Integrable Dirac Structures on Lie Algebroids

H. Arianpoor

Tafresh University Department of Mathematics

8th International Seminar on Geometry and Topology Dec. 16, 2015

Table of contents

2 Dirac Structures and Lie Algebroids

3 Dirac Structures on Lie Bialgebroids and Characteristic Pairs

Introduction

- The theory of Dirac structures on vector spaces and their extension to manifolds was first introduced as a generalization of symplectic and Poisson structures by Courant, Weinstein and Dorfman.
- A Dirac structure on a manifold *M* is a smooth subbundle of the Whitney sum bundle *TM* ⊕ *T***M*, satisfying maximally isotropic property under a symmetric bilinear form. The concept was generalized to similar subbundles defined on the Whitney sum of the form *A* ⊕ *A** where (*A*, *A**) is a Lie bialgebroid.
- Lie algebroids as a natural generalization of vector fields on a manifold has been used in the algebraic geometric framework by Pradines.
- From a geometrical point of view, Dirac structures are closely related to Lie algebroids and Lie bialgebroids.

Introduction

- The notion of integrability of Dirac structures was defined first by Courant and after that by Fernandez. It leads to a poisson algebra of functions on the manifold making it possible to construct the classical mechanics on manifolds.
- A generalized definition of Dirac structures on Lie algebroids concludes to the specification of integrable Dirac structures.
- The notion of the characteristic pair of a Lie algebroid yields specific conditions on the closedness of generalized Dirac structures.
- The equivalence class of characteristic pairs corresponds to a generalized Dirac structure for the Lie bialgebroid case.
- When the generalized Dirac structure is integrable, the set of characteristic pairs defines a closed Lie algebra structure on any maximally isotropic subbundle of the Lie bialgebroid.

Introduction

Dirac Structures and Lie Algebroids Dirac Structures on Lie Bialgebroids and Characteristic Pairs Reference

Overview of paper topic

In this paper we describe the integrability of Dirac structures on a given Lie bialgebroid by corresponding characteristic pairs. It is based on a closedness condition of the Courant bracket applied to sections of the Dirac structure. The characterization of integrable Dirac structures on a Lie algebroid can be done in terms of its subbundles and suitable tensors. This generalizes the concept of Dirac structures defined on the tangent bundle of a manifold.

Definition

A **Lie algebroid** on a smooth manifold M is a vector bundle $A \to M$ together with a bracket $[., .]_A : \Gamma^{\infty}(A) \to \Gamma^{\infty}(A)$ on the space of its smooth sections and a bundle homomorphism (the anchor) $\rho : \Gamma^{\infty}(A) \to \Gamma^{\infty}(M)$ from smooth sections of the bundle A into smooth sections of the bundle TM, equipped with the natural Lie algebra structure $\Gamma^{\infty}(M)$ such that the following condition holds:

$$\rho([X, Y]_A) = [\rho(X), \rho(Y)] \tag{1}$$

and the Lie algebroid bracket satisfies the Leibniz rule for the module of sections over $C^{\infty}(M)$:

$$[X, fY]_{A} = f[X, Y]_{A} + (\rho(X)f)Y.$$
 (2)

for all $X, Y \in \Gamma^{\infty}(A)$ and $f \in C^{\infty}(M)$.

Let A^* be the dual bundle of A (of rank k) over the manifold Mand denote by $\bigwedge^p A$ the p-th external power of the bundle A as a vector bundle whose fibres are vector spaces of p-multilinear skew-symmetric forms on the dual space A^* . Similarly, it will be denoted by $\bigwedge^p A^*$ the p-th external power of the dual bundle A^* .

Denote by $\mathcal{A}^{p}(A)$ the space of smooth sections of the bundle $\bigwedge^{p} A$ and by $\Omega^{p}(A)$ the space of smooth sections of the dual bundle $\bigwedge^{p} A^{*}$. The direct sums $\mathcal{A}(A) = \bigoplus_{p \in \mathbb{Z}} \mathcal{A}^{p}(A)$ and $\Omega(A) = \bigoplus_{p \in \mathbb{Z}} \Omega^{p}(A)$, are taken for all integers p which satisfy $0 \le p \le k$, for p = 0, $\mathcal{A}^{0}(A)$ and $\Omega^{0}(A)$ both coincide with the space $C^{\infty}(M)$.

Operations such as the interior product, the exterior product and pairing can be defined in the \mathbb{Z} -graded vector spaces $\mathcal{A}(A)$ and $\Omega(A)$ as extention of these notions in $\bigwedge A$ and $\bigwedge A^*$.

Differential of Lie algebroid

The \mathbb{Z} -garded space $\Omega(A)$ is equipped with the natural differential $d_A : \Omega^p(A) \to \Omega^{p+1}(A)$ defined on any $\omega \in \Omega^p(A)$ by

$$(d_{A}\omega)(X_{1},...,X_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} \rho(X_{i})\omega(X_{1},...,\check{X}_{i},...,X_{p+1}) + \sum_{1 \le i < j \le p+1} (-1)^{i+j} \omega([X_{i},X_{j}]_{A},X_{1},...,\check{X}_{i},...,\check{X}_{j},...,X_{p+1})$$
(3)

where \check{X}_i means omission of the argument. For $f \in C^{\infty}(M)$ we have $\langle d_A f, X \rangle = \rho(X)f, \ \forall X \in \Gamma^{\infty}(A)$.

The differential d_A for Lie algebroid A can be related to the de Rham differential of the manifold M as $d_A = \rho^* \circ d$, using by ρ^* the transpose of the anchor ρ .

Lie derivative on Lie algebroid

The Lie derivative \mathcal{L}_X^A with respect to each smooth section $X \in \Gamma^{\infty}(A)$ as a graded endomorphism of degree 0 of the graded algebra $\Omega(A)$, can be defined by generalizing Cartan's formula

$$\mathcal{L}_X^A = i_X \circ d_A + d_A \circ i_X \tag{4}$$

where the interior product i_X is a derivation of degree -1 of the algebra $\Omega(A)$, as the (q-1)-multilinear form on $\mathcal{A}^1(A) = \Gamma^{\infty}(A)$ defined by $i_X \omega(X_1, ..., X_{q-1}) = \omega(X, X_1, ..., X_{q-1})$, for all $X_1, ..., X_{q-1} \in \Gamma^{\infty}(A)$ and $\omega \in \Omega^q(A)$. For $f \in C^{\infty}(M)$ we see that $\mathcal{L}^A_X f = i_{\rho(X)} df$.

Corollary

For any $\alpha \in \Omega^1(A)$ we have $\langle Y, \mathcal{L}_X^A \alpha \rangle = \rho(X) \langle Y, \alpha \rangle - \alpha([X, Y]_A)$.

Lemma

Let A be a Lie algebroid over a smooth manifold M. Then, for any $X, Y \in \Gamma^{\infty}(A)$ and $f \in C^{\infty}(M)$, the Lie derivative has the following properties:

$$\mathcal{L}^A_X(d_A f) = d_A(\mathcal{L}^A_X f), \quad i_{[X,Y]_A} = [\mathcal{L}^A_X, i_Y]_A, \quad \mathcal{L}^A_{[X,Y]_A} = [\mathcal{L}^A_X, \mathcal{L}^A_Y]_A$$

Definition

Let V be a vector space and consider also its dual space V^{*} with respect to the dual inner product $\langle ., . \rangle$. Let a bilinear symmetric form $\langle ., . \rangle_+$ defined on $V \times V^*$ as $\langle (x, y), (x', y') \rangle_+ = \langle x, y' \rangle + \langle x', y \rangle$ for $x, x' \in V$ and $y, y' \in V^*$. A **Dirac structure** on V is a subspace $D \subset V \oplus V^*$ which is maximally isotropic under the pairing $\langle ., . \rangle_+$ such that $D^{\perp} = D$.

Example

Let $T: V \to V^*$ be a skew symmetric linear map. Then $graph(T) \subset V \oplus V^*$ is maximally isotropic under $\langle ., . \rangle_+$ for which $\langle Tx, x' \rangle + \langle Tx', x \rangle = 0$ so graph(T) is a Dirac structure on V.

On a vector space V, there is the natural projection $\pi: V \oplus V^* \to V$ that gives rise to the characterization equation $\pi(D)^\circ = D \cap V^*$ of Dirac structure D where for a vector space W, W° is the annihilator of W.

Theorem

A Dirac structure $D \subset V \oplus V^*$ induces a skew form on the subspace $\pi(D) \subset V$ with the kernel $D \cap V$. Consequently, the Dirac structure induces a skew bivector on the quotient space $V/D \cap V$.

Definition

A generalized Dirac structure on a smooth manifold M is a subbundle $D \subset TM \oplus T^*M$ which is maximally isotropic under the symmetric pairing $\langle (X, \alpha), (Y, \beta) \rangle_+ = i_Y \alpha + i_X \beta \rangle = \alpha(Y) + \beta(X)$ for $X, Y \in TM$ and $\alpha, \beta \in T^*M$.

To define a closed Dirac structure on M it is necessary to give a skew symmetric bracket [.,.] on $D \subset TM \oplus T^*M$ such that for any two sections $\sigma_1, \sigma_2 \in \Gamma^{\infty}(D)$ we have $[\sigma_1, \sigma_2] \in \Gamma^{\infty}(D)$.

Definition

A generalized Dirac structure on M is called **closed** if for any three sections $\sigma_i = (X_i, \alpha_i)$, i = 1, 2, 3 the following property holds:

$$\langle X_1, \mathcal{L}_{X_2}\alpha_3 \rangle + \langle X_3, \mathcal{L}_{X_1}\alpha_2 \rangle + \langle X_2, \mathcal{L}_{X_3}\alpha_1 \rangle = 0$$
(5)

A closed generalized Dirac structure $D \subset TM \oplus T^*M$ yields a Lie algebroid structure on it which is due to Courant.

Theorem (Courant)

A generalized Dirac structure D on the manifold M is closed iff it is a Lie algebroid with the anchor $\rho : D \to TM$ and the Lie algebra structure on the space of sections is defined as:

$$[(X_1, \alpha_1), (X_2, \alpha_2)] = ([X_1, X_2], \mathcal{L}_{X_1} \alpha_2 - \mathcal{L}_{X_2} \alpha_1 - \frac{1}{2} d \circ (i_{X_1} \alpha_2 - i_{X_2} \alpha_1)).$$
(6)

Example

Given a Poisson manifold (M, J), the Poisson tensor J defines a mapping: $\hat{J}: T^*M \to TM$, $\hat{J}(df)(dg) = J(df, dg) = \{f, g\}$. The subbundle D defined by the gragh of the mapping \hat{J} induces the generalized Dirac structure $D = \{(\hat{J}(\alpha), \alpha) | \alpha \in T^*M\}$ on M.

A Lie algebroid structure for the dual bundle A^* of a Lie algebroid A defines by a Lie algebra structure $[.,.]_{A^*}$ and an anchor $\rho^*: \Gamma^{\infty}(A^*) \to \Gamma^{\infty}(M)$ which satisfies the conditions (1) and (11). The differential d_{A^*} acts on the space of smooth sections of A^* .

Definition

A pair of Lie algebroids (A, A^*) is said to be a **Lie bialgebroid** if the differentials d_A and d_{A^*} are as derivations of Schouten bracket of A^* and for the commutator of the smooth sections of A:

> $d_{A}[\alpha_{1}, \alpha_{2}] = [d_{A}\alpha_{1}, \alpha_{2}] + [\alpha_{1}, d_{A}\alpha_{2}], \ \forall \alpha_{1}, \alpha_{2} \in \Gamma^{\infty}(A^{*})(7)$ $d_{A}^{*}[X_{1}, X_{2}] = [d_{A}^{*}X_{1}, X_{2}] + [X_{1}, d_{A}^{*}X_{2}], \ \forall X_{1}, X_{2} \in \Gamma^{\infty}(A) (8)$

Example

The trivial Lie algebroid structure of TM and T^*M with the null anchor, leads to that $TM \oplus T^*M$ is a Lie bialgebroid.

Definition

Let (A, A^*) be a Lie bialgebroid and consider the Whitney sum $B = A \oplus A^*$. A subbundle $D \subset A \oplus A^*$ is called a **generalized Dirac structure** on M if it is maximally isotropic with respect to the symmetric canonical form $\langle ., . \rangle_+ : B \times B \to B$, can be defined by the duality between the two bundles A and A^* as follows:

$$\langle (X_1, \alpha_1), (X_2, \alpha_2) \rangle_+ = \langle X_1, \alpha_2 \rangle + \langle X_2, \alpha_1 \rangle, \ \forall (X_1, \alpha_1), (X_2, \alpha_2) \in B$$
(9)

The Lie algebra structure on $\Gamma^{\infty}(D)$, the space of smooth sections of D needs to both of Lie algebroid structures on A and A^* .

Definition

Let (A, A^*) be a Lie bialgebroid. Ther exists a skew symmetric bilinear operation on the sections of $B = A \oplus A^*$ in the form:

$$\begin{split} & [(X_1, \alpha_1), (X_2, \alpha_2)]_B = ([X_1, X_2]_A + [X_1, X_2]_{\mathcal{L}^{A^*}}, [\alpha_1, \alpha_2]_A + [\alpha_1, \alpha_2]_{\mathcal{L}^A} \\ & (10) \\ & \text{where } [X_1, X_2]_{\mathcal{L}^{A^*}} = \mathcal{L}^{A^*}_{\alpha_1} X_2 - \mathcal{L}^{A^*}_{\alpha_2} X_1 - \frac{1}{2} d_{A^*} \circ (i_{X_1} \alpha_2 - i_{X_2} \alpha_1) \text{ and } \\ & [\alpha_1, \alpha_2]_{\mathcal{L}^A} = \mathcal{L}^A_{X_1} \alpha_2 - \mathcal{L}^A_{X_2} \alpha_1 - \frac{1}{2} d_A \circ (i_{X_1} \alpha_2 - i_{X_2} \alpha_1). \end{split}$$

Definition

The subbundle $D \subset B$ is said to be a generalized Dirac structure if the operation above induces a Lie algebra structure on $\Gamma^{\infty}(D)$.

Theorem

Let (A, A^*) be a Lie bialgebroid. Consider also the operation $[., .]_B$ and the anchor $\rho_B = \rho \oplus \rho^* : \Gamma^{\infty}(B) \to \Gamma^{\infty}(M)$ for $B = A \oplus A^*$. A subbundle $D \subset B$ is a generalized Dirac structure iff $(D, [., .]_D, \rho_D)$ is a Lie algebroid in which $[., .]_B$ and ρ_B restrict to the bundle D.

The characterization of Dirac structures can be done in terms of subbundles I of A and A-tensors Ω , generalizes Dirac structures on $TM \oplus T^*M$.

Definition

Let (A, A^*) be a Lie bialgebroid. The **characteristic pair** of the Dirac structure D is a pair (I, Ω) of a smooth subbundle $I \subset A$ and a bivector $\Omega \in \Gamma^{\infty}(\bigwedge^2 A)$ associated to a maximally isotropic subbundle of $A \oplus A^*$ under the symmetric pairing (9), corresponds to the Dirac structure $D = \{(X + \Omega^{\sharp}\alpha, \alpha) | \forall X \in I, \ \alpha \in I^{\perp}\}$, where I^{\perp} is the co-normal bundle of I in A^* .

Lemma

For given a Dirac structure $D \subset A \oplus A^*$ and a subbundle $I \subset D$ then there exists the bundle map Ω^{\sharp} restricted to I^{\perp} which is equivalent to a bivector field on the quotient bundle A/I.

Corollary

Two characteristic pairs (I_1, Ω_1) , (I_2, Ω_2) are equivalent iff $I_1 = I_2 = I$ and $\Omega_1^{\sharp}(\alpha) - \Omega_2^{\sharp}(\alpha) \in I$, $\forall \alpha \in I^{\perp}$. This leads to the equivalence of the equivalent classes with the set of generalized Dirac structures of a given Lie bialgebroid.

The characteristic pair is merely associated to the existence of a maximally isotropic subbundle of the Lie bialgebroid with respect to the pairing (9) without the Lie algebra structure (10) restricted to the subbundle is to be closed.

Theorem

Let (A, A^*) be a Lie bialgebroid and D a subbundle of $A \oplus A^*$, maximally isotropic under the pairing (9) and corresponding to the characteristic pair (I, Ω) . Then, D is Dirac structure iff I is a Lie subalgebroid and the Schouten bracket of A^* is closed on $\Gamma^{\infty}(I^{\perp})$:

$$[\alpha,\beta] = [\alpha,\beta]_{\mathcal{A}^{\star}} + \mathcal{L}^{\mathcal{A}}_{\Omega^{\sharp}\alpha}\beta - \mathcal{L}^{\mathcal{A}}_{\Omega^{\sharp}\beta}\alpha - d_{\mathcal{A}}(\Omega(\alpha,\beta)), \quad \forall \alpha,\beta \in \mathsf{\Gamma}^{\infty}(I^{\perp})$$
(11)

where [.,.] stands for the Schouten bracket of A.

Corollary

A subbundle $D \subset TM \oplus T^*M$ corresponding to the characteristic pair (I, Ω) is a generalized Dirac structure on M iff I is a Lie subalgebroid and Ω defines a Poisson structure $[\Omega, \Omega] = 0$ on the quotient space $\Omega^{\sharp}(\Gamma^{\infty}(I^{\perp})/I)$.

Lemma

Let D be a generalized Dirac structure with the characteristic pair (I, Ω) . Then, $\mathcal{L}_X^A \alpha \in I^{\perp}$, $\forall X \in I$, $\alpha \in I^{\perp}$.

Theorem

Let (A, A^*) be a Lie bialgebroid and consider also a generalized Dirac structure represented by the equivalence class of characteristic pair $[(I, \Omega)]$. Then all other representations satisfy the conditions of the previous theorem.

- T. J. Courant, *Dirac Manifolds*, Trans. Amer. Math. Soc, vol. 319, no. 2, (1990), 631-661.
- T. J. Courant and A. Weinstein, *Beyond Poisson Structures*, Seminaire Sud-Rhodanien de Geometrie VIII, (1988).
- M. Crainic and R. L. Fernandes, *Integrability of Lie Brackets*, Annals of Math, 157, (2003), 575-620.
- I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Science, Theory and Applications, John Wiely and sons, LTD., (1993).
- I. Dorfman, *Dirac Structures and Integrable Evolution Equations*, Phys. Lett., vol. **A 125**, (1987), 240-246.
- J. Pradines, *Theorie de Lie pour les groupodes differentiables. Relation entre proprietes locales et globales*, C.R. Acad. Sci. Paris ser, I Math., vol. **263**, (1966), 907-910,.

- J. Pradines, *Theorie de Lie pour les groupodes differentiables. Calcul differentiel dans la categorie des groupodes infinitesimaux*, C.R. Acad. Sci. Paris, vol. **A 264**, (1967), 245-248.
- K. C. H. Mackenzie, *Lie groupoids and Lie algebroids in differential geometry*, Lon. Math. Soc. Lecture notes series, vol. **124**, Cambridge Univ. Press, (1987).
- K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, Lon. Math. Soc. Lecture notes series, vol. 213, Cambridge Univ. Press, (2005).
- K. C. H. Mackenzie and P. Xu, *Lie bialgebroids and Poisson groupoids*, Duke Math. J., vol. **18**, (1994), 415-452.