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Analytical Solution of Biot’s
Equations Based on Potential
Functions Method
In this paper, a new analytical solution for Biot’s equations is presented based on poten-
tial functions method. The primary coupled Biot’s equations have been considered based
on fluid and solid displacements in three-dimensional (3D) space. By defining some
potential functions, the governing equations have been improved to a simpler form. Then
the coupled Biot’s equations have been replaced with four-decoupled equations, by doing
some mathematical manipulations. For a case study, it is assumed that the incident wave
is in xy-plane and for specific boundary conditions; the partial differential equations are
converted to ordinary differential equations and solved analytically. Then two foams with
different properties have been considered, and acoustical properties of these foams due
to the new developed method have been compared with the corresponding results pre-
sented by transfer-matrix method. Good agreement between results verifies the new pre-
sented solution. Based on the potential function method, not only the acoustical
properties of porous materials are calculated, but also the analytical values of all basic
field variables, such as pressure, fluid, and solid displacements, are obtained for all
points in the porous media. Furthermore, fundamental features, such as damped and
undamped natural frequencies, and damping coefficient of porous materials are calcu-
lated by considering presented results. The obtained results show that maximum values of
field variables, such as pressure, fluid, and solid displacements, happen at the damped
natural frequencies of the porous media, as expected. By increasing material thickness,
the effect of damping of porous material on damped natural frequency decreases. Damp-
ing decreases the first natural frequency of the foam up to 8.5%.
[DOI: 10.1115/1.4030715]

1 Introduction

Porous materials, composed of solid and fluid phases, play an
important role in many branches of engineering science, e.g.,
acoustical engineering, petroleum industry, polymer and soil engi-
neering, and biomechanics. Among of applications of porous ma-
terial in acoustic field is the sound absorber. With increasing noise
pollution in urban and industrial environments, application and
designing of sound absorbing materials have become more impor-
tant. Sound absorbers usually consist of porous materials such as
polyurethane foam, and modeling and studying of these materials
are important for designers. Undoubted, modeling of porous mate-
rials can be effective in advancing the science and help research-
ers studying different behavior of these materials.

By modeling of porous materials in sound absorbers not only
the sound absorption coefficient of the material can be calculated,
but also the variations of pressure, fluid, and solid displacements
are established. The latter information can be very useful in the
design of functionally graded porous material and microperforated
panel absorbers. In addition, the variation of pressure and dis-
placements provides useful suitable information in other applica-
tions of porous materials such as the extraction of oil from soil
and research of bone in medical science.

Several models have been already proposed to study the behav-
ior of porous materials [1,2]. These models can be divided into
three categories included with assuming rigid solid, elastic solid,
and experimental models. Among the proposed models assuming
the solid phase to be elastic, the model presented by Biot is a
more complete theoretical one [3,4], which has been expanded in
medical applications in recent years. For example, Dai et al. [5]

suggest that the Biot theory may provide a more robust and accu-
rate model than other theories for wave propagation in the lungs
over a wider frequency range. One of the most significant features
presented in Biot’s theory is the consideration of three types of
waves in elastic porous material including two compression waves
and one shear wave. Two different representations of Biot’s equa-
tions have been presented by Atalla et al. [6] and Dazel et al. [7].
In 1988, Atalla et al. [6] presented the mixed (us,P) formulation
for poroelastic materials. Based on this formulation, without addi-
tion of any assumption in Biot’s equations, calculation time in
finite-element method has been decreased. Also, Dazel et al. [7]
proposed a new displacement formulation of Biot’s linear equa-
tions based on solid and total displacement components. During
the two past decades, researchers have presented different analyti-
cal and numerical mathematical methods for solving Biot’s equa-
tion in all representations, some of them have been mentioned
below.

Burridge and Vargas [8] presented the tensor Green’s function
of Biot’s equations for a uniform space and used Laplace trans-
form for solving governing equations. Moore and Lyons [9]
derived a method from the Biot’s theory for evaluating sound
absorption characteristics by using an impedance matrix. They
presented the variation of real and imaginary part of impedance
through thickness and discussed about them. Chin et al. [10] con-
sidered matrix equations and presented acoustic characteristics for
pulse propagation at normal incidence through a fluid-saturated
porous medium. Allard et al. [11,12] proposed the transfer-matrix
method for solving Biot’s equations both for normal and oblique
incident waves. To the best of author’s knowledge, the results pre-
sented in different papers by transfer-matrix method are limited to
surface impedance and absorption coefficients for porous materi-
als. Bolton et al. [13] presented analytical method for solving
Biot’s equations. They considered isotropic porous materials and
expressed solid and fluid displacement components as the sum of
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irrotational and divergence-free components. Kang and Bolton
[14] used finite element method for prediction of the acoustical
behavior of foam-treated systems having finite dimensions. Also,
Goransson [15,16] presented a fully symmetrical finite element
solution for the coupled Biot’s equations and investigated the
acoustical behavior of porous materials. Tanneau et al. [17] used
the boundary element method to solve coupled acoustical
problems. Most of the above-mentioned solutions have some
restrictions such as the mathematical complexity, numerical
approximations, and limitations in the calculation of field variables.

In this paper, a new analytical method for solving Biot’s equa-
tions is presented by using potential functions. In this technique,
by defining some potential functions, Biot’s equations are con-
verted to a simpler form. Consequently, the six-coupled Biot’s
equations are changed to four-decoupled equations, by doing
some mathematical manipulations. It is assumed that the incident
wave is in xy-plane, so the partial differential equations change to
ordinary differential equations. The six unknown parameters of
the solution of differential equations are obtained by applying the
boundary conditions. With this method, any number of layers
with different compositions of porous material can be studied.
One of the advantages of the potential function method compared
to other methods is its simple mathematical calculation. In addi-
tion, the ability of potential function method to calculate different
mechanical and acoustical filed variables of porous material, i.e.,
pressure, solid, and fluid displacements, represents the strength of
this method.

Section 2 of this paper proposes the decoupling of Biot’s equa-
tions in 3D space. In this section, the six-coupled Biot’s equations
are converted to four-decoupled equations. To simplify the expres-
sions for the field variables, it is assumed in Sec. 3 that the system
is excited by incident plane waves and the porous material has fi-
nite thickness and infinite lateral dimensions. The boundary condi-
tions are applied in Sec. 4 to obtain the unknown parameters of
solution. Section 5 presented calculation method of absorption
coefficient, and Sec. 6 proposes the verification of the new solution
method with the corresponding results of the transfer-matrix
method. Some advantages of the potential function method are pre-
sented by comparison with other methods in Sec. 7. Finally, results
and discussion are given in Secs. 8 and 9.

2 Decoupling of Biot’s Equations Via Potential

Function Method

The primary Biot’s equations written in terms of solid and fluid
displacements have been presented as [3,4]

ðP� NÞ gradðdivusÞ þ Q gradðdivuf Þ þ N

r2us ¼ ~q11 €us þ ~q12 €uf

(1)

R gradðdivuf Þ þ Q gradðdivusÞ ¼ ~q12 €us þ ~q22 €uf (2)

where us and uf are solid and fluid displacement components,
respectively. In addition, the superscript dot denotes partial differ-
entials with respect to time ðð�Þ ¼ @ðÞ=@tÞ. The coefficients
~q11; ~q12, and ~q22 are effective mass densities, P, Q, and R repre-
sent the elastic coefficients of the porous medium presented by
Biot and Willis [18], and N is the shear modulus. The effective
densities are given by

~q11 ¼ ð1� /Þqs � ~q12

~q22 ¼ /qf � ~q12

~q12 ¼ ð1� a01Þ/qf

(3)

where qs and qf are the mass densities of the skeleton and fluid,
respectively. Also parameters / and a01 represent porosity and
dynamic tortuosity, respectively. In addition, the elastic coeffi-
cients are defined as

P ¼
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(4)

where Ks is the bulk modulus of the elastic solid, Kb denotes the
bulk modulus of the frame in vacuum, and Kf is the bulk modulus
of the fluid. It is mentioned that the dynamic tortuosity considered
in this article is based on the model of Johnson et al. [19], and the
bulk modulus of the fluid is based on Champoux–Allard model
[20]. In addition, the compressible model is considered in this
study but for the sake of example, it is assumed that Ks � Kf

because the elastic modulus of the solid part is not available. Fur-
thermore, tortuosity and bulk modulus can be represented by other
models (i.e., Lafrage or Pride models) as can be found in
Ref. [21].

By considering time dependency as ejxt, for the solid and fluid
displacements, Eqs. (1) and (2) can be expanded as

P
@

@x

�
@u1

s

@x
þ @u2

s

@y
þ @u3

s

@z

�
þ N

�
@

@y

�
@u1

s

@y
� @u2

s

@x

�
þ @

@z

�
@u1

s

@z
� @u3

s

@x

��
þ Q

@

@x

�
@u1

f

@x
þ
@u2

f

@y
þ
@u3

f

@z

�
¼ �x2 ~q11u1

s � x2 ~q12u1
f

(5)

P
@

@y

�
@u1

s

@x
þ @u2

s

@y
þ @u3

s

@z

�
� N

�
@

@x

�
@u1

s

@y
� @u2

s

@x

�
þ @

@z

�
@u3

s

@y
� @u2

s

@z

��
þ Q

@

@y

�
@u1

f

@x
þ
@u2

f

@y
þ
@u3

f

@z

�
¼ �x2 ~q11u2

s � x2 ~q12u2
f

(6)

P
@

@z

�
@u1

s

@x
þ @u2

s

@y
þ @u3

s

@z

�
þ N

�
@

@x

�
@u3

s

@x
� @u1

s

@z

�
þ @

@y

�
@u3

s

@y
� @u2

s

@z

��
þ Q

@

@z

�
@u1

f

@x
þ
@u2

f

@y
þ
@u3

f

@z

�
¼ �x2 ~q11u3

s � x2 ~q12u3
f

(7)
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where u1
s ; u

2
s , and u3

s are components of solid displacement in x, y,
and z direction, respectively. Also u1

f ; u
2
f , and u3

f denote compo-
nents of fluid displacement in different directions. Equations
(5)–(10) can be rewritten as
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The parameters /iði ¼ 1; 2;…; 5Þ are defined as
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By differentiating Eqs. (11), (12), and (13) with respect to x, y,
and z, respectively, the resulted equations are obtained as
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Summation of Eqs. (18)–(20) yields

Pr2/1 þ Qr2/5 þ x2 ~q11/1 þ x2 ~q12/5 ¼ 0 (21)

where r2 is Laplacian operator in Cartesian coordinates. Equa-
tions (11) and (12) are differentiated with respect to y and x,
respectively. The summation of the obtained equations results in
Eq. (22). The same procedure is applied both for Eqs. (12) and
(13) with respect to z and y and for Eqs. (11) and (13) with respect
to z and x, respectively. Equations (23) and (24) can be finally
obtained as follows:

Nr2/2 þ x2 ~q11/2 þ x2 ~q12/6 ¼ 0 (22)

Nr2/4 þ x2 ~q11/4 þ x2 ~q12/7 ¼ 0 (23)

Nr2/3 þ x2 ~q11/3 þ x2 ~q12/8 ¼ 0 (24)

By doing the same above procedure for Eqs. (14)–(16) yields
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where the parameters /6 through /8 have been defined as
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Substituting Eqs. (25)–(27) into Eqs. (22)–(24) yields

Nr2/2 þ x2

�
~q11 �

~q2
12

~q22

�
/2 ¼ 0 (29)
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�
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�
/4 ¼ 0 (30)

Nr2/3 þ x2

�
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12

~q22

�
/3 ¼ 0 (31)

Therefore, parameters /2;/3, and /4 have been decoupled. By
differentiating Eqs. (14)–(16) with respect to x, y, and z,
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respectively, and summation of the resulted equations, the follow-
ing relation can be obtained:

Qr2/1 þ Rr2/5 þ x2 ~q12/1 þ x2 ~q22/5 ¼ 0 (32)

Now by considering Eqs. (21) and (32) and eliminating r2/5

from these equations yield

k1r2/1 þ k2/1 þ k3/5 ¼ 0 (33)

where

k1 ¼ RP� Q2; k2 ¼ x2ðR~q11 � Q~q12Þ;
k3 ¼ x2ðR~q12 � Q~q22Þ (34)

The potential function /5 can be obtained from Eq. (33) as
follows:

/5 ¼ �
k1

k3

r2/1 �
k2

k3

/1 (35)

Substituting Eq. (35) into Eq. (21) yields
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� x2 ~q12k1
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�
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þ
�
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x2 ~q12k2

k3

�
/1 ¼ 0 (36)

By considering four Eqs. (29)–(31) and (36), it can be seen that all
potential functions have been decoupled. Other parameters /5

through /8 can be determined from parameters /1 through /4

using Eqs. (25)–(27) and (35).
By applying the incident waveform, decoupled equations can

easily be analytically solved and each of the variables can be cal-
culated for all points of the porous media. These solutions contain
ten unknown parameters (C1 through C10), which can be obtained
by applying all boundary conditions.

The field variables u1
s and u1

f can be obtained by considering
Eqs. (11) and (14). In addition, the parameters u2

s ; u
2
f and u3

s ; u
3
f

can be similarly acquired from Eqs. (12), (15), (13), and (16),
respectively. Finally, we have

u1
s ¼
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@/1

@x
þ k8

k6

@/5

@x
þ N~q22

k6

�
@/2

@y
þ @/3

@z

�
(37)

Fig. 1 Incident plane wave exciting porous media

Table 1 Properties of two different foams [21,22]

Foam 1 Foam 2

Porosity / 0.99 0.98
Flow resistivity rðNs=m

4Þ 10,900 6600
Tortuosity a1 1.02 1.03
Viscous characteristic length KðlmÞ 130 200
Thermal characteristic length K0ðlmÞ 192 380
Mass density q1ðkg=m

3Þ 8.43 11.2
Young’s modulus E (Pa) 195,000 293� 106

Poisson’s ratio � 0.42 0.2
Structural loss factor gs 0.05 0.06

Fig. 2 Variation of absorption coefficient versus frequency for
foam 1 (h ¼ 0:1 m)—comparison between potential function and
transfer-matrix methods

Fig. 3 Variation of absorption coefficient versus frequency for
foam 2 (h ¼ 0:1 m)—comparison between potential function and
transfer-matrix methods
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Furthermore, pressure in porous media can be obtained as

pðx; y; zÞ ¼ �Kf

/

�
@u1

t

@x
þ @u2

t

@y
þ @u3

t

@z

�
(43)

where ut is the total displacement (ut ¼ /uf þ ð1� /Þus). Total
stress components applied to porous media can be presented as
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Fig. 4 Variation of amplitude of pressure in thickness direction for different frequencies in normal incident (h ¼ 0:1m)
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Also, boundary conditions in porous media can be obtained based
on Hamilton’s principle. These boundary conditions yield in gen-
eral form as

du1
s ¼ 0 or rt

11 þ rt
12 þ rt

13 ¼ rair

du2
s ¼ 0 or rt

21 þ rt
22 þ rt

23 ¼ rair

du3
s ¼ 0 or rt

31 þ rt
32 þ rt

33 ¼ rair

du1
f ¼ 0 or rf

11 ¼ �/pe

du2
f ¼ 0 or rf

22 ¼ �/pe

du3
f ¼ 0 or rf

33 ¼ �/pe

(50)

where rair is the stress of air applied to porous media. Also,
rf

iiði ¼ 1; 2; 3Þ are the fluid stress components and pe indicate the
pressure in the free air at contact surface with porous layer.

3 Wave Propagation in Porous Media

In this section, an incident plane wave excites the porous me-
dium, and it is assumed that the porous material is in finite thick-
ness and infinite lateral dimensions. The incident plane wave and
the coordinate system of porous media are shown in Fig. 1. Based
on this assumption, pressure of the incident wave is expected to
be

pðx; yÞ ¼ pðxÞe�jky sin h (51)

where k ¼ x=c0 is the acoustic wave number, x is the circular
frequency, and c0 is the speed of sound in the surrounding acous-
tic medium. Also h denotes the angle of incidence with respect to
the x axis.

All variables can be written in the xy-plane, and these variables
have the same exponential dependency. The solid and fluid dis-
placements and potential functions are expressed as

u1
s ðx; yÞ ¼ u1

s ðxÞe�jky sin h; u1
f ðx; yÞ ¼ u1

f ðxÞe�jky sin h

u2
s ðx; yÞ ¼ u2

s ðxÞe�jky sin h; u2
f ðx; yÞ ¼ u2

f ðxÞe�jky sin h
(52)

Based on the plane motion assumption, Biot’s equations
reduce to
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Now new potential functions for plane motion are defined as
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The decoupling procedure for Eqs. (53)–(56) can be applied
with the same technique presented in Sec. 2. Now substitution of
Eqs. (57) into the resulted equations yields

n1

d4/01
dx4
þ n4

d2/01
dx2
þ n5/

0
1 ¼ 0 (58)

N
d2/02
dx2
þ
�
x2

�
~q11 �

~q2
12

~q22

�
� Nk2 sin2 h

�
/02 ¼ 0 (59)

where

n1 ¼�
Qk1

k3

; n2 ¼ P�Qk2

k3

�x2 ~q12k1

k3

; n3 ¼ x2

�
~q11 �

~q12k2

k3

�

n4 ¼ n2 � 2k2n1 sin2 h; n5 ¼ n3 � k2n2 sin2 hþ k4n1 sin4 h

(60)

Equations (58) and (59) are two ordinary differential equations
in terms of /01 and /02. The solutions of these equations are
obtained as

/01ðxÞ ¼ C1eg1x þ C2e�g1x þ C3eg2x þ C4e�g2x (61)

/02ðxÞ ¼ C5eg3x þ C6e�g3x (62)

where

g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2n1ðn4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

4 � 4n1n5
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Fig. 5 Variation of absorption coefficient of foam 1 versus ex-
citation frequency in the incident direction for four material
thicknesses
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It should be noted that g1 and g2 are the wave numbers for fast
and slow compression waves and g3 expresses the wave number
in shear wave defined by Biot [3]. Based on Eqs. (61) and (62), all
field variables can be calculated by six unknown parameters C1

through C6. Then by satisfying the boundary conditions, unknown
parameters can be obtained, explicitly. Consequently, all basic
field variables can be determined in terms of frequency and the
thickness direction of porous media.

4 Boundary Conditions

Two types of boundary conditions are considered in this sec-
tion. These boundary conditions can be obtained from the general
form presented in Eq. (50).

4.1 Air-Hard Wall Interface. When the layer is a finite
thickness and is bonded onto a rigid impervious backing, the
boundary conditions yield [21]

u1
s ¼ 0; u2

s ¼ 0; u1
f ¼ 0 (64)

4.2 Air-Porous Media Interface. Boundary conditions at the
surface in contact with air can be written as [21]X

p ¼ pe;
X

rt
xx ¼ �pe;

X
rt

xy ¼ 0 (65)

where pe is the pressure in the free air at contact surface with po-
rous layer. By applying the mentioned boundary conditions, ma-
trix form ½M�fCg ¼ fBg is obtained in which the vector {C} are
the unknown parameters C1 through C6. By solving this matrix
equation, six unknown parameters Ckðk ¼ 1:::6Þ are acquired and
consequently each field variable can be analytically calculated in
all points of the medium.

5 Calculation of Absorption Coefficient

Acoustical parameters, such as the absorption coefficient, can
be determined based on potential functions method. The absorp-
tion coefficient, a, is defined as [21]

a ¼ 1� jRj2 (66)

Fig. 6 Variation of amplitude of pressure versus excitation frequency at several locations along the thickness for different
foam thicknesses: (a) h 5 0.05 m, (b) h 5 0.1 m, (c) h 5 0.15 m, and (d) h 5 0.2 m
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where R is the reflection coefficient in porous media and is given
by

R ¼ ðZ � Z0Þ
ðZ þ Z0Þ

(67)

In which Z0 and Z represent the characteristic impedance and the
surface impedance in location of x¼ 0, respectively. The surface
impedance is defined as Z ¼ P=Vt; where P represents pressure
and Vt denotes total velocity. It is considered that by satisfying
boundary conditions the field variables, P and Vt can be analyti-
cally obtained by using potential function method. Then by calcu-
lating the surface impedance, the absorption coefficient is
determined by using Eqs. (66) and (67).

6 Verification

In this section, for verification of the presented method, the
obtained results, e.g., absorption coefficient of the two different

foams, have been compared with the corresponding results of the
transfer-matrix method. Properties of these foams are shown in
Table 1.

Figure 2 shows variation of absorption coefficient of foam 1
versus frequency obtained from both potential function and
transfer-matrix methods. This figure indicates very good agree-
ment between the corresponding results. Same comparison for
foam 2 has been indicated in Fig. 3. This figure also confirms that
the corresponding results of two methods are consistent.

7 Advantages of the New Developed Potential

Function Method

The potential function method presented in this paper has some
advantages in comparison with the previous methods presented
for solving the Biot’s equations. The most important advantages
of this method are as follows.

In potential function method, by considering general form of
Biot’s equations and doing some mathematical manipulations, the
six-coupled Biot’s equations are converted to four-decoupled

Fig. 7 Variation of amplitude of fluid displacement versus excitation frequency at several locations along the thickness for dif-
ferent foam thicknesses: (a) h 5 0.05 m, (b) h 5 0.1 m, (c) h 5 0.15 m, and (d) h 5 0.2 m
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equations in 3D space regardless of any assumption. The
decoupled equations can be solved for different boundary condi-
tions and various layers of acoustic materials with analytical
method. It is worthwhile to mention that by solving these equa-
tions, all field variables of porous material, i.e., pressure and dis-
placement, can be presented analytically, while the previous
analytical methods have not been presented these results yet. In
other words, the previous analytical methods only calculate pa-
rameters such as transmission loss and absorption coefficient and
do not provide some other field variables.

Another advantage of this method over the existing methods is
that the process of deriving equations in potential function method
is based on operators (i.e., r2;r4; :::). Therefore, the resulting
equations can easily be generalized to other coordinates such as
cylindrical coordinates. Biot’s equations in cylindrical coordinates
are useful for modeling the impedance tube, which subsequently
prevent errors of one-dimensional assumption in rectangular
coordinates.

In addition, the results of the potential function method provide
the possibility of analyzing the natural frequency and damping of

sound absorbing materials. Indeed, by calculating the variations of
solid and fluid displacements and pressure of these materials in
the frequency domain, damped and undamped natural frequencies
and damping coefficients of porous materials can be easily calcu-
lated. As a result, these properties are the basic characteristics of
porous materials, and effects of each parameter on the mechanical
and acoustical properties of porous materials can be studied.

8 Results and Discussion

In this section, for foam 1 (see Table 1), normal incident wave
has been considered, and variation of pressure, solid, and fluid dis-
placements with respect to frequency and in the thickness direc-
tion are presented by using the potential functions method.
Analytical results are presented for four different foam thick-
nesses (h). Figure 4 shows the variation of amplitude of pressure
versus position in thickness direction for different frequencies.
Figure 4(a) indicates that in low frequency region, the pressure
slowly decreases up to 500 Hz, and no pressure increase can be
observed in this domain. With increasing frequency, a pressure

Fig. 8 Variation of amplitude of solid displacement versus excitation frequency at several locations along the thickness for dif-
ferent foam thicknesses: (a) h 5 0.05 m, (b) h 5 0.1 m, (c) h 5 0.15 m, and (d) h 5 0.2 m
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increase in the thickness direction is observed. The maximum
pressure occurs at a frequency of 633 Hz. The value of pressure at
this frequency is three times more than the value of pe at the point
of bounded by rigid walls (x¼ h). For frequencies more than 633
Hz up to 1700 Hz, the pressure reduction is significant (Figs. 4(a)
and 4(b)). Again around 1933 Hz, an increase in pressure can be
observed. At this frequency, significant changes in pressure along
thickness direction are found. Figures 4(c) and 4(d) indicate that
for frequencies greater than 2500 Hz, the pressure value inside the
porous material is less than the exciting pressure, pe, and pressure
fluctuation along the thickness is more severe with increasing fre-
quency. For high frequencies, the material pressure drop with
increasing frequency is evident. This phenomenon is attributed to
the increase in dissipation of acoustical energy in the porous mate-
rial as frequency increases. In Fig. 5, variation of absorption coef-
ficient of foam 1 versus exciting frequency is indicated for four
different material thicknesses. It can be seen that by increasing
material thickness, sound absorption efficiency is improved in the
low frequency range smaller than 1000 Hz, as expected.

Figure 6 shows the variation of amplitude of pressure versus ex-
citation frequency for different thicknesses at several locations
along the thickness. It can be seen that maximum pressure is found
at low frequencies, and for different thicknesses, maximum pres-
sure at various points along the thickness direction always occurs
at the same frequency. Similarly, the second maximum of pressure
happens at the same frequency for different positions of porous
material in the thickness direction, and the loss of pressure for the
second peak is noticeable. Furthermore, a closer look to Figs. 5
and 6 indicates that increasing the thickness of the porous material,
the maximum amount of pressure is transmitted in the lower fre-
quencies and the acoustic absorption coefficient of the material is
improved at lower frequencies. In other words, these figures indi-
cate the relation between sound absorption performance improve-
ment at low frequencies and maximum pressure transmission to
the lower frequencies with the increase of material thickness.

Figures 7 and 8 present variation of fluid and solid displace-
ments versus frequency at different locations of thickness direc-
tion for different thicknesses. It can be seen that maximum
amount of fluid and solid displacements occur at the same fre-
quencies where there is maximum pressure.

Unlike the maximum pressure, the maximum value of fluid and
solid displacements increases with increasing thickness. For
example, by increasing thickness from 0:05m to 0:2m, the maxi-
mum value of solid displacement is increased seven times at the
first frequency. As shown in Figs. 6–8, maximum values of ampli-
tude, pressure, and solid and fluid displacements occur at the same
frequencies, which correspond with the damped natural frequen-
cies of porous material, as described in Sec. 9. At these frequen-
cies, the maximum pressure happens at the hard wall interface
(x¼ h) and pressure increases through thickness direction from
the surface in contact with air (x¼ 0) to the surface of hard wall
interface (x¼ h). In contrast, maximum fluid and solid displace-
ments decrease from free surface (x¼ 0) to hard wall surface
(x¼ h), as expected.

9 Damped and Undamped Natural Frequencies

Natural frequency is the fundamental property of the porous
materials, and determination of this frequency is critical and

applicable for advancing in mechanical and acoustical research of
porous material. By presenting the variation of different field vari-
ables versus frequency, via the new developed potential function
method, damped natural frequencies of porous media can be
determined. These frequencies correspond to the frequencies at
which maximum values of field variables occur.

On the other hand, the undamped natural frequency of porous
materials is obtained by setting the imaginary part of impedance
equal to zero [23]. Also, based on experimental observations, the
undamped natural frequency can be obtained as follows [24]:

fr ¼
1

4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂þ cpe

qs þ /qf

s
(68)

where pe is the pressure in free air and h represents the thickness
of porous material. Also, the parameter P̂ is defined as

P̂ ¼ ð1� �ÞE
ð1þ �Þð1� 2�Þ (69)

The resonance frequency, fr, has been observed experimentally.
This frequency has been suggested based on the peak of variations
in real and imaginary parts of the surface impedance. Also, fre-
quency of fr is related to longitudinal plane waves propagating in
the direction normal to the surface. Therefore, vibrational mode
corresponding to this frequency represents axial deformation. It is
noteworthy that Eq. (68) has been obtained based on the simple
rigid frame model, with the assumption that the interaction
between air and the frame is negligible [25].

In this paper, first two damped natural frequencies are obtained
using Figs. 6–8, and undamped natural frequencies are calculated
by setting the imaginary part of the impedance equal to zero.
Finally, in Table 2, the obtained results for different thicknesses
are compared with the corresponding results of Eq. (68).

As expected, the results presented for damped natural frequen-
cies are less than the corresponding undamped natural frequencies
and by increasing thickness, natural frequency decreases. Table 2
indicates that the effect of damping on the first natural frequency
is reduced for higher values of foam thickness and for lower val-
ues of thickness (i.e., h ¼ 0:05m), damping the first natural fre-
quency up to 8.5%. However, damping effects increase for the
second natural frequency up to 25%.

In addition, Table 2 shows the acceptable agreement (less than
5% difference) between the first natural frequency obtained from
the potential function method and the corresponding results of ex-
perimental relation (68) presented in Ref. [24].

Figure 9 shows variation of amplitude of pressure versus posi-
tion in thickness direction and excitation frequency in 3D dia-
gram. It can be seen that for each value of thickness, the
maximum amplitude of pressure occurs in the damped natural fre-
quency at the position of hard wall interface (x¼ h). Therefore, by
exciting the porous material with its damped natural frequency,
maximum amount of pressure in the media can be obtained. This
note is important for different applications of industry. For exam-
ple, in the process of extracting oil from the soil, maximum dis-
placement and pressure can be obtained in different position of
thickness direction when the soil is excited by the specific
frequency.

Table 2 Comparison of damped and undamped natural frequencies of foam 1 with the corresponding frequencies of Eq. (68)

First damped First undamped Undamped natural Second damped Second undamped
Thickness (h) natural frequency natural frequency frequency (Eq. (68)) natural frequency natural frequency

0.05 1260 1375 1291 3697 4620
0.1 629 642 645 1877 2335
0.15 418 423 430 1248 —
0.2 313 315 322 941 —
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10 Conclusions

In this paper, a new exact solution for solving the Biot’s equa-
tions has been presented based on potential function method.
The primary coupled Biot’s equations based on fluid and solid
displacements in 3D space have been considered. By defining
some potential functions and doing some mathematical manipu-
lations, the six-coupled Biot’s equations have been converted to

four-decoupled equations in 3D space without any assumption.
Then, by considering the incident plane waves and applying
boundary conditions, the partial differential equations have been
converted to ordinary differential equations and have been ana-
lytically solved. For verification of the presented method,
absorption coefficient of the two different foams have been com-
pared with the corresponding results of the transfer-matrix

Fig. 9 3D representation for variation of pressure amplitude versus frequency and position in
thickness direction for three different foam thicknesses: (a) h 5 0.05 m, (b) h 5 0.1 m, and (c)
h 5 0.15 m
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method. In conclusion, after describing some advantages of the
new developed potential function method over previous analyti-
cal methods, variation of field variables, i.e., pressure and solid
and fluid displacements versus frequency and position in the
thickness direction have been presented. Finally, damped and
undamped natural frequencies of porous media have been
obtained, and comparison has been done with the corresponding
results of experimental base formulation. The following conclu-
sions are remarked:

(1) Variation of absorption coefficient versus frequency due to
the new developed potential function method is in very
good agreement with the corresponding results of transfer-
matrix method.

(2) With the use of the new developed solution, all field varia-
bles of porous media can be determined. Consequently,
fundamental features, such as damped and undamped natu-
ral frequencies, and damping coefficient of porous materi-
als are calculated using the variations of field variables
versus frequency.

(3) Maximum values of pressure and fluid and solid displace-
ments happen at the same frequencies named damped natu-
ral frequencies.

(4) The value of pressure inside the material at the rigid wall
boundary is three times more than the exciting pressure, pe,
when the media is excited with its first damped natural
frequency.

(5) Unlike the maximum pressure, by increasing thickness, the
maximum value of solid and fluid displacements increases.

(6) With increasing the thickness of porous material, the maxi-
mum amount of pressure is transmitted to the lower fre-
quencies and the acoustic absorption coefficient of the
material is improved at lower frequencies.

(7) Damping decreases the first natural frequency of the foam
up to 8.5%, where as its effect is much more for the second
natural frequency.

(8) First undamped natural frequencies obtained from the
potential function method are in good agreement (less than
5% difference) with the corresponding results for experi-
mental relation presented in Ref. [24].

(9) By increasing material thickness, the effect of damping on
the first damped natural frequency of porous media
decreases.
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