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.. Introduction

The theory of Dirac structures on vector spaces and their
extension to manifolds was first introduced as a generalization
of symplectic and Poisson structures by Courant, Weinstein
and Dorfman.
A Dirac structure on a manifold M is a smooth subbundle of
the Whitney sum bundle TM ⊕ T ∗M, satisfying maximally
isotropic property under a symmetric bilinear form. The
concept was generalized to similar subbundles defined on the
Whitney sum of the form A⊕ A∗ where (A,A∗) is a Lie
bialgebroid.
Lie algebroids as a natural generalization of vector fields on a
manifold has been used in the algebraic geometric framework
by Pradines.
From a geometrical point of view, Dirac structures are closely
related to Lie algebroids and Lie bialgebroids.
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.. Introduction

The notion of integrability of Dirac structures was defined
first by Courant and after that by Fernandez. It leads to a
poisson algebra of functions on the manifold making it
possible to construct the classical mechanics on manifolds.

A generalized definition of Dirac structures on Lie algebroids
concludes to the specification of integrable Dirac structures.

The notion of the characteristic pair of a Lie algebroid yields
specific conditions on the closedness of generalized Dirac
structures.

The equivalence class of characteristic pairs corresponds to a
generalized Dirac structure for the Lie bialgebroid case.

When the generalized Dirac structure is integrable, the set of
characteristic pairs defines a closed Lie algebra structure on
any maximally isotropic subbundle of the Lie bialgebroid.
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.. Overview of paper topic

In this paper we describe the integrability of Dirac structures on a
given Lie bialgebroid by corresponding characteristic pairs. It is
based on a closedness condition of the Courant bracket applied to
sections of the Dirac structure. The characterization of integrable
Dirac structures on a Lie algebroid can be done in terms of its
subbundles and suitable tensors. This generalizes the concept of
Dirac structures defined on the tangent bundle of a manifold.
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Definition
..

......

A Lie algebroid on a smooth manifold M is a vector bundle
A → M together with a bracket [., .]A : Γ∞(A) → Γ∞(A) on the
space of its smooth sections and a bundle homomorphism (the
anchor) ρ : Γ∞(A) → Γ∞(M) from smooth sections of the bundle
A into smooth sections of the bundle TM, equipped with the
natural Lie algebra structure Γ∞(M) such that the following
condition holds:

ρ([X ,Y ]A) = [ρ(X ), ρ(Y )] (1)

and the Lie algebroid bracket satisfies the Leibniz rule for the
module of sections over C∞(M):

[X , fY ]A = f [X ,Y ]A + (ρ(X )f )Y . (2)

for all X ,Y ∈ Γ∞(A) and f ∈ C∞(M).
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Let A⋆ be the dual bundle of A (of rank k) over the manifold M
and denote by

∧p A the p-th external power of the bundle A as a
vector bundle whose fibres are vector spaces of p-multilinear
skew-symmetric forms on the dual space A⋆. Similarly, it will be
denoted by

∧p A⋆ the p-th external power of the dual bundle A⋆.

.

......

Denote by Ap(A) the space of smooth sections of the bundle
∧p A

and by Ωp(A) the space of smooth sections of the dual bundle∧p A⋆. The direct sums A(A) =
⊕

p∈ZAp(A) and
Ω(A) =

⊕
p∈ZΩ

p(A), are taken for all integers p which satisfy

0 ≤ p ≤ k , for p = 0, A0(A) and Ω0(A) both coincide with the
space C∞(M).

Operations such as the interior product, the exterior product and
pairing can be defined in the Z-graded vector spaces A(A) and
Ω(A) as extention of these notions in

∧
A and

∧
A⋆.

H. Arianpoor Integrable Dirac Structures on Lie Algebroids



Introduction
Dirac Structures and Lie Algebroids

Dirac Structures on Lie Bialgebroids and Characteristic Pairs
Reference

.
Differential of Lie algebroid
..

......

The Z-garded space Ω(A) is equipped with the natural differential
dA : Ωp(A) → Ωp+1(A) defined on any ω ∈ Ωp(A) by

(dAω)(X1, ...,Xp+1) =

p+1∑
i=1

(−1)i+1ρ(Xi )ω(X1, ..., X̌i , ...,Xp+1) +∑
1≤i<j≤p+1

(−1)i+jω([Xi ,Xj ]A,X1, ..., X̌i , ..., X̌j , ...,Xp+1) (3)

where X̌i means omission of the argument.
For f ∈ C∞(M) we have ⟨dAf ,X ⟩ = ρ(X )f , ∀X ∈ Γ∞(A).

The differential dA for Lie algebroid A can be related to the de
Rham differential of the manifold M as dA = ρ∗ ◦ d , using by ρ⋆

the transpose of the anchor ρ.
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Lie derivative on Lie algebroid
..

......

The Lie derivative LA
X with respect to each smooth section

X ∈ Γ∞(A) as a graded endomorphism of degree 0 of the graded
algebra Ω(A), can be defined by generalizing Cartan’s formula

LA
X = iX ◦ dA + dA ◦ iX (4)

where the interior product iX is a derivation of degree −1 of the
algebra Ω(A), as the (q − 1)-multilinear form on A1(A) = Γ∞(A)
defined by iXω(X1, ...,Xq−1) = ω(X ,X1, ...,Xq−1), for all
X1, ...,Xq−1 ∈ Γ∞(A) and ω ∈ Ωq(A).
For f ∈ C∞(M) we see that LA

X f = iρ(X )df .

.
Corollary
..

......For any α ∈ Ω1(A) we have ⟨Y ,LA
Xα⟩ = ρ(X )⟨Y , α⟩−α([X ,Y ]A).
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Lemma
..
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Let A be a Lie algebroid over a smooth manifold M. Then, for any
X ,Y ∈ Γ∞(A) and f ∈ C∞(M), the Lie derivative has the
following properties:

LA
X (dAf ) = dA(LA

X f ), i[X ,Y ]A = [LA
X , iY ]A, LA

[X ,Y ]A
= [LA

X ,LA
Y ]A

.
Definition
..

......

Let V be a vector space and consider also its dual space V ⋆ with
respect to the dual inner product ⟨., .⟩. Let a bilinear symmetric
form ⟨., .⟩+ defined on V × V ⋆ as
⟨(x , y), (x ′, y ′)⟩+ = ⟨x , y ′⟩+ ⟨x ′, y⟩ for x , x ′ ∈ V and y , y ′ ∈ V ⋆.
A Dirac structure on V is a subspace D ⊂ V ⊕ V ⋆ which is
maximally isotropic under the pairing ⟨., .⟩+ such that D⊥ = D.
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Example
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Let T : V → V ⋆ be a skew symmetric linear map. Then
graph(T ) ⊂ V ⊕ V ⋆ is maximally isotropic under ⟨., .⟩+ for which
⟨Tx , x ′⟩+ ⟨Tx ′, x⟩ = 0 so graph(T ) is a Dirac structure on V .

On a vector space V , there is the natural projection
π : V ⊕ V ⋆ → V that gives rise to the characterization equation
π(D)◦ = D ∩ V ⋆ of Dirac structure D where for a vector space
W , W ◦ is the annihilator of W .
.
Theorem
..

......

A Dirac structure D ⊂ V ⊕ V ⋆ induces a skew form on the
subspace π(D) ⊂ V with the kernel D ∩ V . Consequently, the
Dirac structure induces a skew bivector on the quotient space
V /D ∩ V .
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A generalized Dirac structure on a smooth manifold M is a
subbundle D ⊂ TM ⊕ T ⋆M which is maximally isotropic under the
symmetric pairing ⟨(X , α), (Y , β)⟩+ = iYα+ iXβ) = α(Y ) + β(X )
for X ,Y ∈ TM and α, β ∈ T ⋆M.

To define a closed Dirac structure on M it is necessary to give a
skew symmetric bracket [., .] on D ⊂ TM ⊕T ⋆M such that for any
two sections σ1, σ2 ∈ Γ∞(D) we have [σ1, σ2] ∈ Γ∞(D).
.
Definition
..

......

A generalized Dirac structure on M is called closed if for any three
sections σi = (Xi , αi ), i = 1, 2, 3 the following property holds:

⟨X1,LX2α3⟩+ ⟨X3,LX1α2⟩+ ⟨X2,LX3α1⟩ = 0 (5)
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A closed generalized Dirac structure D ⊂ TM ⊕ T ⋆M yields a Lie
algebroid structure on it which is due to Courant.
.
Theorem (Courant)
..

......

A generalized Dirac structure D on the manifold M is closed iff it
is a Lie algebroid with the anchor ρ : D → TM and the Lie algebra
structure on the space of sections is defined as:

[(X1, α1), (X2, α2)] = ([X1,X2],LX1α2−LX2α1−
1

2
d◦(iX1α2−iX2α1)).

(6)

.
Example
..

......

Given a Poisson manifold (M, J), the Poisson tensor J defines a
mapping: Ĵ : T ⋆M → TM, Ĵ(df )(dg) = J(df , dg) = {f , g}.
The subbundle D defined by the gragh of the mapping Ĵ induces
the generalized Dirac structure D = {(Ĵ(α), α)|α ∈ T ⋆M} on M.
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A Lie algebroid structure for the dual bundle A⋆ of a Lie algebroid
A defines by a Lie algebra structure [., .]A⋆ and an anchor
ρ⋆ : Γ∞(A⋆) → Γ∞(M) which satisfies the conditions (1) and (11).
The differential dA⋆ acts on the space of smooth sections of A⋆.
.
Definition
..

......

A pair of Lie algebroids (A,A⋆) is said to be a Lie bialgebroid if
the differentials dA and dA⋆ are as derivations of Schouten bracket
of A⋆ and for the commutator of the smooth sections of A:

dA[α1, α2] = [dAα1, α2] + [α1, dAα2], ∀α1, α2 ∈ Γ∞(A⋆)(7)

d⋆
A[X1,X2] = [d⋆

AX1,X2] + [X1, d
⋆
AX2], ∀X1,X2 ∈ Γ∞(A) (8)

.
Example
..

......

The trivial Lie algebroid structure of TM and T ⋆M with the null
anchor, leads to that TM ⊕ T ⋆M is a Lie bialgebroid.
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Definition
..

......

Let (A,A⋆) be a Lie bialgebroid and consider the Whitney sum
B = A⊕ A⋆. A subbundle D ⊂ A⊕ A⋆ is called a generalized
Dirac structure on M if it is maximally isotropic with respect to
the symmetric canonical form ⟨., .⟩+ : B × B → B, can be defined
by the duality between the two bundles A and A⋆ as follows:

⟨(X1, α1), (X2, α2)⟩+ = ⟨X1, α2⟩+⟨X2, α1⟩, ∀(X1, α1), (X2, α2) ∈ B
(9)

The Lie algebra structure on Γ∞(D), the space of smooth sections
of D needs to both of Lie algebroid structures on A and A⋆.
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Definition
..

......

Let (A,A⋆) be a Lie bialgebroid. Ther exists a skew symmetric
bilinear operation on the sections of B = A⊕ A⋆ in the form:

[(X1, α1), (X2, α2)]B = ([X1,X2]A+[X1,X2]LA⋆ , [α1, α2]A+[α1, α2]LA)
(10)

where [X1,X2]LA⋆ = LA⋆

α1
X2 − LA⋆

α2
X1 − 1

2dA⋆ ◦ (iX1α2 − iX2α1) and
[α1, α2]LA = LA

X1
α2 − LA

X2
α1 − 1

2dA ◦ (iX1α2 − iX2α1).

.
Definition
..

......

The subbundle D ⊂ B is said to be a generalized Dirac structure if
the operation above induces a Lie algebra structure on Γ∞(D).
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Theorem
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Let (A,A⋆) be a Lie bialgebroid. Consider also the operation [., .]B
and the anchor ρB = ρ⊕ ρ⋆ : Γ∞(B) → Γ∞(M) for B = A⊕A⋆. A
subbundle D ⊂ B is a generalized Dirac structure iff (D, [., .]D , ρD)
is a Lie algebroid in which [., .]B and ρB restrict to the bundle D.

The characterization of Dirac structures can be done in terms of
subbundles I of A and A-tensors Ω, generalizes Dirac structures on
TM ⊕ T ⋆M.
.
Definition
..

......

Let (A,A⋆) be a Lie bialgebroid. The characteristic pair of the
Dirac structure D is a pair (I ,Ω) of a smooth subbundle I ⊂ A and
a bivector Ω ∈ Γ∞(

∧2 A) associated to a maximally isotropic
subbundle of A⊕ A⋆ under the symmetric pairing (9), corresponds
to the Dirac structure D = {(X +Ω♯α, α)|∀X ∈ I , α ∈ I⊥}, where
I⊥ is the co-normal bundle of I in A⋆.
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Lemma
..

......

For given a Dirac structure D ⊂ A⊕ A⋆ and a subbundle I ⊂ D
then there exists the bundle map Ω♯ restricted to I⊥ which is
equivalent to a bivector field on the quotient bundle A/I .

.
Corollary
..

......

Two characteristic pairs (I1,Ω1), (I2,Ω2) are equivalent iff

I1 = I2 = I and Ω♯
1(α)− Ω♯

2(α) ∈ I , ∀α ∈ I⊥.
This leads to the equivalence of the equivalent classes with the set
of generalized Dirac structures of a given Lie bialgebroid.

The characteristic pair is merely associated to the existence of a
maximally isotropic subbundle of the Lie bialgebroid with respect
to the pairing (9) without the Lie algebra structure (10) restricted
to the subbundle is to be closed.
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Theorem
..

......

Let (A,A⋆) be a Lie bialgebroid and D a subbundle of A⊕ A⋆,
maximally isotropic under the pairing (9) and corresponding to the
characteristic pair (I ,Ω). Then, D is Dirac structure iff I is a Lie
subalgebroid and the Schouten bracket of A⋆ is closed on Γ∞(I⊥):

[α, β] = [α, β]A⋆+LA
Ω♯αβ−LA

Ω♯βα−dA(Ω(α, β)), ∀α, β ∈ Γ∞(I⊥)
(11)

where [., .] stands for the Schouten bracket of A.

.
Corollary
..

......

A subbundle D ⊂ TM ⊕ T ⋆M corresponding to the characteristic
pair (I ,Ω) is a generalized Dirac structure on M iff I is a Lie
subalgebroid and Ω defines a Poisson structure [Ω,Ω] = 0 on the
quotient space Ω♯(Γ∞(I⊥)/I .
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Lemma
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Let D be a generalized Dirac structure with the characteristic pair
(I ,Ω). Then, LA

Xα ∈ I⊥, ∀X ∈ I , α ∈ I⊥.

.
Theorem
..

......

Let (A,A⋆) be a Lie bialgebroid and consider also a generalized
Dirac structure represented by the equivalence class of
characteristic pair [(I ,Ω)]. Then all other representations satisfy
the conditions of the previous theorem.
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