Hom-Lie algebroids associated to Hom-Poisson manifolds

Hassan Arianpoor

Tafresh University, Department of Mathematics

The 48th Annual Iranian Mathematical Conference Aug. 22-25, 2017

Table of contents

Introduction

- In Hom algebras, the identities defining the structures are twisted by homomorphisms. Such algebras appeared in some *q*-deformations of the Witt and the Virasoro algebras.
- Motivated by their generalization, Hartwing, Larsson and Silvestrov introduced the notion of Hom-Lie algebras as part of the study of σ -dreivations of an associated algebra. In the class of Hom-Lie algebras, the Jacobi identity is twisted by a homomorphism, called the Hom-Jocobi identity.
- Makhlouf and Silvestrov have modified the definition of a Hom-Lie algebra when we start with a nonassociative algebra and an automorphism of it.
- Hom-Lie algebras are widely studied in representation and cohomology theory, deformation theory and bialgebra theory.

Introduction

- The notion of a Lie algebroid was introduced by Pradines as a generalization of Lie algebras and tangent bundles.
- Gengoux and Teles introduced the notion of a Hom-Lie algebroid with the help of a Hom-Gerstenhaber algebra.
- There is a one to one correspondence between Hom-Gerstenhaber algebra structures on $\Gamma(\wedge^{\bullet}\mathcal{A})$ and Hom-Lie algebroid stuctures on a vector bundle \mathcal{A} .
- We introduce the notion of a Hom-bundle by any diffeomorphism φ on M to make the definition of a Hom-Lie algebroid on the pull back φ[!]TM of the Lie algebroid TM.
- By introducing the notion of a Hom-Poisson tensor which is equivalent to a purely Hom-Poisson algebra structure on $C^{\infty}(M)$, we show that there is a Hom-Lie algebroid structure on $\varphi^{!}TM$, associated to a Hom-Poisson manifold.

Overview of paper topic

In this paper, we modify the definition of Hom-Lie algebroids introduced by Gengoux and Teles, by using the concept of Hom bundles. Then we give the notion of Hom-Poisson manifolds and show that there is a Hom-Lie algebroid structure on the pullback of the cotangent bundle of a Hom-Poisson manifold.

Let \mathfrak{g} be a vector space and $[.,.]: \wedge^2 \mathfrak{g} = \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$, a linear map. An automorphism of $(\mathfrak{g}, [.,.])$ is a linear map $\alpha : \mathfrak{g} \to \mathfrak{g}$ such that $\alpha([x, y]) = [\alpha(x), \alpha(y)].$

Definition

A Hom-Lie algebra is a triple $(\mathfrak{g}, [.,.], \alpha)$ with a vector space \mathfrak{g} equipped with a skew symmetric bilinear map $[.,.] : \wedge^2 \mathfrak{g} \to \mathfrak{g}$ and an automorphism α of $(\mathfrak{g}, [.,.])$ satisfying the Hom-Jacobi identity: $\bigcirc_{x,y,z} [\alpha(x), [y, z]] = 0, \ \forall x, y, z \in \mathfrak{g}.$

Given a vector space (Lie algebra) gequipped with a skew symmetric bilinear map $[.,.]: \wedge^2 \mathfrak{g} \to \mathfrak{g}$ and an automorphism $\alpha : \mathfrak{g} \to \mathfrak{g}$ of $(\mathfrak{g}, [.,.])$, defined $[.,.]_{\alpha} : \wedge^2 \mathfrak{g} \to \mathfrak{g}$ by $[x, y]_{\alpha} = \alpha([x, y]), \forall x, y \in \mathfrak{g}$. Then $(\mathfrak{g}, [.,.]_{\alpha}, \alpha)$ is a Hom-Lie algebra iff the restriction of [.,.] to the image of α^2 is a Lie bracket.

Definition

A Hom-associative algebra is a triple $(\mathcal{A}, \mu, \alpha)$ consisting of a vector space \mathcal{A} , a bilinear map $\mu : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ and an automorphism α of (\mathcal{A}, μ) satisfying the Hom-associativity: $\mu(\alpha(x), \mu(y, z)) = \mu(\mu(x, y), \alpha(z)), \ \forall x, y, z \in \mathcal{A}.$

- Given (\mathcal{A}, μ) an associative algebra and $\alpha : \mathcal{A} \to \mathcal{A}$ an algebra automorphism, $(\mathcal{A}, \alpha \circ \mu, \alpha)$ is a Hom-associative algebra.
- A Hom-associative algebra (A, μ, α) generates a Hom-Lie algebra (A, [., .], α), when [x, y] = μ(x, y) μ(y, x).

A homomorphism of Hom-associative algebras (resp. Hom-Lie algebras) $(\mathfrak{g}, \mu_{\mathfrak{g}}, \alpha)$ and $(\mathfrak{h}, \mu_{\mathfrak{h}}, \beta)$ (resp. $(\mathfrak{g}, [., .]_{\mathfrak{g}}, \alpha)$ and $(\mathfrak{h}, [., .]_{\mathfrak{h}}, \beta)$) is a linear map $\psi : \mathfrak{g} \to \mathfrak{h}$ such that $\psi(\mu_{\mathfrak{g}}(x, y) = \mu_{\mathfrak{h}}(\psi(x), \psi(y)))$ (resp. $\psi([x, y]_{\mathfrak{g}}) = [\psi(x), \psi(y)]_{\mathfrak{h}})$ and $\psi(\alpha(x)) = \beta(\psi(x)), \ \forall x, y \in \mathfrak{g}.$

Example

Let \mathcal{A} be a 2-vector space with a basis $\{e_1, e_2\}$. A multiplication μ and a linear map α on \mathcal{A} are given by $\mu(e_1, e_1) = e_1$, $\mu(e_i, e_j) = e_2$, if $(i, j) \neq (1, 1)$ and $\alpha(e_1) = \lambda e_1 + \gamma e_2$, $\alpha(e_2) = (\lambda + \gamma)e_2$, where $\lambda, \gamma \neq 0$. Then $(\mathcal{A}, \mu, \alpha)$ is a Hom-associative algebra and $(\mathcal{A}, [.,.], \alpha)$ is a Hom-Lie algebra with $[e_i, e_j] = \mu(e_i, e_j) - \mu(e_j, e_i)$.

Definition

A Hom-Poisson algebra is a quadruple $(\mathcal{A}, \mu, \{.,.\}, \alpha)$ with a vector space \mathcal{A} , bilinear maps $\mu : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ and $\{.,.\}: \wedge^2 \mathcal{A} \to \mathcal{A}$ and a linear map $\alpha : \mathcal{A} \to \mathcal{A}$ such that satisfies:

- $(\mathcal{A}, \mu, \alpha)$ is a commutative Hom-associative algebra,
- $(\mathcal{A}, \{.,.\}, \alpha)$ is a Hom-Lie algebra,
- $\{\alpha(x), \mu(y, z)\} = \mu(\alpha(y), \{x, z\}) + \mu(\{x, y\}, \alpha(z))$, for all $x, y, z \in A$.

Definition

A purely Hom-Poisson algebra is a quadruple $(\mathcal{A}, \mu, \{.,.\}, \alpha)$ consisting of a vector space \mathcal{A} , bilinear maps $\mu : \wedge^2 \mathcal{A} \to \mathcal{A}$ and $\{.,.\} : \wedge^2 \mathcal{A} \to \mathcal{A}$ and a linear map $\alpha : \mathcal{A} \to \mathcal{A}$ such that satisfies:

• (\mathcal{A},μ) is a commutative associative algebra,

•
$$(\mathcal{A}, \{., .\}, \alpha)$$
 is a Hom-Lie algebra,

•
$$\{x, \mu(y, z)\} = \mu(\alpha(y), \{x, z\}) + \mu(\{x, y\}, \alpha(z))$$
, for all $x, y, z \in A$.

Let $(\mathcal{A}, \mu, \{.,.\})$ be a Poisson algebra and $\alpha : \mathcal{A} \to \mathcal{A}$ a Poisson automorphism. $(\mathcal{A}, \mu_{\alpha} = \alpha \circ \mu, \{.,.\}_{\alpha} = \alpha \circ \{.,.\}, \alpha)$ is a Hom-Poisson algebra iff $\{.,.\}$ (resp. μ) is a Lie bracket (resp. an associative product) when restricted to the image of α^2 and $(\mathcal{A}, \mu, \{.,.\}_{\alpha} = \alpha \circ \{.,.\}, \alpha)$ is a purely Hom-Poisson algebra.

Example

- Let \mathcal{A} be a 3-vector space with a basis $\{x_1, x_2, x_3\}$. The following multiplication μ , bracket $\{., .\}$ and a linear map α on \mathcal{A} define a Hom-Poisson algebra: $\mu(x_1, x_1) = x_1, \ \mu(x_1, x_2) = \mu(x_2, x_1) = x_3$. For $a, b, c, d \neq 0$ let $\{x_1, x_2\} = ax_2 + bx_3, \ \{x_1, x_3\} = cx_2 + dx_3$ and $\alpha(x_1) = \lambda_1 x_2 + \lambda_2 x_3, \ \alpha(x_2) = \lambda_3 x_2 + \lambda_4 x_3, \ \alpha(x_3) = \lambda_5 x_2 + \lambda_6 x_3$.
- Given (M,π) a Poisson manifold with Poisson bivector field π and φ : M → M a smooth map, then there is a Hom-Poisson structure on C[∞](M) if φ preserves the bivector field π: π_{φ(m)} = (∧²T_mφ)(π_m), ∀m ∈ M and that the Schouten-Nijenhuis bracket [π, π] vanishes on φ²(M) ⊂ M. Hence, (C[∞](M), μ_{φ*} = φ* ∘ μ, {.,.}_{φ*} = φ* ∘ {.,.}, φ*) is a Hom-Poisson algebra with the usual product μ on C[∞](M) and (C[∞](M), μ, {.,.}_{φ*} = φ* ∘ {.,.}, φ*) is a purely Hom-Poisson algebra. (M, π, φ) is called a Hom-Poisson manifold.

Definition

A pair ($\mathcal{A}=\oplus_{i\in\mathbb{N}}\mathcal{A}_i, [.,.]$) is a \mathbb{N} -graded Lie algebra if

- \mathcal{A} is a graded algebra in which $[\mathcal{A}^n,\mathcal{A}^m]\subset\mathcal{A}^{n+m}$,
- the bracket [.,.] in \mathcal{A} is graded skew summetric: $[x, y] = (-1)^{pq}[y, x]$, for all $x \in \mathcal{A}^p$, $y \in \mathcal{A}^q$,
- it satisfies the graded Jacobi identity: $\bigcirc_{x,y,z} (-1)^{pq}[x, [y, z]] = 0$, for all $x \in \mathcal{A}^p$, $y \in \mathcal{A}^r$, $z \in \mathcal{A}^q$.

Definition

A Hom-Gerstenhaber algebra is a graded Hom-Lie algebra $(\mathfrak{g}, \wedge, [[., .]], \alpha)$ where $(\mathfrak{g} = \bigoplus_{i \in \mathbb{N}} \mathfrak{g}_i, \wedge)$ is a graded associative algebra, α is an automorphism of (\mathfrak{g}, \wedge) of degree 0 and $[[., .]] : \wedge^2 \mathfrak{g} \to \mathfrak{g}$ is a linear map of degree -1 satisfying the following Hom-Leibniz rule for all $X \in \mathfrak{g}_i, Y \in \mathfrak{g}_j, Z \in \mathfrak{g}$: $[[X, Y \land Z]] = [[X, Y]] \land \alpha(Z) + (-1)^{(i-1)j} \alpha(Y) \land [[X, Z]].$ (1)

Definition

A representation (V, β, ρ) of a Hom-Lie algebra $(\mathfrak{g}, [., .], \alpha)$ on a vector space V with respect to $\beta \in \mathfrak{gl}(V)$ is a linear map $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ such that for all $x, y \in \mathfrak{g}$ the following satisfy: $\rho(\alpha(x)) \circ \beta = \beta \circ \rho(x),$ (2)

$$\rho([x,y]) \circ \beta = \rho(\alpha(x) \circ \rho(y) - \rho(\alpha(y) \circ \rho(x)).$$

Example

Let $(\mathfrak{g}, [.,.], \alpha)$ be a Hom-Lie algebra. The linear map α can be extended to a linear map $\alpha : \wedge^{\bullet} \mathfrak{g} \to \wedge^{\bullet} \mathfrak{g}$. The schouten bracket $[[.,.]] : \wedge^{\bullet}\mathfrak{g} \otimes \wedge^{\bullet}\mathfrak{g} \to \wedge^{\bullet}\mathfrak{g}$ is obtained from [.,.] for all $x_i, y_i \in \mathfrak{g}$ by $[[x_1 \land ... \land x_m, y_1 \land ... \land y_n]] =$ $\sum_{i,i} (-1)^{i+j} [x_i, y_i] \wedge \alpha (x_1 \wedge \dots \hat{x}_i \dots \wedge x_m \wedge y_1 \wedge \dots \hat{y}_i \dots \wedge y_n),$

 $(\wedge^{\bullet}\mathfrak{g}, \wedge, [[., .]], \alpha)$ is a Hom-Gerstenhaber algebra. The adjoint representation of \mathfrak{g} on $\wedge^{\bullet}\mathfrak{g}$ is given by $ad_XY = [[x, Y]]$ for all $x \in \mathfrak{a}, Y \in \wedge^k \mathfrak{a}.$

Given an algebra automorphism σ of a commutative algebra \mathcal{A} , a σ -derivation on \mathcal{A} is a linear map $D(ab) = D(a)\sigma(b) + \sigma(a)D(b)$, for all $a, b \in \mathcal{A}$. We denote by $Der_{\sigma}(\mathcal{A})$ the set of all σ -derivations.

Theorem

Let $(\mathcal{A} = \bigoplus_{i \in \mathbb{N}} \mathcal{A}_i, \wedge, [[.,.]], \alpha)$ be a Hom-Grestenhaber algebra. Then $(\mathcal{A}_1, \wedge, [[.,.]]|_{\mathcal{A}_1 \times \mathcal{A}_1}, \alpha|_{\mathcal{A}_1})$ is a Hom-Lie algebra and $(\mathcal{A}_0, \rho, \alpha|_{\mathcal{A}_0})$ is its representation in which for $f \in \mathcal{A}_0$ and $X \in \mathcal{A}_1$, the map $\rho : \mathcal{A}_1 \to End(\mathcal{A}_0)$ is defined by $\rho(X)(f) = [[X, f]]$ and a $\alpha|_{\mathcal{A}_0}$ -derivation of \mathcal{A}_0 is given as $f \mapsto \rho(X)(f)$.

Definition

A Hom-bundle $(\mathcal{A}, \varphi, \alpha)$ is a vector bundle \mathcal{A} over M, equipped with a smooth map φ on M and a linear map $\alpha : \Gamma(\mathcal{A}) \to \Gamma(\mathcal{A})$ such that $\alpha(fX) = \varphi^*(f)\alpha(X), \ \forall X \in \Gamma(\mathcal{A}), \ f \in C^{\infty}(M).$

For the pullback bundle $\varphi^! \mathcal{A}$ of \mathcal{A} along φ , the corresponding pullback section $y^!$ at a point $m \in M$ is given by $y^!(m) = y(\varphi(m))$ where $y \in \Gamma(\mathcal{A})$.

Example

For any bundle map $\Phi : \varphi^! \mathcal{A} \to \mathcal{A}$, defined $\phi_{\varphi^! \mathcal{A}} : \Gamma(\varphi^! \mathcal{A}) \to \Gamma(\varphi^! \mathcal{A})$ by $\phi_{\varphi^! \mathcal{A}}(x) = (\Phi(x))^!$ for all $x \in \Gamma(\varphi^! \mathcal{A})$. Then, $(\varphi^! \mathcal{A}, \varphi, \phi_{\varphi^! \mathcal{A}})$ is a Hom-bundle.

Example

Let φ be a smooth map on M. The pullback map φ^* is a homomorphism on $C^{\infty}(M)$ as $\varphi^*(fg) = \varphi^*(f)\varphi^*(g)$. $\Gamma(\varphi^!TM)$ can be identified with $Der_{\sigma}(C^{\infty}(M))$, by mapping $X \in \Gamma(\varphi^!TM)$ to the φ^* -derivation which maps f to $X_m d_{\varphi(m)} f$ at $m \in M$ such that $X(fg) = X(f)\varphi^*(g) + \varphi^*(f)X(g)$. The map Ad_{φ^*} on $\Gamma(\varphi^!TM)$ is defined by $Ad_{\varphi^*}(X) = \varphi^* \circ X \circ (\varphi^*)^{-1}$, for all $X \in \Gamma(\varphi^!TM)$. Then, $(\varphi^!TM, \varphi, Ad_{\varphi^*})$ is a Hom-bundle.

Definition

A Hom-Lie algebroid structure on a Hom-bundle $(\mathcal{A}, \varphi, \alpha)$ is a quintuple $(\mathcal{A}, \varphi, [., .], \rho, \alpha)$ consisting of a Hom-Lie algebra $(\Gamma(\mathcal{A}), [., .], \alpha)$ and the anchor map $\rho : \varphi^! \mathcal{A} \to \varphi^! (TM)$ such that for all $X, Y \in \Gamma(\mathcal{A}), f \in C^{\infty}(M)$ satisfy the following: (i) $\alpha(fX) = \varphi^*(f)\alpha(X)$, (ii) $(C^{\infty}(M), \rho, \varphi^*)$ is a representation of $(\Gamma(\mathcal{A}), [., .], \alpha)$, (iii) the Hom-Leibniz identity holds: $[X, fY] = \varphi^*(f)[X, Y] + \rho(X)(f)\alpha(Y)$.

- Linear endomorphisms α are in one to one correspondence with vector bundle morphisms from φ[!]A to A over the identity of M. A section of the pullback bundle φ[!]A is given by mapping m ∈ M to X_{φ(m)} ∈ A_{φ(m)} ≃ (φ[!]A)_m for X ∈ Γ(A). Applying a vector bundle morphism from φ[!]A to A over the identity of M to X, yields a section of A and α satisfies (i).
- The Hom-Leibnizidentity implies that for sections X, Y of A, the value of [X, Y] at a point m ∈ M depends only on the corresponding one on φ[!]A at φ(m).
- The value of $\rho(X)(f)$ at $m \in M$ is equal to $\langle d_{\varphi(m)}f, \rho_m(X_{\varphi(m)}) \rangle$, where $X_{\varphi(m)}$ is the value of $X \in \Gamma(\mathcal{A})$ at $\varphi(m) \in M$ and $\rho_m : (\varphi^! \mathcal{A})_m \simeq \mathcal{A}_{\varphi(m)} \to (\varphi^! TM)_m \simeq T_{\varphi(m)}M$ is the anchor map evaluated at $m \in M$.

Theorem

Let $\varphi : M \to M$ be a diffeomorphism. Then, $(\varphi^! TM, \varphi, Ad_{\varphi^*}, [.,.]_{\varphi^*}, id)$ is a Hom-Lie algebroid where Ad_{φ^*} is given in the before example and a skew symmetric bileaner operation $[.,.]_{\varphi^*} : \wedge^2 \Gamma(\varphi^! TM) \to \Gamma(\varphi^! TM)$, defined by $[X, Y]_{\varphi^*} = \varphi^* \circ X \circ (\varphi^*)^{-1} \circ Y \circ (\varphi^*)^{-1} - \varphi^* \circ Y \circ (\varphi^*)^{-1} \circ X \circ (\varphi^*)^{-1}$.

Let $(C^{\infty}(M), \{.,.\}, \varphi^*)$ be a purely Hom-Poisson algebra on $C^{\infty}(M)$. The Hom-Leibniz rule implies that $\{f,.\}$ is a φ^* -derivation on $C^{\infty}(M)$. There exists a bivector field (bisection) $\pi \in \Gamma(\wedge^2 \varphi^! TM)$ such that $\{f,g\} = \pi(df, dg)$ for all $f,g \in C^{\infty}(M)$. The bisection π on M is called a Hom-Poisson tensor if $[[\pi,\pi]]_{\varphi^!TM} = 0$ and $Ad_{\varphi^*}(\pi) = \pi$. In the before example, a Hom-Poisson manifold (M,φ,π) is equipped with a Hom-Poisson tensor π .

Lemma

With the above notation, the following statements are equivalent:

$$\begin{split} \varphi^{*}(\{f,g\}) &= \{\varphi^{*}(f), \varphi^{*}(g)\}, \quad Ad_{\varphi^{*}}(\pi) = \pi, \quad Ad_{\varphi^{*}}\circ\pi^{\sharp} = \pi^{\sharp}\circ Ad_{\varphi}^{\dagger} \\ (3) \end{split}$$
where $Ad_{\varphi^{*}}^{\dagger}: \Gamma(\varphi^{!}T^{*}M) \to \Gamma(\varphi^{!}T^{*}M)$ is given by
 $Ad_{\varphi^{*}}^{\dagger}(\xi)(X) &= (\varphi^{*}\xi)(Ad_{\varphi^{*}}^{-1}(X)) \text{ and } \pi^{\sharp}: \varphi^{!}T^{*}M \to \varphi^{!}T^{*}M \text{ is a}$
bundle map defined by
 $\pi^{\sharp}(\xi)(\eta) = \pi(\xi, \eta), \quad \forall X \in \Gamma(\varphi^{!}TM), \quad \forall \xi, \eta \in \Gamma(\varphi^{!}T^{*}M). \end{split}$

Theorem

 $(C^{\infty}(M), \{.,.\}, \varphi^*)$ is a purely Hom-Poisson algebra iff (M, φ, π) is a Hom-Poisson manifold.

Lemma

Let (M, φ, π) be a Hom-Poisson manifold. Define a bracket on $\Gamma(\varphi^! T^*M)$ for all $\xi, \eta \in \Gamma(\varphi^! T^*M)$ by $[\xi, \eta]_{\pi^{\sharp}} = L_{\pi^{\sharp}(\xi)}\eta - L_{\pi^{\sharp}(\eta)}\xi - d\pi(\xi, \eta),$ (4)

in which the differential operator d is defined on $\Gamma(\wedge^{\bullet}T^*M)$. Given $\Phi : \Gamma(\wedge^{\bullet}T^*M) \to \Gamma(\wedge^{\bullet}T^*M)$, for all $X \in \Gamma(\wedge^k T^*M)$ and $\Xi \in \Gamma(\wedge^k TM)$, define $\Phi^{\dagger} : \Gamma(\wedge^{\bullet}TM) \to \Gamma(\wedge^{\bullet}TM)$ by $(\Phi^{\dagger}(X))(\Xi) = \varphi^*X(\Phi^{-1}(\Xi))$. Then, $d \circ \Phi^{\dagger} = \Phi^{\dagger} \circ d$, $\Phi^{\dagger}(L_{\Xi}X) = L_{\Phi(\Xi)}\Phi^{\dagger}(X)$, $(\Phi^{\dagger})^{-1} \circ L_{\Xi} = L_{\Phi^{-1}(\Xi)} \circ (\Phi^{\dagger})^{-1}$, $d \circ L_{\Xi} = -(-1)^k L_{\Phi(\Xi)} \circ d(5)$

Theorem

Let (M, φ, π) is a Hom-Poisson manifold. Then, $(\varphi^! T^*M, \varphi, Ad_{\varphi^*}^{\dagger}, [.,.]_{\pi^{\sharp}}, \pi^{\sharp})$ is the cotangent Hom-Lie algebroid where $[.,.]_{\pi^{\sharp}}$ is given by the equation (4).

Hassan Arianpoor

Hom-Lie algebroids associated to Hom-Poisson manifolds

- L. Cai, J. Liu and Y. Sheng, Hom-Lie algebroids, Hom-Lie bialgebroids and Hom-Courant algebroids, arXiv: 1605.04752 v1, (2016).
- J. Hartwig, D. Larsson and S. Silvestrov, *Deformations of Lie algebras using σ*-*derivations*, J. Algebra, 295 (2006), no. 2, pp. 314–361.
- C. Laurent-Gengoux and J. Teles, *Hom-Lie algebroids*, J. Geom. Phys., 68 (2013), pp. 69–75.
- A. Makhlouf and S. Silvestrov, *Hom-algebra structures*, J. Gen. Lie Theory Appl., 2 (2008), no. 2, pp. 51–64 .
- Y. Sheng, *Representation of Hom-Lie algebras*, Alg. Rep. Theory, 15 (2012), no. 6, pp. 1081–1098.