011
(10,10) 126.8806 107.8906 97.8107 89.5031 84.6323
in I x 1076 (0,0) 28.3087 23.9699 21.5973 19.6331 18.6138
(10,10) 36.2374 31.1274 28.6352 26,6101 25.0367
0.3 (0,0) 60.0184 50.8183 45.7845 41,6153 39.4522
(10,10) 67.5672 57.6601 52.5502 48.362| 45.6498
0.5 (0,0) 118.0776 99.9737 90.0571 81.8366 77.5726
(10,10) 125.5529 106.7627 96.7898 88.5708 83.7508
27 I x 1076 (0,0) 28.6560 24.2640 21.8623 19.8742 18.8425
(10,10) 36.1299 31.0126 28.5004 26.4570 249018
0.3 (0,0) 59.4840 50.3659 453770 41.2452 39.1014
(10,10) 66.9671 57.1481 52.0836 47.9329 452448
0.5 (0,0) 117.6389 99.6023 89.7228 81.5330 77.2851
(10,10) 125.0913 106.3704 96.4348 88.2465 83.4443

Consequently, the transverse shear deformations are
neglected. Substituting strain components (5) into the *M,, %BM,T 1 PMy 10My

Hamilton’s principle, the equations of motion of the ar? R roor

FG sector plate resting on the Winkler and Pasternak 208M,y 2 0My Pw  ow  Pw
elastic foundation are obtained as follows T e TR e Kyww + Ky <W T TR 892>

ON, 13N, 1 LW di i 19V P o Pw

- ~(N,y — Ngg) = Lii — I — (6 = Iyii A YA (AL L
o e r( ' o) = Toti = 1, or (6a) fow+ 11 (ar TR 89) 12<8r2 T r2892>

Ny 2 19N, . oW

S+ SN+ -2 =T — I — (6b) (6c)

or r r 00 o0
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Table 6. Fundamental frequency parameter @ = wmib?, /’Z)Lm" of SSSS FG annular sector plate for some values of n, «, K, K and
a/b (h/b = 0.05)

o a/b (K, Ks) n=0 n=0.5 n=1 n=2 n=>5
z I x 1076 (0,0) 78.2450 66.2492 59.6803 54.2362 51.4122
(10,10) 87.8753 74.9803 683177 62.8528 59.3250
0.3 (0,0) 82.0552 69.4751 62.5856 56.8756 53.9138
(10,10) 91.5946 78.1255 76.5367 65.4175 61.7570
0.5 (0,0) 109.406 | 92.6304 83.4374 75.8140 71.8604
(10,10) 118.8973 101.2447 91.9722 84.3416 79.6861
z I x 1076 (0,0) 50.2308 42.5309 383174 34.8274 33.0167
(10,10) 59.8038 51.1942 46.8653 433315 40.8346
0.3 (0,0) 59.3475 50.2498 452705 41.1456 39.0056
(10,10) 68.6577 58.6827 53.6017 49.445] 46.6317
0.5 (0,0) 92.1548 78.0255 70.2862 63.8707 60.5431
(10,10) 101.5484 86.5474 78.7241 72.2960 682773
Z I x 1076 (0,0) 38.1098 32.2682 29.0727 26.4265 25.0534
(10,10) 47.6335 40.8743 37.5466 34.8389 32.7933
0.3 (0,0) 51.3641 43.4906 39.1822 356138 33.7624
(10,10) 60.4925 51.7541 47.3395 437332 412255
0.5 (0,0) 86.134| 72.9284 65.6961 59.7016 56.5921
(10,10) 95.4780 81.4035 74.0854 68.0759 64.2806
T I x 1076 (0,0) 28.1513 23.8365 21.4767 19.5231 18.5092
(10,10) 37.3978 32.1774 29.6695 27.6358 25.9804
0.3 (0,0) 45.7471 38.7348 34.8983 31.7212 30.0726
(10,10) 54.6732 468115 42.8661 39.6466 37.3594
0.5 (0,0) 81.8461 69.2981 62.4267 56.7319 53.7779
(10,10) 91.1473 77.7332 70.7746 65.0631 61.4275
in I x 1076 (0,0) 28.3068 23.9682 21.5957 19.6317 18.6125
(10,10) 36.2355 31.1259 28.6338 26.6088 25.0355
0.3 (0,0) 432972 36.6605 33.0298 30.0232 28.4632
(10,10) 52.1041 44.6276 40.8870 37.8362 35.6475
0.5 (0,0) 79.9448 67.6884 60.9771 554151 52.5299
(10,10) 89.2247 76.1036 69.3044 63.7249 60.1602
2 I x 1076 (0,0) 28.6559 242639 21.8623 19.8742 18.8425
(10,10) 36.1299 31.0126 28.5003 26.4569 249017
03 (0,0) 424493 35.9426 32.3831 29.4355 27.9062
(10,10) 51.2089 43.8664 40.1967 37.2044 35.0500
0.5 (0,0) 79.2801 67.1256 60.4702 54.9547 52.0936
(10,10) 88.5522 75.5335 68.7901 63.2567 59.7168

where dot above each parameter denotes derivative and the resultant moments M,,, Mgy and M, are
with respect to time. K, and K, are the Winkler and

h/2
Pasternak foundation parameters, respectively. Also (M,,, Mgy, M 9) = / (01, 099, 019)zdz (8)
the resultant forces N,,, Ng and N,; can be defined —h/2
by integrating corresponding stresses along the thick- Moreover, Iy, I} and I, are the inertia terms which
ness as follows are defined as
h/2 h/2
(N ) = | om0tz () .1 = | BYCIEESt ©)
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Considering plane stress state for the FG annular
sector plate, the stresses are obtained as

E(2)

Oy = m (grr + V899) (103)
o0 = ) s+ ve.) (10b)
o= 31 s o) (100

Using equations (5), (10) and the definition of resul-
tant forces and moments in equations (7) and (8), the
following relations can be obtained

N+ [An 42 0 By B 0 7]
Noo Ap Apn 0 B Bn 0
Ne| [0 0 4Ax 0 0 By
M, | |By Bn 0 Dy Dn 0
Mg B Bn 0 Dip Dpn 0

LMy1 L O 0 Bz 0 0  Ds3

B du/or 7]
av/rob + u/r
ou/rod + av/or — v/r
* —8%w/or?
—?w/r?00> — dw/ror
| —28%w/rorof 4+ 20w/r*36

(11)

where the coefficients 4;, B; and Dj; (i,j=1,2,3) are
defined as

2
(An,Bn,Du):/ E(Z)Z(l z,2%)dz
I
2
(o= [ a2
—h/2 1 -
h/2 E(Z) 5
(A33,B33,Ds3)=/h/22(1+v)(l,z,z )dz

Substituting resultant forces and moments obtained
from equation (11) into equations (6), the governing
equilibrium equations of motion for an FG sector
plate resting on elastic foundation are obtained as

4 (82u+18u u 18v+l 82\1)
o T 2 1200 rorae
(1 Pu 13y 1 Bv)
BN2962 rara0 1296
a3w 12w low 1w 1 &w 132
+ Bii(— ERE s M e Swl S Sy Sl vz e 2)
ror rZor 2 ob*  rcorof* 0o
8;.7
— lyi— 2 (13a)
or

1 8211 1 *u 1 ou
A5+ =77)
> 00 rorae | r2oe
+A(2v+13v v+18u 1 8%u
o2 T rar 21200 roroo (13b)
1 Pw 1 &w 13w
+Biu(— = 30— 3o 3
ror-00 r-orof r’ 90
oW
= Iyi — I)
o e
B (83u+282u 1 ou u+182u+1 Pu
s a2 2o P 32 2 ordke
1 &v 1av 1 133)
r2ordd 390 o603  rortoe
Fw 28w 1w low 2 Fw
R o ot sl v e B i w3
or roor 7 or 3 or  r?orof
2 Pw 4 82w 1 84w)
T TR A a0 a 11W
3o | 4 a2 )4 004
Fw  ow  FPw ou i 1lov
K| —+— 1 I
+ 'Y(aﬂ Tt 2392> oW + ‘(a ty +r89>
Fw W %
_J 13
2(31 Tt 2392> (130)

Equations (13) are three highly coupled partial dif-
ferential equations in terms of in-plane and transverse
displacement components. For solving such coupled
equations, it is reasonable to find a method for decou-
pling them. Using an analytical method, three equilib-
rium equations (13) are decoupled. Equations (13) can
be rewritten as follows

A 1 8¢y 2 - Al
A== A ___B —(V“w) = [ — I — 14
11 o + Y 11 ,( w) ou 13}, (14a)
14 3 Gl
An—ﬂ—A%zﬂ B“—(V W)—[OV_Ill (14b)
a0 or
B V¢ — D11 V2 V2w — Kw + K, V2w

. . . (14c)
= Ilow+ Lo — 12V2W

where V? is two dimensional Laplace operator in polar
coordinates (V? = 8*/9r* + 9/rdr + & /r*06*) and the
auxiliary functions ¢; and ¢, are defined as

ou u lov

ottt (152)

(15b)
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Table 7. Fundamental frequency parameter @, = wmkbz‘ /"Dimh of SSCF FG annular sector plate for some values of n, «, I_<W I_<s and
a/b (h/b = 0.05)

o a/b (K, K5) n=0 n=05 n=1 n=2 n=>5
z I x 10°¢ (0,0) 24.4447 20.6968 18.6470 16.9499 16.0701
(10,10) 37.3514 32.2847 29.9538 28.0707 263349
0.3 (0,0) 26.0904 22.0902 19.9022 18.0907 17.1516
(10,10) 38.8580 33.5584 31.0993 29.1104 27.3211
0.5 (0,0) 36.4876 30.8921 27.8310 25.2964 23.9831
(10,10) 48.8007 41.9798 38.6944 36.0253 33.8722
z I x 107® (0,0) 10.5347 89198 8.0369 7.3062 6.9272
(10,10) 235138 20.4826 19.2008 18.1725 16.9935
0.3 (0,0) 15.6447 13.2463 11.9350 10.8496 10.2867
(10,10) 27.6224 23.9550 22.3235 21.0080 19.6827
0.5 (0,0) 28.9189 24.4844 22.0593 20.0518 19.0113
(10,10) 40.3591 34.7666 32.1065 29.9474 28.1416
b I x 107% (0,0) 52836 44738 4.0311 3.6647 3.4746
(10,10) 18.0980 15.8258 14.9095 14.1766 13.2368
0.3 (0,0) 13.4764 11.4105 10.2811 9.3464 8.8616
(10,10) 24.3052 21.0806 19.6467 18.4895 17.3234
0.5 (0,0) 27.0944 22.9398 20.6680 18.7875 17.8129
(10,10) 37.9150 32,660 30.1593 28.1285 26.4338
T I x 107% (0,0) 2.1986 1.8617 1.6775 1.5251 1.4460
(10,10) 13.7834 12.0756 11.4038 10.8674 10.1396
0.3 (0,0) 12.8878 10.9122 9.8323 8.9386 8.47505
(10,10) 223122 19.3269 17.9801 16.8905 15.8353
0.5 (0,0) 26.1463 22.1372 19.9451 18.1307 17.1903
(10,10) 36.3854 31.3326 28.9203 26.9601 25.3403
I I x 107% (0,0) 5.4261 4.5945 4.1399 3.7638 3.5687
(10,10) 13.1333 11.4363 10.7142 10.1333 9.4788
0.3 (0,0) 12.9309 10.9487 9.8652 8.9686 8.5036
(10,10) 21.5599 18.6542 17.3274 16.2523 15.245|
0.5 (0,0) 25.8304 21.8697 19.7042 17.9119 16.9829
(10,10) 35.7708 30.796 | 28.4155 26.4804 24.8926
27 I x 107% (0,0) 6.3426 5.3705 4.8392 43995 4.1715
(10,10) 13.0668 11.3470 10.5912 9.98089 9.3477
0.3 (0,0) 12.9910 10.9996 99111 9.0104 8.543
(10,10) 213189 18.4367 17.1139 16.0414 15.0506
0.5 (0,0) 25.7358 21.7897 19.6321 17.8464 16.9208
(10,10) 35.5657 30.6165 28.2459 26.3186 247418

Doing some algebraic procedures, the coupled par-
tial differential equations (14) can be reformulated into

two independent partial differential equations as

iy DI,

DVow + — S —=——=— V4

I I . I
+ <0—Jz — 1—J1> V20 4 [,V — 1

+ K, V?

A An

Ay
w—K,Vw=0
A3V — Ingr =0

2
0

11

w

(16a)

D=D Biy
=Dn—7-
By

J=1 —
v=h-—
Bl

=5 —
Ay

where the constant parameters 5,]1 and J, are
defined as

)

The first decoupled equation (16a) is a sixth order
(16b) partial differential equation in terms of transverse
deflection and the second one is a second order partial
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Table 8. Fundamental frequency parameter @, = a)mkbz‘ /"DL” of SSFC FG annular sector plate for some values of n, «, I_<W, I_<S and

a/b (h/b = 0.05)

a a/b (K, Ks) n=0 n=05 n=I n=2 n=>5
3 | x 10°¢ (0,0) 99.8879 84.5733 76.1855 69.2328 65.6265
(10,10) 108.2674 92.1786 83.7209 76.7626 72.5372
0.3 (0,0) 96.0549 81.3286 73.2636 66.5790 63.1113
(10,10) 104.3906 88.8937 80.7583 74.0672 69.984|
0.5 (0,0) 89.7937 76.0257 68.4879 62.2420 59.0032
(10,10) 97.8988 83.3796 75.7708 69.5159 65.6806
Z | x 10°¢ (0,0) 68.3768 57.8950 52.1584 47.4062 44.9407
(10,10) 76.4234 65.1903 59.3757 54.6067 51.5537
0.3 (0,0) 63.9168 54.1193 48.7580 443174 42.0133
(10,10) 71.4847 60.9809 55.5467 51.0908 48.2340
0.5 (0,0) 63.0516 53.3841 48.0943 43.7133 41.4420
(10,10) 71.3356 60.8866 55.5054 51.0953 48.2258
23” | x 10°¢ (0,0) 54.4381 46.0935 41.5281 37.7471 35.7853
(10,10) 62.2487 53.1694 48.5204 44.7149 42.1876
0.3 (0,0) 50.4790 42.7417 38.5092 35.0046 33.1861
(10,10) 57.5363 49.1360 448297 41.3047 38.9745
0.5 (0,0) 52.1750 44.1749 39.7984 36.1745 34.2958
(10,10) 60.8895 52.0556 47.5662 43.8942 41.3959
b4 I x 10°¢ (0,0) 41.7357 35.3386 31.8397 28.9426 27.4394
(10,10) 49.2377 42.1276 38.5384 35.6073 33.5669
0.3 (0,0) 38.3805 32,4976 29.2804 26.6171 25.2352
(10,10) 45.2838 38.7430 35.4403 32.7433 30.8686
0.5 (0,0) 43.2689 36.6343 33.0052 30.0006 28.4432
(10,10) 52.6814 45.1302 41.3570 41.3570 36.0633
32” I x 10°¢ (0,0) 43.3625 36.7163 33.0817 30.0728 285114
(10,10) 49.2953 42.0919 38.3954 35.3696 33.3783
0.3 (0,0) 30.9842 26.2348 23.6378 21.4882 20.3730
(10,10) 38.3280 32.8641 30.1561 27.9495 26.3214
0.5 (0,0) 38.7837 32.8367 29.5839 26.8910 25.4952
(10,10) 48.7254 41.7990 38.3786 35.5906 33.5099
2 I x 107¢ (0,0) 43.9405 37.2057 33.5230 30.4742 28.8922
(10,10) 49.4084 42.1614 38.4236 35.3614 33.3820
0.3 (0,0) 27.7008 23.4546 21.1329 19.2111 18.2143
(10,10) 35.4578 30.4467 27.9935 25.9972 24.4663
0.5 (0,0) 37.1017 314126 28.3009 25.7249 24.3897
(10,10) 47.2813 40.5845 37.2945 34.6142 32.5813
differential equation in terms of function ¢,. It can be to show that
seen that the total order of the decoupled equations is
the same as the total order of coupled equations (13). | 901 P
Also, the function ¢; can be related to the transverse U= <A11 +A33 B“ (V2w)+l 1 )
deflections through the following relation To or 39 or (19)

1/
¢ = A (D Vi — VA + I + Kw — KSVZW) (18)
1

In order to apply the boundary conditions, the in-
plane displacements of the annular sector plate should
be expressed in terms of functions w, ¢; and ¢».
Considering equations (13a), (13b) and (15), it is easy

1 a1 R ow
y=—|[ 4 A —B —V N+ 1 —
V I()( ”rae 3~ Bu ( w)+1 80)

It can be concluded that by solving the independent
equations (16) and introducing the results into equa-
tions (18) and then substituting into equation (19),
the general solutions of the FG annular sector plates
can be obtained.
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2 4 2 o4
4. Free vibration of FG annular sector he = szm,iﬂ B KB | Dowiy _ 64 B,
plates D 4D Anrt ro
2088 Izwm 4K, Lot B, LTt B
For free harmonic vibration analysis of the FG annular + 6 - 1;) D/ - 415m 2;3 : 4 le
sector plate with simply supported radial edges, the trans- 1 2' 4 . nr
verse displacement w and function ¢, are represented as _ KB, _ Mo zwmkﬂm + 4 B11Jy w111kﬂn1
s . 2D A 2D A1 D
w(r,0,z,1) = Wik (1) sin( B,,0) ' !
S PR AR BahelBl ShoB o
(20) Anr AurtD %))

@a(r,0,z,1) = Z ©mk(r) cos(Bn0) el !

where B, denotes mn/a a)mk ’s are the natural frequen-
cies of the FG annular sector plate and parameters m
and k denote the mode number in #— and r— directions,
respectively.

Substituting the proposed series solutions (20) into
equation (16), two ordinary differential equations are
obtained as follows

dﬁ Wink A ds Wink 2 d4 Wik 2 dBka
as TMTgs ThTgE TR
d*w dw (2la)
+ Ay —d}’;nk + As dmk + AW = 0
dzgomk 1 dQDmk 10(1) :Bm
e = () =0 (21)
where A; (i = 1..6) are defined as
=2 = 3B nakBllJl Ty
r’ / AnD D
I()a)mk 3 KS
An D
Ay — 2w, Bi1Jy N 2002, L6 2K
rd D DD
Zwik Iy 6,3m
}"A” 13
A= — 9 218 2 Budi K wt Iy
74 r 72A11[3 }"215 Anﬁ
_ 20)%1/( legi 3 ﬂ; _ w1211k Iy _ Iowiznk
2D r r2Ay D
2(1)ka11]1 IBm W IOJZ(’();I( 2K ﬁm
}"2A11D 13 A]lDA VZD
Jza)mk _ 2 Ioﬂ mk
2D r2Ap
s C2BuhiBen  Ks  Budiwy, 9 2Kp
r3A11D BPD  AnrD P PD
210/3111 mk Il‘llwﬁdc 10 w51k Iowmk 918111
A rdnD — Anr’ rD o
4 Tmk IOJza)mls + ﬁ + zwfznk‘]zﬁrzn Jza);%ak + 45 ﬁz%q
AnrD  rD D D r

The general solutions of two ordinary differential
equations (21) can be expressed in terms of Bessel func-
tions as

Wik(r) = C1Jg,, (/mr) + C2 Y, (/mr)
+ C3Jp, (Vm2r) + Ca Y, (V1) + CsJg, (/37)
+ C6 Yﬁm(\/ﬁ{r)

C1Jg,

(23a)

I 2
+CsYy, /% (23b)

where J and Y are respectively first and second Bessel
functions and the parameters n; (i = 1.. 3) are defined as

2
Iowmk

gomk(” ) =

T | 2Busp — u3)
m=—— R TR
6141 3T 3
n = T Bpsp —p3 | o
1204 3T RI
3i (T 203 —
_Q 4 Buapr — p13) (24)
2 \6uy 3T
ns = T Busp —p3 | o
12 3T 3u
«/—l n 2(3uspr — p3)
2 6#1 3T

where the parameters 7 and p; (i = 1..4) are defined as

T = (361 p342 — 108 pap] — 813 + 124/3

x \/4M1u§ — 13043 — 18 s papta + 23} + Apas )
1 = Bi1(A41 Dy — BY))
2 (LA — 1 Bi) — KA1 By

— Dy’ (L A1y — IyBn) + Lok (A1 D1y — BY)
w3 = (K, — Iyw?, ) B A1y

+ (A — I Bi)(Ksw)y, — Do)

+ Ll (A — LBk, — KAn)

mk

n2 = B

pa = IoyBriws, (K, — Iow,,;) (25)

It is noticeable that as each of parameters n;
(i=1,...,3) becomes negative in equation (24), its cor-
responding Bessel function in equation (23a) will con-
vert to the modified Bessel function. Introducing the

transverse displacement and function ¢, into equations
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Table 9. Fundamental frequency parameter @ = a)mkbz‘ //;Lh of SSSF FG annular sector plate for some values of n, «, K, K; and

a/b (h/b = 0.05)

a a/b (K, Ks) n=0 n=05 n=I n=2 n=>5
z I x 107¢ 0,0) 24.4447 20.6968 18.6470 16.9499 16.0700
(10,10) 37.3514 32.2847 29.9538 28.0707 26.3349
03 (0,0) 24.7838 20.9839 18.9056 17.1850 16.2929
(10,10) 37.7093 32.5896 30.2311 28.3254 26.5755
0.5 (0,0) 27.5823 23.3530 21.0396 19.1242 18.1313
(10,10) 41.0002 35.4083 32.8138 30.7158 28.8272
z I x 1076 (0,0) 10.5348 89199 8.0370 7.3062 6.9272
(10,10) 23.5137 20.4826 19.2008 18.1725 16.9934
03 (0,0) 11.9547 10.1221 9.1202 8.2909 7.8607
(10,10) 24.8234 21.5989 20.2168 19.1067 17.8756
0.5 (0,0) 15.7024 13.2950 11.9786 10.8889 10.3239
(10,10) 29.5842 25.6992 24.0031 22,6387 21.1941
Zn I x 1076 (0,0) 5.2837 4.4737 40311 3.6647 3.4746
(10,10) 18.0979 15.8258 14.9095 14.1766 13.2368
0.3 (0,0) 8.1935 6.9375 6.2509 5.6827 5.3879
(10,10) 20.4373 17.8223 16.7302 15.8542 14.8197
0.5 0,0) 11.9126 10.0863 9.0878 8.2614 7.8328
(10,10) 25.8262 22.4857 21.0643 19.9226 18.6344
7 I x 1076 (0,0) 2.0853 1.7657 1.5911 1.4465 13715
(10,10) 13.7574 12.0540 11.3849 10.8506 10.1236
03 (0,0) 6.6351 56181 5.0621 46021 43635
(10,10) 17.4608 15.2309 14.3023 13.5571 12,6716
0.5 (0,0) 9.5616 8.0958 7.2944 6.6312 6.2873
(10,10) 23.2807 20.2977 19.0488 18.0465 16.8704
i I x 1076 (0,0) 5.4255 45939 4.1395 3.7634 3.5682
(10,10) 13.1328 11.4359 10.7138 10.1329 9.4784
03 (0,0) 6.5194 5.5201 49739 45219 42874
(10,10) 16.2152 14.1335 13.2582 12.5552 11.7391
0.5 (0,0) 8.6902 7.3580 6.6297 6.0270 5.7144
(10,10) 22.1994 19.3639 18.1831 17.2355 16.1096
27 I x 1076 (0,0) 6.3426 5.3705 48392 4.3995 4.1714
(10,10) 13.0668 11.3470 10.5912 9.9808 9.3476
03 (0,0) 6.5790 5.5706 50195 45634 43267
(10,10) 15.7951 13.7607 12.9004 12.2089 11.4177
0.5 (0,0) 8.4206 7.1297 6.4240 5.8400 5.5371
(10,10) 21.8296 19.0437 17.8853 16.9556 15.8473

(18) and (19) by help of equation (20), the in-plane
displacements can be obtained.

The natural frequencies of the FG annular plate can
be obtained by imposing the boundary conditions at
two circular edges. Depending on specific boundary
conditions, each of the edges has one of the following
conditions

Clamped: u(r,0) = v(r,0) = w(r,0)

_ ow(r, 6) —Oatr—a b (26a)
or ’

Simply support: w(r,0) = M,,(r,0) = N,.(r,0)

(26b)
=v(r,0)=0atr=a, b
Free: N, (r,0) = Nu(r,0) = M, (r,0)
= aMrr/ar + ZaMrH/(rag) + (Mrr - Mgg)/l"
+ Kgow/or=0atr=a, b (26¢)

where the stress and moment resultants have been
defined in equation (11). Also, the in-plane
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Table 10. Fundamental frequency parameter @, = a),,,kbz1 /’E)L" of SSFS FG annular sector plate for some values of n, «, K, Ks and

a/b (h/b = 0.05)

o a/b (Ko, K5) n=0 n=0.5 n=1 n=2 n=>5
z I x 1076 (0,0) 78.2450 66.2492 59.6803 54.2362 51.4122
(10,10) 87.8753 74.9803 683177 62.8527 59.3250
0.3 (0,0) 75.9328 642917 579175 52.6349 49.8946
(10,10) 85.5359 72.9972 66.5281 61.2231 57.7818
0.5 (0,0) 69.8381 59.1314 53.2702 48.4140 45.8949
(10,10) 79.0432 67.4750 61.5215 56.6424 53.4526
z | x 1076 (0,0) 50.2308 42.5309 383174 34.8274 33.0167
(10,10) 59.8038 51.1942 46.8653 433315 40.8346
0.3 (0,0) 47.3007 40.0503 36.0832 32.7975 31.0927
(10,10) 56.5049 48.3782 442980 40.9680 38.6048
0.5 (0,0) 43.8807 37.1537 33.4733 30.4254 28.8443
(10,10) 53.3727 45.7368 41.9329 38.8318 36.5752
Z | x 1076 (0,0) 38.1098 32.2682 29.0727 26.4265 25.0534
(10,10) 47.6335 40.8743 37.5466 34.8389 32.7933
0.3 (0,0) 35.5396 30.0923 27.1127 24.6456 23.3654
(10,10) 443347 38.0396 34.9375 324132 30.5122
0.5 (0,0) 32.8071 27.7777 25.0267 22.7489 21.5674
(10,10) 42.9840 36.9587 34.0456 31.6804 29.7914
T | x 1076 (0,0) 27.2891 23.1063 20.8189 18.9250 17.9423
(10,10) 36.7403 31.6290 29.1859 27.2062 25.5697
0.3 (0,0) 25.1716 21.3136 19.2039 17.4574 16.5512
(10,10) 33.7186 29.0218 26.7727 24.9500 23.4520
0.5 (0,0) 22.8069 19.3106 17.3985 15.8156 14.9946
(10,10) 34.4737 29.7939 27.6393 25.8998 24.2989
in I x 1076 (0,0) 28.2969 23.9599 21.5882 19.6249 18.606 |
(10,10) 36.2265 31.1183 28.6269 26.6026 25.0296
0.3 (0,0) 18.5849 15.7365 14.1790 12.8899 12.2209
(10,10) 27.5781 23.8251 22.0916 20.6927 19.4172
0.5 (0,0) 16.8598 14.2752 12.8618 11.6918 11.5527
(10,10) 30.1534 26.1736 24.4227 23.0148 21.5518
2 | x 1076 (0,0) 28.6557 242637 21.8621 19.8740 18.8423
(10,10) 36.1296 31.0124 28.5001 26.4567 249016
0.3 (0,0) 15.3742 13.0178 11.7295 11.5527 11.5527
(10,10) 24.9604 21.6206 20.1189 18.9104 17.7241
0.5 (0,0) 14.2500 12.0655 10.8709 9.8820 9.3692
(10,10) 28.5196 24.8091 23.2157 21.9368 20.5239

displacements u(r,6) and v(r,0) are obtained by intro-
ducing equations (18) and (20) into equation (19).

By imposing the boundary conditions along the cir-
cular edges at » = a and r = b, eight homogeneous alge-
braic equations are obtained. Setting the characteristic
determinant of the eight order coefficient matrix equal
to zero, the natural frequencies of the FG sector plate
can be evaluated.

5. Numerical results

The FG annular sector plate is simply supported at
radial edges and the boundary conditions along the cir-
cular edges are identified according to the inner and
outer radius of the annular sector plates (e.g. SSCF
denotes a plate with simply supported radial edges,
clamped inner and free outer circular edges). The nine
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Table 11. Fundamental frequency parameter @, = a)mkbz\//z)l: of SSFF FG annular sector plate for some values of n, o, I_<W, I_<s and
a/b (h/b = 0.05)
o a/b (K, Ks) n=0 n=0.5 n=1 n=2 n=>5
I I x 107¢ 0,0) 24.4447 20.6968 18.6470 16.9499 16.0700
(10,10) 373514 32.2847 29.9538 28.0707 26.3349
0.3 0,0) 24.1040 20.4085 18.3872 16.7138 15.8462
(10,10) 37.0292 320115 29.7069 27.8453 26.1216
0.5 0,0) 22,4517 19.0095 17.1270 15.5685 14.7603
(10,10) 35.1818 30.4270 28.2514 26.4938 24.8500
3 | x 10-¢ (0,0 10.5259 8.9144 8.0306 7.3027 6.9128
(10,10) 23.5138 20.4826 19.2008 18.1724 16.9935
0.3 (0,0 9.6451 8.1666 7.3583 6.6893 6.3423
(10,10) 22.7897 19.8649 18.6373 17.6527 16.5033
0.5 (0,0 8.3969 7.1098 6.4061 5.8237 5.5216
(10,10) 21.1246 18.4122 17.2710 16.3536 15.2906
ZT” I x 107¢ (0,0) 5.2837 4.4737 4.0311 3.6647 3.4746
(10,10) 18.0979 15.8258 14.9095 14.1766 13.2368
0.3 0,0 4.1116 3.4814 3.1369 2.8518 2.7039
(10,10) 17.2324 15.0769 14.2126 13.5206 12.6223
0.5 0,0) 3.4120 2.8891 2.6032 2.3666 2.2439
(10,10) 15.7828 13.7956 12.9876 12.3388 11.5242
Vg | x 107¢ (0,0) 0 0 0 0 0
(10,10) 13.5289 11.8649 11.2199 10.7056 9.9847
0.3 (0,0) 0 0 0 0 0
(10,10) 12.6428 11.0726 10.4507 9.9526 9.2885
0.5 0,0) 0 0 0 0 0
(10,10) 11.3727 9.9509 9.3809 8.9244 8.3318
37” I x 10°¢ 0,0) 5.4224 4.5913 4.1371 3.7612 3.5662
(10,10) 13.1299 11.4334 10.7116 10.1309 9.4765
0.3 0,0) 1.6577 1.4036 1.2647 1.1499 1.0903
(10,10) 9.9318 8.6877 8.1875 7.7870 7.2704
0.5 0,0) 1.2025 1.0182 09175 0.8341 0.7909
(10,10) 8.9003 7.7901 7.3480 6.8514 6.4905
2 | x 107¢ 0,0) 6.3425 5.3704 4.8392 4.3995 4.1714
(10,10) 13.0667 11.3469 10.5912 9.9808 9.3476
0.3 0,0) 2.0070 1.6994 1.5313 1.3923 1.3200
(10,10) 8.6425 7.5576 7.1204 6.7709 6.3221
0.5 0,0) 1.3852 1.1729 1.0568 0.9608 09110
(10,10) 7.8508 6.8756 6.4907 6.1840 5.7704

possible boundary conditions containing SSSS, SSCC,
SSFF, SSCF, SSFC, SSCS, SSSC, SSSF and SSFS are
considered for obtaining the numerical results.

A comparison study is performed with the results
reported by McGee et al. (1995) and Zhou et al.
(2009) to verify the accuracy of the formulations. To
this end, the annular sector plate is assumed to be
homogeneous (i.e. n = 0). It can be seen from Table 1
that the non-dimensional frequencies are accurate. Also
for some boundary conditions, the results have been

compared with the results obtained from ANSYS soft-
ware in Table 2 for b= 1m, h=0.05mK, =0,
K, = 0. To this end, the annular sector plate has been
modeled in ANSYS software with tetrahedral elements
type SOLID186. The comparisons have been done for
three different sector angles 90°, 180°, 270°and 2 differ-
ent radii ratios /b = 0.3 and a/b = 0.5. For a/b = 0.3,
the total numbers of elements are 10937, 11714, 15255
for the annular sector plates with sector angles 90°,
180° and 270° respectively. Also for a/b =0.5, the
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Table 12. Fundamental frequency parameter @ = wmb?, /’E)Lh of FG annular sector plate for study the effect of rotary inertia (RI)

(¢ =60, h/b = 0.03, a/b = 0.5)

Ky, K) n=0 n=0.5 n=1 n=2
$SSS (0,0) With RI 109.8098 92.978I 83.7704 76.1457
Without RI 110.0389 93.1697 83.9451 76.3081
(100,100) With RI 184.0676 159.5826 148.6723 139.8956
Without RI 184.4513 1599113 148.9821 140.1939
sscc (0,0) With RI 193.8921 1642111 147.9669 1345156
Without RI 194.3626 164.6047 148.3259 134.8496
(100,100) With RI 2502917 215.1141 197.9903 184.0744
Without RI 250.8887 215.6203 198.4611 184.5216
SSFF (0,0) With RI 224414 19.0064 17.1281 15.5738
Without RI 22.4474 19.0114 17.1326 15.578I
(100,100) With RI 85.1150 74.4840 702317 66.8419
Without Rl 85.1555 745193 70.2657 66.8754
Sssc (0,0) With RI 153.3894 129.8773 117.0136 106.3605
Without RI 153.7459 130.1754 117.2855 106.6133
(100,100) With RI 218.0785 188.0956 174.0087 162.6061
Without RI 218.5759 188.5190 174.4045 162.9839
SSCS (0,0) With Rl 139.5128 118.1278 106.4282 96.7391
Without RI 139.8313 118.3942 106.6711 96.9650
(100,100) With RI 207.5629 179.3033 166.2261 155.6589
Without RI 208.0283 179.7000 166.5978 156.0146
SSFS (0,0) With RI 69.9912 59.2636 53.3973 48.5410
Without RI 70.0778 59.3360 53.4634 48.6025
(100,100) With RI 136.5988 118.8253 111.1978 105.0858
Without RI 136.7696 118.9721 111.3369 105.2205
SSSF (0,0) With RI 27.5933 23.3638 21.0515 19.1379
Without RI 27.5995 23.3689 21.0563 19.1423
(100,100) With RI 96.8159 84.6696 79.7825 75.8807
Without RI 96.8645 847123 79.8240 75.9219
SSCF (0,0) With RI 36.4969 30.9024 27.8439 25.3125
Without RI 36.5022 30.9068 27.8479 25.3162
(100,100) With RI 59.2706 51.4196 47.9546 45.1765
Without RI 59.2817 51.4292 47.9637 45.1853
SSFC (0,0) With RI 89.9829 76.1905 68.6479 62.4038
Without Rl 90.0900 76.2800 68.7296 62.4798
(100,100) With RI 151.8206 131.5984 122.5650 115.2927
Without Rl 152.0122 131.7627 122.7204 115.4426

total numbers of elements are 8930, 10315, 12315 for
sector angles 90°, 180° and 270°, respectively. Also,
two elements are used in z—direction for all cases. All
nodes on simply supported radial edges have been con-
strained in r— and z— directions and they are moveable
in 6— direction. It can be seen that the natural frequen-
cies are in good agreement with those obtained from an
FEM commercial program based on the 3-D elasticity
theory and the differences between the results are not
more than 3%.

For general purposes, the non-dimensional parame-
ters are used for numerical results as follows

Pmh

, Ky = Ksb2 s kw = KWb4
Dy,

- Dy Dy

Omle = wmkbz (27)

3
where D,, = 121(91”32)'

Numerical calculations have been performed for FG
annular sector plates with all possible nine boundary
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Table 13. Fundamental frequency parameter @ = wmcb?, //Z)Lh of FG annular sector plate for study the effect of in-plane displa-

cements (u, v) (h/b =0.03, o = 60")

a/b (K, Ks) n=0 n=1 n=2 n=3 n=4 n=>5
sscc 0.3 (0,0 with u, v 117.8503 89.9067 81.7262 79.1454 78.1014 774815
without u, v 117.8503 98.0046 93.6591 91.2001 89.1467 87.3017
difference (%) 0 —9.007 —14.601 —15.231 —14.142 —12.674
(100,100) with u, v 179.0546 143.6235 134.6177 130.8105 128.3198 127.5612
without u, v 179.0546 148.9023 142.3002 138.5643 135.4445 132.6412
Difference (%) 0 —3.675 —5.707 —5.928 —5.552 —3.982
0.7 (0,0) with u, v 499.5557 380.9870 346.1854 335.1934 330.7562 328.1358
without u, v 499.5557 4154319 396.9763 386.5351 377.8236 370.0005
difference (%) 0 —9.041 —14.672 —15317 —14.230 —12.758
(100,100) with u, v 553.6409 429.5080 394.5938 382.5423 376.6567 372.5850
without u, v 553.6409 460.4092 439.9560 428.3847 418.7301 410.0601
difference (%) 0 —7.194 —11.495 —11.983 —11.170 —10.058
SSsC 0.3 (0,0) with u, v 107.2033 81.7844 74.3431 71.9955 71.0459 70.4819
without u, v 107.2033 89.1506 85.1977 82.9609 81.0930 79.4147
difference (%) 0 —9.006 —14.600 —15.230 —14.142 —12.674
(100,100) with u, v 171.6794 138.2033 129.7983 126.1546 123.7060 121.6803
without u, v 171.6794 142.7691 136.4389 132.8569 129.8656 127.1778
difference (%) 0 —3.304 —5.116 —5313 —4.979 —4.518
0.7 (0,0) with u, v 360.9943 275.3206 250.1798 242.2400 239.0344 237.1403
without u, v 360.9943 300.2038 286.8695 279.3256 273.0308 267.3778
difference (%) 0 —9.037 —14.665 —15.309 —14.222 —12.751
(100,100) with u, v 428.7272 335.7474 310.2563 300.9791 296.0159 2923711
without u, v 428.7272 356.5307 340.6949 331.7357 324.2600 317.5463
difference (%) 0 —6.190 —9.810 —10.219 —9.541 —8.610

conditions along the circular edges. For this analysis,
the ceramic and metal materials have been assumed to
be Alumina and Aluminum, respectively with the fol-
lowing properties

E, = 380 GPa, p, = 3800 Kg/m’

(28)
E,, = 70 GPa, p,, = 2707 Kg/m’

Also, the Poisson ratio of the plate is assumed to be
constant through the thickness and equal to 0.3. The
first non-dimensional frequency parameter is shown for
all possible boundary conditions along the circular
edges in Tables 3 to 11 for aspect ratios 1 x 107¢
(solid sector plate), 0.3 and 0.5, different powers
of FGM and for over a range of sector angles. Also,
the results in tables are obtained for both the FG sector
plate without elastic foundation and FG sector plate
resting on Winkler and Pasternak elastic foundations.

The effect of material properties on the frequency
parameter of FG annular sector plates with a specific
boundary condition along the circular edges can be
considered by keeping the sector angle and aspect
ratio constant while varying the power of FGM. It

can be seen that by increasing the power of FGM
causes the non-dimensional natural frequency
decreases. This is because the stiffness of the FG annu-
lar sector plates becomes lower as the power of FGM
increases.

It is observed that the non-dimensional frequency
increases as the aspect ratio increases except for the
annular sector plates with free edges. With approaching
two circular edges to each other, the stiffness of
the annular sector plate increases. However, when the
inner circular edge of the annular sector plate is free,
the free edge get longer while the inner edge approaches
to outer one and causes decreasing the frequency. In the
case of SSFC, the variation of the frequency with
respect to aspect ratio is not entirely ascendant and
for some values of the aspect ratio it will increase
with increasing the aspect ratio.

Also, it can be seen that for constant power of FGM
and aspect ratio, the frequency parameter decreases as
the sector angle « increases. The reason is that with
increasing sector angle, the circumferential distance
between the radial supports increases so that the stiff-
ness of the plate decreases.
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Figure 2. Variation of first natural frequency of FG annular
sector plate versus the aspect ratio for various boundary con-
ditions (n = I,h/b = 0.0l,a = 60").
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Figure 4. Variation of first natural frequency of FG annular
sector plate versus the thickness-radius ratio and power law
index for SSSS boundary condition (a/b = 0.5,a = 60°).
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Figure 3. Variation of first natural frequency of FG annular
sector plate versus the aspect ratio for boundary conditions
contain free (n = 1,h/b =0.0l,a = 600).

Besides, it can be found from Table 11 that for annu-
lar sector plate without elastic foundation with free
inner and outer edges, the frequency parameter
increases as the sector angle of re-entrant plate (sector
plate with « > ) increases. This is expected since the
fundamental frequency of the semicircular plate (¢ = )
is zero, which corresponds to a rigid body rotation of
the plate about its simply supported diameter. It can be

12000
—— m=1,k=3
——— m=2 k=2 i
10000 | —e— m=3 k=1
—b>—— m=2 k=1
—a—— =l k=2
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[
=}
=
S
~N

Figure 5. Variation of natural frequencies of FG annular sector
plate versus the aspect ratio for SSSS boundary condition
(n=1,a =60, h/b=0.0l).

said that as the sector angle approaches 27, the annular
sector plate becomes as a complete annular plate with a
hinged crack. It is expected that the natural frequencies
of the annular sector plate with sector angle 27 be
higher than that of axisymmetric annular plate because
of the presence of a hinged crack.

Focusing on Tables 3 to 11 it can be concluded
that the stiffer constrains at circular edges increase
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Figure 6. Variation of fundamental frequency parameter of FG annular sector plate versus the power law index and Pasternak
parameter for SSSS boundary condition (K, = 10, « = 60, a/b = 0.5, h/b = 0.01).

non-dimensional frequency of the FG annular sector
plate. Therefore, the SSCC annular sector plate has
the highest and SSFF annular sector plate has the
lowest natural frequencies.

Yet, in the all tables the rotary inertia has been con-
sidered. In order to study the effect of rotary inertia on
the natural frequencies of FG annular sector plates,
the non-dimensional natural frequencies are listed in
Table 12 for an FG annular sector plate with and with-
out considering the rotary inertia. It can be seen that
for all boundary conditions, neglecting the effect of
rotary inertia causes the natural frequency increases.
Also, this effect is valid for plates with elastic founda-
tions. It can be concluded that the effect of rotary iner-
tia for a plate with free edge is less than that with
simply supported or clamped edges.

For studying the effect of in-plane displacements on
the natural frequency of FG annular sector plates pre-
sented in Table 13. It is evident that, by increasing the
power law index, the difference between the results
increases. Also, for the plate under elastic foundations
this effect is minor.

Based on the results presented in Table 13, it can
be seen that the maximum differences have about -
15.4% and this difference is not acceptable. Indeed,
the in-plane displacements cause a drastic change
of frequencies. In other words, neglecting the in-
plane displacement for FG plate is not proper for FG
plates.

This effect is more clarified in Figures 2 and 3
where the natural frequency of FG annular sector
plate is depicted versus the aspect ratio for different
boundary conditions. It can be seen that, the stiffness
of the SSCF gets higher than SSFS. It can be seen
for sector plates with free inner and outer edges, the
natural frequencies decreases as the aspect ratio
decreases.

To study the effect of thickness-radius ratio, the nat-
ural frequency is shown in Figure 4 versus the variation
of h/b for different powers of FGM. It can be seen that
the variation of natural frequencies is nearly linear with
respect to thickness-radius ratio.

The influence of different mode number on the fre-
quency of the FG sector plates is shown in Figure 5.
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Figure 7. Variation of fundamental frequency parameter of FG
annular sector plate versus the power law index and Winkler
parameter for SS§SS boundary condition

(K =10, @ = 60, a/b = 0.5, h/b = 0.01).
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Figure 8. Variation of fundamental frequency parameter of FG
annular sector plate versus the Pasternak parameter and sector
angle for SSSS boundary condition
(Kw =10, a/b=0.5, h/b =0.01).

It can be seen that the lowest frequency is always
belong to the first mode in both r and @ directions.
However, the second or third mode will change by var-
iation of aspect ratio (a/b).

The effects of elastic foundations on the natural fre-
quencies of FG annular sector plates are shown in

Figures 6, 7 and 8. It can be seen from Figure 6 that
by increasing the Pasternak elastic foundation param-
eter, the natural frequency increases for all values of
powers of FGM and changes of natural frequency
become more considerable.

Figure 7 presents the variation of natural frequency
versus the power law index for various values of
Winkler elastic foundation parameters. It is evident
that by increasing the power law index, the natural fre-
quency decreases. By increasing the Winkler parameter
the change of natural frequency is in a constant form
and only the value of natural frequency increases
slightly. Besides, by comparing Figures 6 and 7, it can
be seen that the effect of changing the Pasternak elas-
tic foundation parameter on the natural frequency of
the sector plate is higher than that of Winkler
foundation.

Natural frequency of the FG annular sector plate is
depicted versus the Pasternak elastic foundation
parameter in Figure 8 for different values of sector
angle. It can be seen that by increasing the Pasternak
parameter, the natural frequency increases for all values
of sector angle. It can be seen that change of the
Pasternak elastic foundation parameter has negligible
effect with respect to the change of the sector angle
when a sector plate with o > 180",

6. Conclusion

The free vibration analysis of FG annular sector plates
on clastic foundations has been considered in the pre-
sent paper. The governing equations of motion have
been converted into two decoupled equations.
Numerical results have been compared with the existing
exact solution for homogenous isotropic annular sector
plate and a good agreement has been seen. Accurate
frequency parameter for FG annular sector plates
on Winkler and Pasternak elastic foundations has
been presented for different boundary conditions
along circular edges and some powers of FGM for
over a wide range of sector angles. The effects of
boundary conditions, powers of FGM, elastic founda-
tion stiffness, sector angles, thickness-radius and aspect
ratios on the frequency values are examined and dis-
cussed in detail. The following conclusions can be
remarked:

1. The natural frequency of FG annular sector plate
decreases by increases of power law index (n).

2. By increasing the aspect ratio, the natural frequency
of the FG annular sector plate increases except for
the boundary condition with free inner radius edge.

3. For the FG annular sector plates with SSFC and
SSFS boundary conditions when a > 120,
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increasing the aspect ratio causes the natural fre-
quency of FG annular sector plate first decreases
and then increases. However for SSFS this behavior
occurs for a plate on elastic foundation.

4. By increasing the sector angle, the natural frequency
of the FG annular sector plate for all boundary con-
ditions decreases.

5. For the nearly sector plate (annular sector plate with
small inner edge), the effect of the inner edge condi-
tion on the natural frequency is not considerable.

6. The higher mode number changes due to the varia-
tion of the aspect ratio.

7. By increasing the elastic foundation parameter, the
natural frequency of the FG sector plate increases.

8. The effect of Pasternak parameter on the natural
frequency is more significant than the Winkler
parameter.
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