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Abstract

In this paper we interpret the integrability of the Dirac structures
on some Hilbert C*-modules in terms of an automorphism group. This
is the group of orthogonal transformations on the Hilbert C*-module
of sections of a Hermitian vector bundle over an smooth manifold M.
Some topological properties of the group of integrable Dirac structures
are studied. In some special cases it is shown that the integrability
condition corresponds to the solutions of a partial differential equation.

This is explained as a necessary and sufficient condition.
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1 Introduction

The idea of a Poisson bracket on the algebra of smooth functions on a
smooth manifold M goes back to Dirac [4]. The underlying structure of
any Hamiltonian system is a Poisson algebra. Courant and Weinstein [2]
presented an approach to unify the geometry of Hamiltonian vector fields
and the Poisson brackets (unification of Poisson and symplectic geometry).
In both of these geometries, the Poisson algebra is C°°(M) and the bracket
is given by a specific bivector field on M [4].

As a generalization of Poisson and presymplectic structures, the theory
of Dirac structures on vector spaces and their extension to manifolds was
considered by Courant and Weinstein [1,2]. These are smooth subbundles
of the direct sum bundle TM & T*M of the tangent and cotangent bundles,

maximally isotropic under the pairing

w(Y) + p(X
< (X7w)7 (Y,,U,) >4=t %

on TM ®T*M.

Dorfman [5] developed the algebraic version of Dirac structures. The
generalization of Dirac structures on real and complex Hilbert spaces and

on Hermitian modules are considered in [7,8].

Our motivation in this paper has been the following consideration:



The integrability of Dirac structures on manifolds was introduced by
Courant [1]. It is important in that it leads to a Poisson algebra of func-
tions, making it possible to construct the classical mechanics on the manifold
[3,4,5].

The object of this paper is the interpretation of integrable Dirac struc-
tures on pre-Hilbert C*-modules in such a way that we can specify the
moduli space of the group of integrable Dirac structures on some Hilbert
C*-modules.. The paper is organized in the following manner.

First we give some preliminaries on the basic concepts of Dirac structures
on modules and on T'M; the tangent bundle of the smooth manifold M and
then introduce the notion of integrable Dirac structures on modules. After
that we show in details how a Dirac structure on T'M can be constructed
out of an orthogonal transformation of a Hilbert C*-module; the module of
sections of a Hermitian vector bundle on M. This enables us to define the
integrability of Dirac structures in terms of the orthogonal transformations
and go through their topological properties. A necessary and sufficient con-
dition for the integrability of a Dirac structure is obtained as a solution to

some certain partial differential equation.

2 Dirac Structures on pre-Hilbert C*-modules

The concepts in this section are based on the references [6,8].
Let A be a C*-algebra, H a right A-module. The action of an element
a € Aon H is denoted by z.a for x € H. H together with a sesquilinear
form <,>: H x H — A with the following properties
h<z,x>>0;VreH

ii)< z,x >= 0, implies = 0.



)< z,y >* =< y,z >;Vo,y € H.

)< z,y.a >=<x,y > a;Vr,y € H;Va € A.

is called a pre-Hilbert module. For x € H let || z ||g=:||< z,z >||*/%
If the normed space (H, || — ||) is complete, then H is called a Hilbert C*-
module.

In this paper all the Hilbert C*-modules have the property that for each

nonzero x € H, 2x # 0.

Example 2.1. Let M be a smooth compact n-manifold and 7 : E — M be
a Hermitian vector bundle over M. Let A be the C*-algebra of continuous
functions on M. Let H be the A-module of sections of this vector bundle.
Then H becomes a pre-Hilbert A-module. In particular when 7 : TM — M
is the tangent bundle, the Hermitian inner product enables us to identify
this bundle with its dual 7" M and I'(T'M); the .A-module of vector fields on
M is identified with its dual I'(T™ M ); the A-module of first order differential

forms on M.

Definition 2.2. Let H be a pre-Hilbert C*-module. Let 7: HxH — HxH
be the flip operator defined by 7(z,y) = (y,z) for z,y € H. A submodule
L C H x H is called a Dirac structure on H if L and 7(L) are ortho-

complementary.



3 Dirac Structures on Tangent Bundles

Definition 3.1. [2] Let M be a smooth n-manifold. A Dirac structure on
the tangent bundle T M is a maximally isotropic subbundle L of the Whitney
sum bundle TM & T* M under the pairing

< (X,0), (Vo) > = g (n(X) + (V)
for X, Y e I(TM) and w, p € T(T*M)

Remark 3.2. Let 7 : TM &T*M — T*M & TM be the flip strong bundle
isomorphism defined by 7(X,w) = (w, X) for X € I'(T'M) and w € I'(T*M).
Furthermore let X = (Xy,...,X,) and w = (w1, ...,wy,) be respectively the
local coordinate functions of X,w in a coordinate system on M. The iden-
tification between the tangent and cotangent bundles explained in example
2.1 shows that to each X € I'(T'M) there corresponds its dual wx € T'(T* M)
having the same coordinates as X. Also to each w € I'(T*M) there corre-

sponds an X, € I'(T'M) having the same coordinate functions as w.
With these conventions we have

Proposition 3.3. The subbundle L C TM & T*M 1is a Dirac structure on

TM if and only if L and 7(L) are ortho-complementary.

Proof. Suppose L is a Dirac structure on TM. For (X = (X;);,w = (w;);) €
Ln7(L), we have ((X1,..., Xpn), (W1, ..;wn)), (w1, ooy wn ), (X1,..., X)) € L
and since L is isotropic, this implies that for each i = 1,...,n, X; = w; = 0.
So LN 7(L) = 0. Also since L is maximally isotropic, L and 7(L) are
orthogonal and L & 7(L) =TM & T*M.

Conversely if L and 7(L) are ortho-complementary, then obviously L is

maximally isotropic with respect to the pairing <, > .



O

Remark 3.4. Let P;, P, be respectively the first and second projections on
TM @& T*M. Let L C TM @ T*M be a Dirac structure on TM. since L is
a Dirac structure, then for (X,w),(Y,3) € L,

< Pl(Xvw)7P2(Y75) >+ < PQ(X7W)7P1(K5) >=0

In particular this is true for the basis elements of L, so it implies P Py +

PPy =0,

Proposition 3.5. If L C TM &T*M is a Dirac structure on T M, then the

restriction of P + Py and Py — P to L are strong bundle isomorphisms.

Proof. For X € T'(T'M) and w € I'(T"M) with local coordinates X =
(Xi)i,w = (wi)iy © = 1,..,m, if (P + P2)(X,w) =0, X; = —w; for each
i=1,..,n. So (X,w) € LN7(L) =0, since L is a Dirac structure. Thus
P, + P, is injective. The same argument shows that P; — P, is injective.

Let us identify T'M with T* M via the Hermitian inner product. let i be
the trivial Hermitian vector bundle of rank n over M, A the C*-algebra of
continuous functions on M and H the Hilbert .A-module of sections of 7. For
each f = (f1,...,fn) € H,let X e T(TM) and w € T'(T*M) both have f as
their local coordinate functions. Since L and 7(L) are ortho-complementary,
there are (Y,3) € L and (Z,p) € 7(L) with local coordinates Y = (Y;);,
Z =(Z;)i, B = (Bi); and w = (w;);, such that

(X,w) = (Y, 8) & (Z,p)

Thus f, =Y+ Z; = 6 + i and Y; — pu; = B; — Z; for all i. So ((Y; —
pi)is (Vi —pi)i) = (Vi — pi)is (Bi — Zi)i) = (Ye, Bi)i — (i, Zi)i € LOT(L) = 0.
Then Y; = p;, 8; = Z; for all i. And so X = (f1,..., fn) = (P + P2)(Y, /),



means that P; + P, is surjective. In the same way we can see that P — Py

is surjective. ]

Remark 3.6. With the notations of the previous proposition, if Aut(T M)
be the group of strong bundle automorphisms of the bundle T'M, then A =
(P + P)(P, — P,)™! € Aut(TM) (after the identification of TM with
T*M. Also by the restriction of P;, P, on the sections, we can interpret

A € Aut(D(TM)).

Lemma 3.7. With the notations of the previous remark, A € Aut(T'(TM))

1s orthogonal.

Proof.
AA* = (P + P)(P — P) Y (P} — Py~ Y(P + P})

= (P1+ P) (P = P5)(Py = P2) " (P + P3)
= (PL+ R)(P{PL — Py Py — Ps Py + Py Po) ' (P + P5)
= (PL+ P)(P{ Py + P{ Py + Py P, + Py Po) (P} + Py)
= (P1+ Py)((P{ + B) (P + P2)) N (P + P3) =1

Where we have used the fact in remark 3.4 that PP, + Py P; = 0.
O

Proposition 3.8. With the notations of the remark 3.2, let B € Aut(I'(T'M))

be orthogonal, then
Lp ={((I+B)X,(I - Blwx); X e I'(T'M)}

1s a Dirac structure on T M.



Proof. Let (I + B)X,(I — B)wx),(({ + B)Y,(I — B)wy) € Lp. Then

from example 2.1 and remark 3.2, we have the following equations

<wy,BX >=< Bwyx,Y > <wx,BY >=< Bwy, X >

and also since B is orthogonal,
<wy,X >=< Bwy,BX > <wyx,Y >=< Bwx,BY >
These equations imply
<({I -B)wy,I+B)X >+((I —Bwx,I+B)Y >=0

and so Lpg is isotropic.
Now if (Z, ) € T(TM)@T(T*M) be such that LgU{(Z, )} is isotropic,
then for each ((I + B)X, (I — B)wx) € Lp, we have

0 =< ((I+ B)X, (I — Blwyx), (Z,a) >

=<o,(I+B)X>+<({-B)wx,Z>
=<a,X>+<a,BX>+<wx,Z>—-<DBwx,Z>
=< a,X>+<a,BX>—-<wz,BX >+ <wz, X >
=< at+wz, X >+<a—wz,BX >

And so < B(a+wgz),BX >+ < a—wz,BX >=0. Thus B(a+wz) =
wz — a. In the same way B(Z + Z,) = Z — Z,.

where Z, € I'(T'M),wz € I'(T*M) are respectively the corresponded
duals to o and Z as in remark 3.2.

So Z = 3(I+B)(Z+ Z,) and a = £(I — B)(a +wy). Thus (Z,a) € Lp
and Lpg is maximal.

O



Proposition 3.9. Any Dirac structure L C TM ® T*M on TM is of the
form Lp for some B € Aut(I'(T'M)).

Proof. We have seen that if L is a Dirac structure on T'M, then the re-
strictions of P; + P, P, — P, to L are isomorphisms and so A = (P, +
Py)(Py — Py)~! € Aut(TM) is orthogonal. Now to this A there corresponds
a B € Aut(I'(T'M)) which is orthogonal and so L is the Dirac structure Lp

corresponded to B.

4 The Topology of Integrable Dirac Structures

Definition 4.1. [1] Let L C TM &T*M be a Dirac structure on 7M. Then
L is said to be integrable if for each (X,w),(Y,u) € L, we have

(X, Y] {w,u}) € L
where {w, u} = X (dp) — Y (dw) + 3d(X () — Y (w)).

When L is a Dirac structure on T'M, in proposition 3.9 we have shown
that, L is of the form Lp for some orthogonal B € Aut(I'(TM)). We have

the following definition

Definition 4.2. For orthogonal B € Aut(I'(T'M)), the Dirac structure Lp is
integrable if for each pair ((I4+B)X, (I —B)wx), ((I+B)Y,(I—B)wy) € Lp,

we have
(I+B){(I—-Bwx,I—B)wy}=(I-DB)[(I+B)X,(I+ B)Y]

B € Aut(I'(T'M)) is called integrable automorphism if Lp is an integrable

Dirac structure.



By a straight forward calculation we can see

Lemma 4.3. The above two definitions for the integrability of Dirac struc-

tures are equivalent.

Corollary 4.4. For nonzero real number r, Ly, are integrable only if r =

+1.

Proof. Since for orthogonal B € Aut(I'(T'M)) the eigenvalues of B are only
+1, so £rl € Aut(I'(T'M)) for r # 1 are not integrable. O

Now let R be the field of real numbers, R? the Euclidean space with the
two coordinate functions z,y, R the R-ring of degree two polynomials in z,y

and M = I'(TR?) the R-module of vector fields on R2.

Proposition 4.5. Aut(M) is in one to one correspondence with GLa(R) x

RS,
Proof. If A = (aij)ij=1,2 € Aut(M) and a;; = a?j + alljx + a?jy, then detA
is invertible. On the other hand

detA = a¥ya3y — afya9, + ...

is invertible iff a(l)lag2 — a?zagl =1.

So the map
0: Aut(M) — GLy(R) x R®
defined by
0(aij)ij=1,2 = ((a?j)i,j:1,2,...a ...
is one to one and onto. O

10



With the notations of the previous proposition, a modification of the
definition of the Dirac structure L4 for A € Aut(M) where M = I'(TR?) is

as follows

Definition 4.6. If A € Aut(M), 6(A) = (Ap, A1), then
Ly, ={(X+A40X,X —AX); X € M}
is called a Dirac structure on M.

For simplicity we denote L, by La.
From the proposition 4.5 it follows that each A € Aut(M) can be con-
sidered as an element of GLy(R). With this convention:

The set of all integrable automorphisms with the norm defined by

1
| A Jloo= supyera{ll A(p) I + > || %:A(p) |I*}2
i=1,2

for each integrable A € Aut(M), is a topological group. This group is de-
noted by Ip(M).

Proposition 4.7. If A € Aut(M) is integrable, and if A # —I, then there

exists a curve connecting A to I.

Proof. For t € [0, 1], define

f:00,1] = Aut(M)

by
(-t +(1+1A
) = 1+t)+(1-tA
f is continuous and f(0) = I, f(1) = A.

11



Proposition 4.8. Ip(M) has the following properties,
i)Ip(M) is Hausdorff.
it)Ip(M) is not connected.
iii)Ip(M) is closed in O(2).
iw)Ip(M) is not open.

Proof. i,ii)A € Aut(M) is orthogonal, so Ip(M) C O(2) and so it is Haus-
dorff. From corollary 4.4, it follows that Ip(M) has two components, one
contains I and the other contains —1I.

iii) The derivative map is continuous, from the definition of the norm on
Ip(M), we see that Ip(M) is closed.

iv)—1I is integrable and is the isolated point of Ip(M), so Ip(M) is not

open.

Set 81:8% and 82:8%.

Proposition 4.9. A necessary and sufficient condition for A = (ayy)up=12 €
Aut(M) to be integrable is that for m,i,k = 1,2, A satisfies the following

differential equation

O (amp) =0k (ami )+ Z (a1;0(amp ) — 101 (ami))+ Z ajiOm(ajr)+ Z am;jai;0j(ay) = 0.
!

1=1,2 j=1,2 J=1,2
Proof. Set (I — A)dx; = a and (I — A)dzy = B. Then using the notations

of the Remark 3.2,

o= — Z ajidzvj + dl‘l
j=12

12



8=— Z aipdx; + dxp

1=1,2
So
Xo=— Z (ljiaj + 0;
7j=1,2
XB = — Z a10) + Ok
I=1,2

So A is integrable iff for i,k = 1,2,

(I + A){a, B} = (I — A)[Xa, X5
On the other hand

Xa(B) = /B(Xa) = Z QjkGj; — Qi — Qi + Oi
j=1,2

Xp(a) = a(Xp) = Y anay — ap; — ai + din
I=1.2

Also we can write

doo = — Z Z Or(aj;)dxeda;

t=1,2j=1,2

dﬂ = — Z Z 8t(alk)da:tdxl

t=1,21=1,2
So

Xo(dB) = dB(Xa) =

Z aj(alk)ajidibl — Z 8t((1jk)ajid$t - Z 0;(ay)dxy + Z Or(aik)dxe
3,01=1,2

t,j=1,2 1=1,2 t=1,2

13



in the same way

Xs(da) = da(Xp)

Z 8l(ajk)alkdxj — Z E?t CLlZ alkda:t Z 8k CL]Z dl’j + Z E?k atl da:t

§l=1,2 t1=1,2 j=1,2 t=1,2
So

0,6} = XaldB) ~ Xp(da) + 3d(Xa(8) ~ Xp(a)

Y o5(aw)agzi — D Ojlan)ajrdzy) — > (D dilar)aji

=12 j=1,2 J=1,2 1=1,2 j=1,2
= > alagi)ajeda) — Y (Dilaw) — Ok (ay)day) f
j=12 =12

On the other hand

Xa(Xp) = > a;ii(aw)or — Y 0i(au)

1,j=1,2 1=1,2

Xp(Xa) = Z a0y (aj;)0 Z I (aj;)0

1,j=1,2 j=12
So
[Xa, Xp] = Xa(X3) — Xp(Xa)
= > (a50;(an) —ajpdi(a))o) = Y (9i(am) — (@) 1
l,j=1,2 1=1,2

Now if we multiply both sides of the equation T by (I + A) and the

equation { by (I — A), and then setting them equal to each other we obtain

14



the following differential equation as the necessary and sufficient condition

for the integrability of A

ai(amk)_ak(ami)+z(alzal(amk) 1501 (Ami) +Z ajiOm(ajr)+ Z ;a0 (k)

1=1,2 Jj=12 l,j=1,2

g

Remark 4.10. In the case of the n-dimensional space R", we obtain the

following differential equation for m,i,k =1,2,....,n

ai(amk)_ak(ami)+z(alzal(amk) 1501 (Ami) +Z ajiOm(ajr)+ Z ;a1 05 (k)

1=1,2 j=12 1,j=1,2
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