SPACE VECTOR MODULATION – An Introduction

== Tutorial at IECON2001==

Dorin O. Neacsu

Correspondence Address: Satcon Corporation, 161 First Street, Cambridge, MA 02142, **Email** neacsu@earthlink.net

I. INTRODUCTION

Space Vector Modulation became a standard for the switching power converters and important research effort has been dedicated to this topic. Tens of papers, research reports and patents were developed in the last ten years and the theory of Space Vector Modulation is already well-established. Diverse implementation methods were tried and some dedicated hardware pieces were developed based on this principle. The initial use of Space Vector Modulation at three-phase voltage-source inverters has been expanded by application to novel three-phase topologies as AC/DC Voltage Source Converter, AC/DC or DC/AC Current Source Converters, Resonant Three-Phase Converters, B4-inverter, Multilevel Converters, AC/AC Matrix Converters, and so on. This tutorial presents the base theory of SVM when applied to a 3-phase voltage source inverter.

II. REVIEW OF SPACE VECTOR THEORY

A. History

The roots of vectorial representation of three-phase systems are presented in the research contributions of Park [1] and Kron [2], but the decisive step on systematically using the Space Vectors was done by Kovacs and Racz [3]. They provided both mathematical treatment and a physical description and understanding of the drive transients even in the cases when machines are fed through electronic converters.

In early seventies, Space Vector theory was already widely used by industry and presented in numerous books. Stepina [4] and Serrano-Iribarnegaray [5] suggested that the correct designation for the analytical tool to analyzing electrical machines has to be “Space Phasor” instead of “Space Vector”. “Space Phasor” concept is nowadays mainly used for current and flux in analysis of electrical machines.

B. Theory

Any three-phase system (defined by \(a_x(t), a_y(t), a_z(t)\)) can be represented uniquely by a rotating vector \(\mathbf{a}_S\):

\[
a_S = \frac{2}{3} \left[a_x(t) + a_y(t) + a_z(t) \right]
\]

where \(a = e^{j \frac{2 \pi}{3}}\) and \(a^2 = e^{j \frac{4 \pi}{3}}\). Given a three-phase system, the vectorial representation is achieved by the following 3/2 transformation:

\[
\begin{bmatrix}
A_x \\
A_y \\
A_z
\end{bmatrix} = \frac{2}{3} \begin{bmatrix}
1 & -1 & -1 \\
\frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}} & -\frac{2}{\sqrt{3}} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{bmatrix} \begin{bmatrix}
a_x \\
a_y \\
a_z
\end{bmatrix}
\]

where \((A_x, A_y)\) are forming an orthogonal 2-phase system and \(a_S = A_x + j \cdot A_y\). A vector can be uniquely defined in the complex plane by these components.

III. VECTORIAL ANALYSIS OF THE THREE-PHASE INVERTER

A. Theory

The three-phase inverter presented in Fig.2 is herein considered. Fig.3 presents the appropriate output voltages without PWM (six-step).
Fig. 2 Three-phase voltage-source inverter

Fig. 3 Output voltage waveforms and state coding for the case without PWM

Each state of the output voltage system leads to a switching vector in the complex plane. It results 6 active switching vectors \(V_1 \ldots V_6 \) and 2 vectors corresponding to the zero states. The magnitude of the active vectors is \((2/3)V_{dc} \).

Fig. 4 Switching vectors corresponding to the unmodulated operation of the inverter

The vectorial analysis of this system is first developed for an inductive three-phase load. The phase current can be derived by the integral of the phase voltage equation:

\[
 v_s = L \cdot \frac{di_s}{dt}
\]

(4)

The variation slope of the phase current is doubled when the phase voltage gets doubled. The maximum value of the phase current is herein denoted with \(i_{M} \). During the time interval \([t_3, t_4]\), the output voltage vector is \(V_3 \). Choosing the time origin in \(t_3 \) (at \(t_3 = 0 \)), the load currents and voltages can be mathematically expressed from Figs. 3 and 5:

\[
 v_a = \frac{1}{3} V_d \quad v_b = \frac{1}{3} V_d \quad v_c = \frac{2}{3} V_d
\]

(5)

\[
 i_a(t) = 0.5 \cdot I_M + \frac{V_d}{3 \cdot L} \cdot t
\]

\[
 i_b(t) = -I_M + \frac{V_d}{3 \cdot L} \cdot t
\]

\[
 i_c(t) = 0.5 \cdot I_M - \frac{2 \cdot V_d}{3 \cdot L} \cdot t
\]

(6)

The Space Vectors associated to the current and voltage waveforms are given by:

\[
 v(t) = \frac{2}{3} \left[v_a(t) + a \cdot v_b(t) + a^2 \cdot v_c(t) \right]
\]

(7)

\[
 i(t) = \frac{2}{3} \left[i_a(t) + a \cdot i_b(t) + a^2 \cdot i_c(t) \right]
\]

(8)

where

\[
 a = -\frac{1}{2} + j \cdot \frac{\sqrt{3}}{2} \quad a^2 = -\frac{1}{2} - j \cdot \frac{\sqrt{3}}{2}
\]

(9)

This leads to:

\[
 v(t) = \frac{2}{3} \cdot V_d + j \cdot 0
\]

(10)

and

\[
 i(t) = \left[\frac{I_M}{2} + \frac{1}{3} \cdot \frac{V_d}{L} \cdot t \right] + j \cdot \left[\frac{\sqrt{3}}{2} \cdot I_M + \frac{\sqrt{3}}{2} \cdot \frac{V_d}{L} \cdot t \right]
\]

(11)

The maximum value of the current \(I_0 \) can be obtained from the current vector definition equation written for the time interval \([t_3, t_4]\) and taking into account the linear variation of the phase current \(i_a \) due to the inductive load:
The voltage Space Vector \(v(t) \) is obtained from the projection of eq.(10) on the \(\text{Re} \) and \(\text{Im} \) axes and from their composition. It can be concluded that the voltage Space Vector \(v(t) \) coincides with the switching vector that has generated it.

During the next time interval \([t_4, t_5]\), the voltage Space Vector will move continuously during the time interval \([t_3, t_4]\) starting from a position along the direction of \(V1 \) vector and arriving to a position along the \(V2 \) vector. In conclusion, applying the vector \(V3 \) on the load leads to a current Space Vector trajectory as presented in Fig.6a. The vector projection on the \(\text{Real} \) axis represents the value of the first phase current.

The same reasoning for all six intervals leads to the conclusion that the voltage Space Vector has a discrete movement in the complex plane between positions equally partitioning 60 degrees sectors. It equals the switching vector that was producing it. The current Space Vector is describing a hexagonal trajectory in the complex plane as presented by Fig.6b.

IV. WHAT IS PULSE-WIDTH MODULATION?

The control of electric power is performed using power converters. The converters transfer energy from a source in a switched operation mode that ensures high efficiency of the system.

\[
I_M = \frac{2}{3L} \cdot \frac{T}{6} \cdot V_d \quad (12)
\]

Decomposing the current Space Vector expression on the \(\text{Real} \) and \(\text{Imag} \) axes helps us to demonstrate that the current vector trajectory is a continuous function during each time interval for which the voltage is constant. Since the voltage Space Vector changes its position on discrete positions at each 60 degrees, the current Space Vector trajectory results close to hexagonal for large inductances. This is presented in Fig.7a. The effect of pulse width modulation is shown in Fig.7b.

information about the phase currents can be revealed from the vectorial analysis. Moreover, due to the 60 degrees symmetry of the trajectory it is enough to limit the vectorial analysis on a 60 degrees sector.

In the general case of a three-phase R-L load, the current Space Vector can be defined by analyzing each voltage switching vector effect. The voltage Space Vector is constant and the load is characterized by:

\[
V = i \cdot R + L \cdot \frac{d}{dt} i \quad \text{with solution} \quad \bar{i}(t) = \frac{1}{R} \cdot V \cdot C \cdot e^{\frac{-t}{\tau}} \quad (13)
\]

where \(C \) is a complex constant and \(\tau = \frac{R}{L} \) represents the time constant of the load. Supposing the initial value as being equal to \(i(0)=I \), the current space vector will be

\[
\bar{i} \left[\frac{\pi}{30} \right] = I \cdot e^{\frac{3\pi}{30}} \quad (15)
\]

The control of electric power is performed using power converters. The converters transfer energy from a source in a switched operation mode that ensures high efficiency of the system.
conversion. The algorithms that generates the switching functions are called **Pulse-Width Modulation** techniques.

In the AC/DC conversion case, it is obvious that the line inductances are acting as a LPF for the applied voltage. Considering an AC drive, the machine inductance is accounting for LPF-ing of the harmonics provided by the discontinuous power flow at switching. The flux linkage in the machine’s windings is approximately equal to the time integral of the impressed voltage if voltage drops across resistance and leakage inductance of the stator windings are neglected. The flux vector yields:

\[\lambda = \int V dt \] \hspace{1cm} (16)

The flux linkage \(\lambda \) is intended to be kept constant in usual applications. Since \(V \) occupies different discrete positions in the complex plane, its time integral leads to a polygon close to a circle. The torque ripple has a close relationship to the deviation from a circular locus of an ideal rotational flux linkage vector \(\lambda_0 \). The difference between \(\lambda_0 \) and \(\lambda \) produced by a PWM inverter causes the torque pulsations. The dependence of the torque pulsation on radial and angular components of the flux error has been analyzed or presented in [11-15] and it was stated that the torque pulsation is more affected by the angular error than the radial error. The angular errors can be reduced by distributing more zero-vector states on the locus of \(\lambda \) so that the rotating speed becomes smoother and angular error approaches zero. The radial errors can be reduced by establishing an optimal polygonal flux locus. In conclusion, the torque ripple results lower when a higher carrier frequency (more zero vector states) is employed even if this is splitting a polygonal flux locus with a reduced number of edges. The limitation of this tradeoff is the base for defining a PWM algorithm. Due to the complexity of the control and due to the Vector Control inference requirements, digital implementation is preferred.

Different PWM produce different effects on converter load. Performance indices are defined in respect with the modulation index \(m = \frac{V_s}{\frac{2}{3} V_{dc}} \) \hspace{1cm} (17)

Most used performance indices are:

- **Content in fundamental (z)** represents the ratio between the RMS value of the fundamental of the output phase voltage (\(V_{L1} \)) and the RMS value of the output phase voltage (\(V_i \)). It is used mostly in Europe.

- **Total Harmonic Distortion (THD)** coefficient:

\[THD = \sqrt{\frac{V_L^2 - V_{L1}^2}{V_{L1}^2}} \] \hspace{1cm} (6)

- **Harmonics of the load current** are given by:

\[I_{(n)} = \frac{V_{(n)}}{2 \cdot \pi \cdot n \cdot f \cdot L_L} \] \hspace{1cm} (7)

- **Percentage of the unwanted harmonics**: \[\delta = \frac{100}{I_{(1)}} \sum_{n=5}^{\infty} \frac{I_{(n)}}{I_{(1)}} \frac{K_1}{2 \cdot \pi \cdot L_L} \frac{100}{V_{(1)}} \sqrt{\sum_{n=5}^{\infty} \left(\frac{V_{(n)}}{n} \right)^2} = \text{const} \cdot HCF \]

- **Harmonic Current Factor (HCF)** – is mainly dedicated to motor drives where the load is strongly inductive and will filter out the voltage harmonics.

\[HCF(\%) = \frac{100}{V_{(1)}} \sum_{n=5}^{\infty} \left(\frac{V_{(n)}}{n} \right)^2 \] \hspace{1cm} (9)

\[DF = \frac{I_{\text{harms, rms}}}{I_{\text{harms,6-step}}} \] \hspace{1cm} (10)

This performance index is equivalent with HCF.

- **Current distortion factor**

\[DF = \sqrt{\frac{2}{100 V_1} \sum_{n=5}^{\infty} \left(\frac{V_n}{n} \right)^2} \] \hspace{1cm} (11)

- **Percentage of the unwanted harmonics**

\[\delta = \frac{100}{I_{(1)}} \sum_{n=5}^{\infty} \frac{I_{(n)}}{I_{(1)}} \frac{K_1}{2 \cdot \pi \cdot L_L} \frac{100}{V_{(1)}} \sqrt{\sum_{n=5}^{\infty} \left(\frac{V_{(n)}}{n} \right)^2} = \text{const} \cdot HCF \]

- **Current distortion factor**

\[DF = \sqrt{\frac{2}{100 V_1} \sum_{n=5}^{\infty} \left(\frac{V_n}{n} \right)^2} \] \hspace{1cm} (11)

V. VECTORIAL PWM

A. Theory

The three-phase inverter presented in Fig.2 is herein considered. Generally, the tip of the voltage Space Vector should follow a circular locus. This cannot be achieved by a switching power converter that is leading to discrete positions of the voltage Space Vector. Each desired position on the circular locus can be achieved by an average relationship.
between two neighboring active vectors. Zero state vectors are used to fill-up the gap to a constant sampling interval.

Observing the time equations, one can derive the maximum modulation index. It will correspond to the circular locus with the maximum radius.

The presence of the DC voltage (V_d) in eq. (13-15) allows to compensate for the ripple of the DC bus voltage [18]. This ripple can be caused by the unsufficient filtering of the input rectifier power stage. Measuring the DC voltage at each sampling or with a larger sampling period will appropriately compensate for the effect of this ripple in the output voltage. Eq. (10) will keep account of a variable length of the active vectors (2/3V_d). However, this method reduces the maximum available voltage at the inverter output due to minimum V_d voltage within ripple. Equivalent compensation would also result with good current control loops but it is preferable to eliminate all the nonlinearities and parameter variations before closing the loop.

Eqs. (13-14) also show the dependence on the sampling period T_s (please note the nomenclature difference between sampling interval/sampling frequency and switching interval/switching frequency). This allows using the same eqs. for frequency modulation by adjusting T_s [12, 16, 43]. It has been stated in the introduction that the presence of the zero-states can regulate the angular error and minimize the current/flux ripple. Several methods have been developed by using the sampling frequency as a degree of freedom in optimization after one or more criteria (low harmonics reduction, HCF reduction, s.o.), but all redefine T_s as:

$$T_s = \frac{1}{N \cdot f} \cdot (1 + \delta \cdot \cos(6 \cdot \alpha)) \tag{16}$$

with N, number of intervals over the fundamental period (f). Regular methods have $\delta=0$, while optimized ones require T_s shortened around 0 and 60 degrees but lengthened at 30 degrees. These ensure minimum angular errors, current distortion factor at low harmonics and minimum torque pulsations [11]. Random Space Vector Modulation represents a special of frequency modulation.

B. Definition of the switching reference function

Directly using the time allocated to states given for (t_a, t_b) is sometimes not convenient for digital implementation. The definition of the switching sequence would result to be implemented in software only. It is more advantageous to define a function called “Switching reference function” with the same meaning as the reference used in sine-triangle comparison based PWM methods. It represents the duty ratio of each inverter leg or the conduction time normalized to the sampling period for a given switch and it is a mathematical function with variation between 0 and 1, centered around 0.5.
It can be derived by algebraic operations between the time intervals allocated to active and homopolar states within the same sampling interval. The Reference function for the regular Space Vector is shown in Fig. 12. The difference between this function and a pure cosine reference is:

\[PW_{harm} = 0.500 \cdot \sin \alpha, \quad \alpha \in (0, 60) \]

\[-0.500 \cdot \sin \alpha, \quad \alpha \in (120, 180) \]

(17)

A 3rd harmonic is present in the function but it is not present in the output phase or line voltages. It only represents the average of the A-M voltage from Fig. 2.

\[v_{AB} = v_{AM} - v_{BM} \Rightarrow 3^{rd} \text{ harmonic vanishes} \]

(18)

Similar methods of injecting the third harmonic in the reference waveform have been considered at sine-triangle intersection based methods. Maximization of the fundamental content led to a third harmonic of \(\frac{1}{3}\) of cosine reference, while the minimization of the HCF led to need of a third harmonic of \(\frac{1}{6}\) of the fundamental. There are papers [25, 26, 27, 28, 29] that analyzes this equivalence between regular sampled sine-triangle methods and SVM. They conclude that both methods are analogous and that conventional digital PWM controllers can be used for SVM generation in some cases.

Eqs. (13-15) do not provide a guide for sharing \(t_0\) among the possible zero vector states. The initial SVM algorithm has taken advantage of this degree of freedom to reduce the number of switching processes by alternating the zero vector states. Moreover, the sharing has been considered as "half-half". The effect of considering different sharing ratio but the same original method of alternating zero vector states is shown by Figs. 13 and 14 for a low number (\(=24\)) of intervals over fundamental [22, 28]. At larger ratios, the differences will be smaller.

<table>
<thead>
<tr>
<th>Sector 1</th>
<th>0.60 degrees</th>
<th>Sector 4</th>
<th>180..240 degrees</th>
<th>Sector 2</th>
<th>60..20 degrees</th>
<th>Sector 5</th>
<th>240..300 degrees</th>
<th>Sector 3</th>
<th>120..180 degrees</th>
<th>Sector 6</th>
<th>300..360 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_a = \frac{3 \cdot T}{2 \cdot V_d} \left(v_x - \frac{1}{\sqrt{3}} \cdot v_y \right))</td>
<td>(t_a = \frac{3 \cdot T}{2 \cdot V_d} \left(v_x - \frac{1}{\sqrt{3}} \cdot v_y \right))</td>
<td>(t_a = \frac{3 \cdot T}{2 \cdot V_d} \left(-v_y + \frac{1}{\sqrt{3}} \cdot v_y \right))</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td>(t_b = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_y)</td>
<td></td>
</tr>
</tbody>
</table>

| \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) | \(t_a = \frac{3 \cdot T}{2 \cdot V_d} \cdot v_x \) |

Table I

\[\text{Fig. 13 Effect of different sharing of the zero-states interval in content of fundamental} \]

\[\text{Fig. 14 Effect of different sharing of the zero-states interval in HCF} \]

These Figs. also show that the injection of the implicit third harmonic in the “half-half” SVM algorithm is close but not optimal for neither maximizing the fundamental content of phase voltage nor for minimization of the HCF. Actually, the amount of the third harmonic injected by SVM is about 0.22 (in between 1/4 and 1/6). For high-performance systems this can be further improved by a different placement of the zero-states within the sampling interval.

C. Link to Vector Control

This Space Vector Modulation algorithm provides the calculation of the pulse widths based on the polar coordinates \((V_s, \alpha)\). This is not very convenient for the Vector Control methods (both cases: drives and active filtering). These eqs. are employed to redefine the eqs. for \((t_a, t_b)\). The time intervals allocated to the zero vectors remains

\[t_0 = T_S - t_a - t_b \]

(32)

The methods to be presented in the followings are named in different ways by different researchers. To simplify the
explanation, the names of methods used herein are chosen for this tutorial only.

A Continuous Reference Function

- Direct-Inverse SVM [8,9]
To reduce the number of the inverter switchings, it is necessary to distribute the switching sequence in such a way that the transition from one state to the next is performed by switching only one inverter leg at a time. This results in starting the sampling period with one zero state and ending at the other state. For instance, if the desired vector is in the first sector of Fig.10, the switching sequence has to be ...0237320... The only remaining degree of freedom consists in the way we are sharing t0 between the vectors \(V_0 \) and \(V_7 \). The two extreme situations are:

Method DIH - equal sharing of the zero vector intervals on each sampling interval \(t_0=t_7 \) [9,19,20,21]:

![Fig.15 Pulse generation with Method DIH](image_url)

Method DIO - use of only a zero vector interval within each sampling period (Ex: \(t_0=0, t_7=T_s-t_a-t_b \)):

![Fig.16 Pulse generation with Method DIO](image_url)

The time intervals allocated to the homopolar component can be shared in different ways between \(V_0 \) and \(V_7 \) and the way we are placing the active states within the sampling period influences the content in fundamental or the Total Harmonic Distortion coefficient. Equal sharing provides a good compromise between simplicity and HCF/z performance.

Method DIO can be used only at high sampling frequencies, otherwise important even harmonics are present in the output phase voltage since the waveform symmetries are not longer respected. On the other hand, if the sampling frequency is large enough, the spectral differences between the voltages carried out by **Method DIH** or **Method DIO** will be very reduced.

Both methods presented determine three switchings/sampling period.

- Simple Direct SVM
A simple way to synthesize the output voltage vector is to turn-on all the switches connected to the same DC link busbar at the beginning of the switching cycle and to turn off sequentially in order to split the zero vector interval between \(V_0 \) and \(V_7 \) (\(t_0=t_7 \))

Method SDH: This method is similar to usual sine-triangle comparison based PWM.

![Fig.17 Pulse generation with Method DIO](image_url)

Symmetrically Generated SVM
This modulation scheme is based on symmetrical sequence within each sampling period. It looks like “Direct-Inverse” methods but the direct-inverse sequence are inside the sampling period. Even if it looks unnecessarily complicated, this method presents the advantage of a direct implementation on the existing PWM IC working on the basis of center-aligned PWM.

![Fig.18 Pulse generation with Method SGS](image_url)

B. Discontinuous Reference Function [30-39] for achieving reduced switching loss

The previous studies over the regular-sampled PWM algorithms have demonstrated the advantages of discontinuous algorithms to reducing the inverter switching loss [30-34]. The same idea has been carried out using the Space Vector Modulation algorithm as support [35-41].
Any two neighboring vectors are different by a switching in an inverter leg only. This can be used to minimize the number of the switching processes by employing only one zero-vector on each sector. No switchings on an inverter leg within the respective sector results. It yields two possible state sequence for each generation of a desired vector:

Method DZ0: The null vector is always fixed as [0 0 0]

Method DZ1: The null vector is always fixed as [1 1 1]

Within these methods, three power switches are "on" for extended periods of time and this may create a problem in inverter bridges that use isolation circuits such as the bootstrap. That is why they are not used in industry. To obtain a symmetrical stress of the power devices, the degree of freedom consists in choosing a 60 degrees interval within 120 degrees. For instance, one can keep the first phase without any switching from -60 to 60 degrees (Vectors "110" and "100" in Sector 1; "100" and "101" in Sector 6), but only a 60 degrees interval is actually inside Sector 1 and/or Sector 2.

Switching loss is approximately proportional to the magnitude of the current being switched and it would be advantageous to avoid switching the inverter leg with the highest instantaneous current.

Method DD1: Null vector [1 1 1] is assigned for sectors 1,3,5 and null vector [0 0 0] is assigned for sectors 2,4,6. The no-switching interval occurs in the 60 degrees next after the peak of the phase voltage. Generally, the current is lagging the phase voltage and most probably the peak of the current fundamental sits in the next 60 degrees after the peak of voltage. This method reduces the switching loss.

Method DD2: The 60 degrees no-switching interval is chosen around the peak of the fundamental of voltage. This method is very useful to reduction of the switching losses in AC/DC converters where the power factor is desirable unity and the peak of current is nearby the peak of voltage.

Method DD3: No-switchings around the measured peak of the phase current. This means equally spreading the 60-degrees no-switching interval around the phase current. However, if the phase current and voltage out of phase is greater than 30 degrees, the 60-degrees no-switching region will overcame the vector sector. If for instance, the voltage vector is V2 and the current vector is at 50 degrees, equally partitioning the no-switching region for the first inverter leg around the current vector would lead to an area between 20 and 80 degrees. For $\alpha>60$, keeping the first phase on "1" is no longer possible since the Sector 2 is characterized by switchings on the first phase. We can look after no switchings in the other 2 phases but the other currents are lower and the merits of the method are compromised [40].

Methods DZ1, DZ2, DD1, DD2, DD3 can be implemented by using a direct-direct sequence:

\[| VA_1 - VA_2 - VZ | \]

or a direct-inverse sequence

\[| VA_1 - VA_2 - VZ | \]

when the number of switchings is reduced by half as demonstrated before.

Methods DZ1, DZ2, DD1, DD2, DD3 can be implemented by using a direct-direct sequence:

\[| VA_1 - VA_2 - VZ | \]

or a direct-inverse sequence

\[| VA_1 - VA_2 - VZ | \]

when the number of switchings is reduced by half as demonstrated before.

Method DD2

Method DD1

Fig.21 Pulse generation with Methods DD1 and DD2 for different modulation indices

Fig.22 Vectorial discussion around the DD3 Method

VII. COMPARISON BETWEEN DIFFERENT CHOICES

A. Understanding performance of discontinuous reference waveforms

Previous section has shown that the two active and zero states can be placed within the sampling period in different ways providing advantages in reduction of the number of switching processes or in moving the switchings at lower load current levels. At this point, someone can ask how much reduction of the switching loss can be achieved by discontinuous methods. Fig.22 answers this question by presenting the switching power with discontinuous PWM
method normalized to the switching power with continuous PWM algorithms versus load power angle. The results are based on a theoretical analysis considering the load current level at each switching and the number of the switching processes. The best case leads to 50% savings in switching loss [40-42].

If the results are so outstanding, why the discontinuous methods are not always used? Using discontinuous PWM methods can introduce oscillations (glitches) at the points when the sector is changed due to different time interval equations for each sector. This is much clear at low output frequencies and it increases the loss in the load and may introduce instabilities of the control system. More important, additional differences in current quality will be shown in the followings.

B. Comparison of switching behaviour

=The difference between the conduction loss among the SVM techniques is less than 3% of the total loss. Switching performance is shown by Table II.

C. Quality of the current waveforms

Choosing different state sequence over a given sampling interval preserves the same average value of phase voltages. However, different ripple levels could result in the current waveforms. This can be understand by inspecting the current trajectories in the complex plane shown along with definition of different SVM methods. Fig.24 shows current distortion factor comparative results for different SVM methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>No.switchings Within Ts</th>
<th>THDv</th>
<th>Dominant Harmonics</th>
<th>No. states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct-Inverse (DIIH)</td>
<td>3</td>
<td>Fs/2</td>
<td>Fs</td>
<td>4</td>
</tr>
<tr>
<td>Direct Inverse (DIO)</td>
<td>3</td>
<td>Fs/2</td>
<td>Fs</td>
<td>3</td>
</tr>
<tr>
<td>Simple Direct (SDH)</td>
<td>6</td>
<td>Fs</td>
<td>Fs</td>
<td>4</td>
</tr>
<tr>
<td>Symmetric Gen. (SGS)</td>
<td>6</td>
<td>least</td>
<td>Fs</td>
<td>7</td>
</tr>
<tr>
<td>Direct-direct/000 (DZ0)</td>
<td>4</td>
<td>Fs</td>
<td>Fs</td>
<td>3</td>
</tr>
<tr>
<td>Direct-direct/111 (DZ1)</td>
<td>4</td>
<td>Fs</td>
<td>Fs</td>
<td>3</td>
</tr>
<tr>
<td>Direct-direct/sect (DD1)</td>
<td>4/2</td>
<td>Fs</td>
<td>Fs</td>
<td>3</td>
</tr>
<tr>
<td>Direct-direct/peak (DD2)</td>
<td>4/2</td>
<td>Fs</td>
<td>Fs</td>
<td>3</td>
</tr>
<tr>
<td>Direct-direct/mes (DD3)</td>
<td>4/2</td>
<td>Fs</td>
<td>Fs</td>
<td>3</td>
</tr>
</tbody>
</table>

Table II

VIII. Conclusion

The theory of the Space Vector Modulation for a 3-phase inverter is presented by this tutorial. This theory has been further extended to other 3-phase converter systems and nowadays became a standard for industry.

REFERENCES

Dorin Neacsu, “A New Digital Controller for SVM Algorithm”, IEEE, IPEC, Nov. 4-5, 1993, pp. 256-259

J.A.Houldsworth, D.A.Grant, “The Use of Harmonic Distortion to Increase the Output Voltage of a Three-Phase PWM Inverter”, IEEE Trans. on IA, vol.1A-20, 1084, pp.1224-1228

IEEE Copyright 2001

IECON©01: The 27th Annual Conference of the IEEE Industrial Electronics Society

In 1995, he has been a Post-Doctoral Fellow at Universite du Quebec a Trois Rivieres, Canada. Between February 1997 and August 1998, he has been at Delphi-Energy and Engine Management Systems, Indianapolis, USA, working on advanced DSP control of electrical drives for propulsion systems. In August 1999, he joined International Rectifier, in El Segundo, CA, USA. Since January 2001, Dr. Neacsu has joined Satcon Corp., in Cambridge, MA, USA. Along with many papers or research notes published in journals or conference proceedings, Dr. Neacsu has co-written several university textbooks in Canada and Romania and a book on simulation-modelling of power converters in Romanian language. Dr. Neacsu has served as a Reviewer or Session Chairman for several IEEE conferences. His research areas are in static power converters, PWM algorithms, microprocessor control, modeling and simulation of power converters and emerging control technologies as fuzzy logic.

| Dorin O. Neacsu (M’95, SM’00) was born in Suceava, Romania, in 1964. He received the MS and PhD degrees in electrical engineering from the Technical University of Iasi, Iasi, Romania, in 1988 and 1994, respectively. He was with TAGCM-SUT Iasi, Romania, from 1988 to 1990. Since 1990, he has been with the faculty of the Department of Electronics, Technical University of Iasi. | 1592 | 0-7803-7108-9/01/$10.00 (C)2001 IEEE |

Dorin O. Neacsu (M’95, SM’00) was born in Suceava, Romania, in 1964. He received the MS and PhD degrees in electrical engineering from the Technical University of Iasi, Iasi, Romania, in 1988 and 1994, respectively. He was with TAGCM-SUT Iasi, Romania, from 1988 to 1990. Since 1990, he has been with the faculty of the Department of Electronics, Technical University of Iasi.