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Abstract

In this paper we interpret the integrability of the Dirac structures

on some Hilbert C*-modules in terms of an automorphism group. This

is the group of orthogonal transformations on the Hilbert C*-module

of sections of a Hermitian vector bundle over an smooth manifold M .

Some topological properties of the group of integrable Dirac structures

are studied. In some special cases it is shown that the integrability

condition corresponds to the solutions of a partial differential equation.

This is explained as a necessary and sufficient condition.
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1 Introduction

The idea of a Poisson bracket on the algebra of smooth functions on a

smooth manifold M goes back to Dirac [4]. The underlying structure of

any Hamiltonian system is a Poisson algebra. Courant and Weinstein [2]

presented an approach to unify the geometry of Hamiltonian vector fields

and the Poisson brackets (unification of Poisson and symplectic geometry).

In both of these geometries, the Poisson algebra is C∞(M) and the bracket

is given by a specific bivector field on M [4].

As a generalization of Poisson and presymplectic structures, the theory

of Dirac structures on vector spaces and their extension to manifolds was

considered by Courant and Weinstein [1,2]. These are smooth subbundles

of the direct sum bundle TM ⊕T ∗M of the tangent and cotangent bundles,

maximally isotropic under the pairing

< (X,ω), (Y, µ) >+=:
ω(Y ) + µ(X)

2

on TM ⊕ T ∗M .

Dorfman [5] developed the algebraic version of Dirac structures. The

generalization of Dirac structures on real and complex Hilbert spaces and

on Hermitian modules are considered in [7,8].

Our motivation in this paper has been the following consideration:
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The integrability of Dirac structures on manifolds was introduced by

Courant [1]. It is important in that it leads to a Poisson algebra of func-

tions, making it possible to construct the classical mechanics on the manifold

[3,4,5].

The object of this paper is the interpretation of integrable Dirac struc-

tures on pre-Hilbert C*-modules in such a way that we can specify the

moduli space of the group of integrable Dirac structures on some Hilbert

C*-modules.. The paper is organized in the following manner.

First we give some preliminaries on the basic concepts of Dirac structures

on modules and on TM ; the tangent bundle of the smooth manifold M and

then introduce the notion of integrable Dirac structures on modules. After

that we show in details how a Dirac structure on TM can be constructed

out of an orthogonal transformation of a Hilbert C*-module; the module of

sections of a Hermitian vector bundle on M . This enables us to define the

integrability of Dirac structures in terms of the orthogonal transformations

and go through their topological properties. A necessary and sufficient con-

dition for the integrability of a Dirac structure is obtained as a solution to

some certain partial differential equation.

2 Dirac Structures on pre-Hilbert C*-modules

The concepts in this section are based on the references [6,8].

Let A be a C*-algebra, H a right A-module. The action of an element

a ∈ A on H is denoted by x.a for x ∈ H. H together with a sesquilinear

form <,>: H ×H → A with the following properties

i)< x, x >≥ 0;∀x ∈ H

ii)< x, x >= 0, implies x = 0.
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iii)< x, y >∗ =< y, x >;∀x, y ∈ H.

iv)< x, y.a >=< x, y > a;∀x, y ∈ H;∀a ∈ A.

is called a pre-Hilbert module. For x ∈ H let ‖ x ‖H=:‖< x, x >‖1/2.

If the normed space (H, ‖ − ‖) is complete, then H is called a Hilbert C*-

module.

In this paper all the Hilbert C*-modules have the property that for each

nonzero x ∈ H, 2x 6= 0.

Example 2.1. Let M be a smooth compact n-manifold and π : E → M be

a Hermitian vector bundle over M . Let A be the C*-algebra of continuous

functions on M . Let H be the A-module of sections of this vector bundle.

Then H becomes a pre-Hilbert A-module. In particular when π : TM → M

is the tangent bundle, the Hermitian inner product enables us to identify

this bundle with its dual T ∗M and Γ(TM); the A-module of vector fields on

M is identified with its dual Γ(T ∗M); the A-module of first order differential

forms on M .

Definition 2.2. Let H be a pre-Hilbert C*-module. Let τ : H×H → H×H

be the flip operator defined by τ(x, y) = (y, x) for x, y ∈ H. A submodule

L ⊂ H × H is called a Dirac structure on H if L and τ(L) are ortho-

complementary.
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3 Dirac Structures on Tangent Bundles

Definition 3.1. [2] Let M be a smooth n-manifold. A Dirac structure on

the tangent bundle TM is a maximally isotropic subbundle L of the Whitney

sum bundle TM ⊕ T ∗M under the pairing

< (X,ω), (Y, µ) >+=
1

2
(µ(X) + ω(Y ))

for X,Y ∈ Γ(TM) and ω, µ ∈ Γ(T ∗M)

Remark 3.2. Let τ : TM ⊕ T ∗M → T ∗M ⊕ TM be the flip strong bundle

isomorphism defined by τ(X,ω) = (ω,X) for X ∈ Γ(TM) and ω ∈ Γ(T ∗M).

Furthermore let X = (X1, ...,Xn) and ω = (ω1, ..., ωn) be respectively the

local coordinate functions of X,ω in a coordinate system on M . The iden-

tification between the tangent and cotangent bundles explained in example

2.1 shows that to each X ∈ Γ(TM) there corresponds its dual ωX ∈ Γ(T ∗M)

having the same coordinates as X. Also to each ω ∈ Γ(T ∗M) there corre-

sponds an Xω ∈ Γ(TM) having the same coordinate functions as ω.

With these conventions we have

Proposition 3.3. The subbundle L ⊂ TM ⊕ T ∗M is a Dirac structure on

TM if and only if L and τ(L) are ortho-complementary.

Proof. Suppose L is a Dirac structure on TM . For (X = (Xi)i, ω = (ωi)i) ∈

L ∩ τ(L), we have ((X1, ...,Xn), (ω1, ..., ωn)), ((ω1, ..., ωn), (X1, ...,Xn)) ∈ L

and since L is isotropic, this implies that for each i = 1, ..., n, Xi = ωi = 0.

So L ∩ τ(L) = 0. Also since L is maximally isotropic, L and τ(L) are

orthogonal and L⊕ τ(L) = TM ⊕ T ∗M .

Conversely if L and τ(L) are ortho-complementary, then obviously L is

maximally isotropic with respect to the pairing <,>+.
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Remark 3.4. Let P1, P2 be respectively the first and second projections on

TM ⊕ T ∗M . Let L ⊂ TM ⊕ T ∗M be a Dirac structure on TM . since L is

a Dirac structure, then for (X,ω), (Y, β) ∈ L,

< P1(X,ω), P2(Y, β) > + < P2(X,ω), P1(Y, β) >= 0

In particular this is true for the basis elements of L, so it implies P1P
∗
2 +

P2P
∗
1 = 0.

Proposition 3.5. If L ⊂ TM ⊕T ∗M is a Dirac structure on TM , then the

restriction of P1 + P2 and P1 − P2 to L are strong bundle isomorphisms.

Proof. For X ∈ Γ(TM) and ω ∈ Γ(T ∗M) with local coordinates X =

(Xi)i, ω = (ωi)i, i = 1, ..., n, if (P1 + P2)(X,ω) = 0, Xi = −ωi for each

i = 1, ..., n. So (X,ω) ∈ L ∩ τ(L) = 0, since L is a Dirac structure. Thus

P1 + P2 is injective. The same argument shows that P1 − P2 is injective.

Let us identify TM with T ∗M via the Hermitian inner product. let η be

the trivial Hermitian vector bundle of rank n over M , A the C*-algebra of

continuous functions on M andH the Hilbert A-module of sections of η. For

each f = (f1, ..., fn) ∈ H, let X ∈ Γ(TM) and ω ∈ Γ(T ∗M) both have f as

their local coordinate functions. Since L and τ(L) are ortho-complementary,

there are (Y, β) ∈ L and (Z, µ) ∈ τ(L) with local coordinates Y = (Yi)i,

Z = (Zi)i, β = (βi)i and ω = (ωi)i, such that

(X,ω) = (Y, β)⊕ (Z, µ)

Thus fi = Yi + Zi = βi + µi and Yi − µi = βi − Zi for all i. So ((Yi −

µi)i, (Yi−µi)i) = ((Yi−µi)i, (βi−Zi)i) = (Yi, βi)i− (µi, Zi)i ∈ L∩ τ(L) = 0.

Then Yi = µi, βi = Zi for all i. And so X = (f1, ..., fn) = (P1 + P2)(Y, β),
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means that P1 + P2 is surjective. In the same way we can see that P1 − P2

is surjective.

Remark 3.6. With the notations of the previous proposition, if Aut(TM)

be the group of strong bundle automorphisms of the bundle TM , then A =

(P1 + P2)(P1 − P2)
−1 ∈ Aut(TM) (after the identification of TM with

T ∗M . Also by the restriction of P1, P2 on the sections, we can interpret

A ∈ Aut(Γ(TM)).

Lemma 3.7. With the notations of the previous remark, A ∈ Aut(Γ(TM))

is orthogonal.

Proof.

AA∗ = (P1 + P2)(P1 − P2)
−1(P ∗

1 − P ∗
2 )

−1(P ∗
1 + P ∗

2 )

= (P1 + P2)((P
∗
1 − P ∗

2 )(P1 − P2))
−1(P ∗

1 + P ∗
2 )

= (P1 + P2)(P
∗
1 P1 − P ∗

1 P2 − P ∗
2 P1 + P ∗

2P2)
−1(P ∗

1 + P ∗
2 )

= (P1 + P2)(P
∗
1 P1 + P ∗

1 P2 + P ∗
2 P1 + P ∗

2P2)
−1(P ∗

1 + P ∗
2 )

= (P1 + P2)((P
∗
1 + P ∗

2 )(P1 + P2))
−1(P ∗

1 + P ∗
2 ) = I

Where we have used the fact in remark 3.4 that P ∗
1P2 + P ∗

2P1 = 0.

Proposition 3.8. With the notations of the remark 3.2, let B ∈ Aut(Γ(TM))

be orthogonal, then

LB = {((I +B)X, (I −B)ωX);X ∈ Γ(TM)}

is a Dirac structure on TM .
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Proof. Let ((I +B)X, (I −B)ωX), ((I +B)Y, (I −B)ωY ) ∈ LB . Then

from example 2.1 and remark 3.2, we have the following equations

< ωY , BX >=< BωX , Y >,< ωX , BY >=< BωY ,X >

and also since B is orthogonal,

< ωY ,X >=< BωY , BX >,< ωX , Y >=< BωX , BY >

These equations imply

< (I −B)ωY , (I +B)X > +((I −B)ωX , (I +B)Y >= 0

and so LB is isotropic.

Now if (Z,α) ∈ Γ(TM)⊕Γ(T ∗M) be such that LB∪{(Z,α)} is isotropic,

then for each ((I +B)X, (I −B)ωX) ∈ LB, we have

0 =< ((I +B)X, (I −B)ωX), (Z,α) >+

=< α, (I +B)X > + < (I −B)ωX , Z >

=< α,X > + < α,BX > + < ωX , Z > − < BωX , Z >

=< α,X > + < α,BX > − < ωZ , BX > + < ωZ ,X >

=< α+ ωZ ,X > + < α− ωZ , BX >

And so < B(α + ωZ), BX > + < α − ωZ , BX >= 0. Thus B(α + ωZ) =

ωZ − α. In the same way B(Z + Zα) = Z − Zα.

where Zα ∈ Γ(TM), ωZ ∈ Γ(T ∗M) are respectively the corresponded

duals to α and Z as in remark 3.2.

So Z = 1

2
(I +B)(Z +Zα) and α = 1

2
(I −B)(α+ωZ). Thus (Z,α) ∈ LB

and LB is maximal.
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Proposition 3.9. Any Dirac structure L ⊂ TM ⊕ T ∗M on TM is of the

form LB for some B ∈ Aut(Γ(TM)).

Proof. We have seen that if L is a Dirac structure on TM , then the re-

strictions of P1 + P2, P1 − P2 to L are isomorphisms and so A = (P1 +

P2)(P1 −P2)
−1 ∈ Aut(TM) is orthogonal. Now to this A there corresponds

a B ∈ Aut(Γ(TM)) which is orthogonal and so L is the Dirac structure LB

corresponded to B.

4 The Topology of Integrable Dirac Structures

Definition 4.1. [1] Let L ⊂ TM⊕T ∗M be a Dirac structure on TM . Then

L is said to be integrable if for each (X,ω), (Y, µ) ∈ L, we have

([X,Y ], {ω, µ}) ∈ L

where {ω, µ} = X(dµ) − Y (dω) + 1

2
d(X(µ) − Y (ω)).

When L is a Dirac structure on TM , in proposition 3.9 we have shown

that, L is of the form LB for some orthogonal B ∈ Aut(Γ(TM)). We have

the following definition

Definition 4.2. For orthogonal B ∈ Aut(Γ(TM)), the Dirac structure LB is

integrable if for each pair ((I+B)X, (I−B)ωX), ((I+B)Y, (I−B)ωY ) ∈ LB ,

we have

(I +B){(I −B)ωX , (I −B)ωY } = (I −B)[(I +B)X, (I +B)Y ]

B ∈ Aut(Γ(TM)) is called integrable automorphism if LB is an integrable

Dirac structure.
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By a straight forward calculation we can see

Lemma 4.3. The above two definitions for the integrability of Dirac struc-

tures are equivalent.

Corollary 4.4. For nonzero real number r, L±rI are integrable only if r =

±1.

Proof. Since for orthogonal B ∈ Aut(Γ(TM)) the eigenvalues of B are only

±1, so ±rI ∈ Aut(Γ(TM)) for r 6= 1 are not integrable.

Now let R be the field of real numbers, R2 the Euclidean space with the

two coordinate functions x, y, R the R-ring of degree two polynomials in x, y

and M = Γ(TR2) the R-module of vector fields on R
2.

Proposition 4.5. Aut(M) is in one to one correspondence with GL2(R)×

R
8.

Proof. If A = (aij)i,j=1,2 ∈ Aut(M) and aij = a0ij + a1ijx + a2ijy, then detA

is invertible. On the other hand

detA = a011a
0
22 − a012a

0
21 + ....

is invertible iff a011a
0
22 − a012a

0
21 = 1.

So the map

θ : Aut(M) → GL2(R)×R
8

defined by

θ(aij)i,j=1,2 = ((a0ij)i,j=1,2,..., ...)

is one to one and onto.
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With the notations of the previous proposition, a modification of the

definition of the Dirac structure LA for A ∈ Aut(M) where M = Γ(TR2) is

as follows

Definition 4.6. If A ∈ Aut(M), θ(A) = (A0, A1), then

LA0
= {(X +A0X,X −A0X);X ∈ M}

is called a Dirac structure on M .

For simplicity we denote LA0
by LA.

From the proposition 4.5 it follows that each A ∈ Aut(M) can be con-

sidered as an element of GL2(R). With this convention:

The set of all integrable automorphisms with the norm defined by

‖ A ‖∞= supp∈R2{‖ A(p) ‖2 +
∑

i=1,2

‖ ∂iA(p) ‖
2}

1

2

for each integrable A ∈ Aut(M), is a topological group. This group is de-

noted by ID(M).

Proposition 4.7. If A ∈ Aut(M) is integrable, and if A 6= −I, then there

exists a curve connecting A to I.

Proof. For t ∈ [0, 1], define

f : [0, 1] → Aut(M)

by

f(t) =
(1− t) + (1 + t)A

(1 + t) + (1− t)A

f is continuous and f(0) = I, f(1) = A.
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Proposition 4.8. ID(M) has the following properties,

i)ID(M) is Hausdorff.

ii)ID(M) is not connected.

iii)ID(M) is closed in O(2).

iv)ID(M) is not open.

Proof. i,ii)A ∈ Aut(M) is orthogonal, so ID(M) ⊂ O(2) and so it is Haus-

dorff. From corollary 4.4, it follows that ID(M) has two components, one

contains I and the other contains −I.

iii)The derivative map is continuous, from the definition of the norm on

ID(M), we see that ID(M) is closed.

iv)−I is integrable and is the isolated point of ID(M), so ID(M) is not

open.

Set ∂1 =
∂
∂x and ∂2 =

∂
∂y .

Proposition 4.9. A necessary and sufficient condition for A = (auv)u,v=1,2 ∈

Aut(M) to be integrable is that for m, i, k = 1, 2, A satisfies the following

differential equation

∂i(amk)−∂k(ami)+
∑

l=1,2

(ali∂l(amk)−alk∂l(ami))+
∑

j=1,2

aji∂m(ajk)+
∑

l,j=1,2

amjalj∂j(alk) = 0.

Proof. Set (I − A)dxi = α and (I − A)dxk = β. Then using the notations

of the Remark 3.2,

α = −
∑

j=1,2

ajidxj + dxi
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β = −
∑

l=1,2

alkdxl + dxk

So

Xα = −
∑

j=1,2

aji∂j + ∂i

Xβ = −
∑

l=1,2

alk∂l + ∂k

So A is integrable iff for i, k = 1, 2,

(I +A){α, β} = (I −A)[Xα,Xβ ]

On the other hand

Xα(β) = β(Xα) =
∑

j=1,2

ajkaji − aik − aki + δki

Xβ(α) = α(Xβ) =
∑

l=1,2

alialk − aki − aik + δik

Also we can write

dα = −
∑

t=1,2

∑

j=1,2

∂t(aji)dxtdxj

dβ = −
∑

t=1,2

∑

l=1,2

∂t(alk)dxtdxl

So

Xα(dβ) = dβ(Xα) =

∑

j,l=1,2

∂j(alk)ajidxl −
∑

t,j=1,2

∂t(ajk)ajidxt −
∑

l=1,2

∂i(alk)dxl +
∑

t=1,2

∂t(aik)dxt
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in the same way

Xβ(dα) = dα(Xβ)

∑

j,l=1,2

∂l(ajk)alkdxj −
∑

t,l=1,2

∂t(ali)alkdxt −
∑

j=1,2

∂k(aji)dxj +
∑

t=1,2

∂k(ati)dxt

So

{α, β} = Xα(dβ)−Xβ(dα) +
1

2
d(Xα(β)−Xβ(α))

=
∑

l=1,2

(
∑

j=1,2

∂j(alk)aji −
∑

j=1,2

∂j(ali)ajkdxl)−
∑

l=1,2

(
∑

j=1,2

∂l(ajk)aji

−
∑

j=1,2

∂l(aji)ajkdxl)−
∑

l=1,2

(∂i(alk)− ∂k(ali)dxl) †

On the other hand

Xα(Xβ) =
∑

l,j=1,2

aji∂j(alk)∂l −
∑

l=1,2

∂i(alk)∂l

Xβ(Xα) =
∑

l,j=1,2

alk∂l(aji)∂j −
∑

j=1,2

∂k(aji)∂j

So

[Xα,Xβ] = Xα(Xβ)−Xβ(Xα)

=
∑

l,j=1,2

(aji∂j(alk)−ajk∂j(ali))∂l)−
∑

l=1,2

(∂i(alk)−∂k(ali))∂l ‡

Now if we multiply both sides of the equation † by (I + A) and the

equation ‡ by (I −A), and then setting them equal to each other we obtain
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the following differential equation as the necessary and sufficient condition

for the integrability of A

∂i(amk)−∂k(ami)+
∑

l=1,2

(ali∂l(amk)−alk∂l(ami))+
∑

j=1,2

aji∂m(ajk)+
∑

l,j=1,2

amjalj∂j(alk) = 0.

Remark 4.10. In the case of the n-dimensional space R
n, we obtain the

following differential equation for m, i, k = 1, 2, ..., n

∂i(amk)−∂k(ami)+
∑

l=1,2

(ali∂l(amk)−alk∂l(ami))+
∑

j=1,2

aji∂m(ajk)+
∑

l,j=1,2

amjalj∂j(alk) = 0.
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