نام نویسندگان گزارش :

شماره گروه:

عنوان آزمایش:

نمره کسب شده	بارم نمرہ	عنوان	رديف
	٢	روجلدى	۱
	٢	فهرست	٢
	٣	چکیدہ	٣
	٣	مقدمه	۴
	١.	تئوری آزمایش	۵
	١.	کاربرد و هدف انجام آزمایش	۶
	۲۵	عملیات و نتایج آزمایشگاهی	۷
	١.	نتیجه گیری	٨
	۵	منابع و مراجع	٩
	١.	رعایت اصول نگارش	١٠
	١.	کیفیت نمودارها و جدول ها	۱۱
	١.	صحت محاسبات	١٢
	۱۰۰	(جمع کا

امضا	سهم دانشجو از تهیه گزارش	سهم دانشجو از انجام آزمایش	نام دانشجو

Sieve Analysis

Description of soil Sample No.

Mass of oven dry sample, W_____g

Location ____

Tested by _____ Date__

Sieve No,	Sieve opening (mm)	Mass of soil retained on each sieve, <i>W_n</i> (g)	Percent of mass retained on each sieve, R_n	Cumulative percent retained, ΣR_n	Percent finer, $100 - \sum R_n$
					×
2	attan in	0	а а		
					я 1
	5			9 10	
27 1915	314		4 	n.	1
		8		2	
			<i>.</i>	a - ²	La
		1	3	14 e g	
Pan	2 				

 \sum _____ = W_1

5

Mass loss during sieve analysis = $\frac{W - W_1}{W} \times 100 = \frac{W}{100} \%$ (OK if less than 2%)

157

MEASUREMENT OF MOISTURE CONTENT (ASTM D2216) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Drying time:
02216 test standard:

III. MEASUREMENTS AND CALCULATIONS

Container ID:		
Mass of container (M_c) :		
Mass of moist soil + container (M_l) :		
Mass of dry soil + container (M_2) :		
Mass of moisture (M_w) :		
Mass of dry soil (M_s) :		
Moisture content (w):		
Average moisture content:		

IV. EQUATION AND CALCULATION SPACE

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

GRAIN SIZE ANALYSIS – HYDROMETER MEASUREMENT (ASTM D422) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Hydrometer manufacturer/serial no	D.:		
Mixer manufacturer/serial no .:			
Scale type/serial no./precision:			
Duration of initial soaking period:			
Concentration of sodium hexameta	aphosphate solutio	n:	
Dry mass of soil used (M_d) :			
Specific gravity of soil solids:		Temperature:	
<i>K</i> :	<i>a</i> :		<i>b</i> :
Notes, observations, and deviation	s from ASTM D42	22 test standard:	

III. MEASUREMENTS AND CALCULATIONS

Clock Time (hh:mm:ss)	t (min)	R	L (cm)	D (mm)	P' (%)	P (%)

IV. EQUATION AND CALCULATION SPACE

L = 16.3 - 0.163R $D = K\sqrt{L/t}$

$$P' = \frac{(R-b)a}{M_d} \times 100\% \qquad P = P'(P_{-\#40})$$

LIQUID LIMIT (ASTM D4318) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Oven temperature:	Drying time:
Scale type/precision/serial no.:	
Notes, observations, and deviations from ASTM D	04318 test standard:

III. MEASUREMENTS AND CALCULATIONS

Trial Number	1	2	3
Container ID			
Mass of container (M_c)			
Mass of moist soil + container (M_1)			
Mass of dry soil + container (M_2)			
Mass of moisture (M_w)			
Mass of dry soil (M_s)			
Moisture Content (<i>w</i>)			
Number of Cranks			
Liquid Limit (<i>LL</i>)			
Corresponding Plastic Limit (PL)			
Plasticity Index (PI)			

IV. EQUATION AND CALCULATION SPACE

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

PI = LL - PL

PLASTIC LIMIT (ASTM D4318) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	
1	

II. TEST DETAILS

Oven temperature:	Drying time:
Scale type/precision/serial no.:	
Notes, observations, and deviations from ASTM D	V4318 test standard:

III. MEASUREMENTS AND CALCULATIONS

Trial Number	1	2	3
Container ID			
Mass of container (M_c)			
Mass of moist soil + container (M_I)			
Mass of dry soil + container (M_2)			
Mass of moisture (M_w)			
Mass of dry soil (M_s)			
Moisture Content (w)			
Average Plastic Limit (PL)			
Corresponding Liquid Limit (LL)			
Plasticity Index (PI)			

IV. EQUATION AND CALCULATION SPACE

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

PI = LL - PL

COMPACTION TEST (ASTM D698, D1557) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Compaction effort (standard or modified):	
Soil hydration period prior to compaction:	Max. particle size:
Compaction procedure (A, B, or C):	Mold diameter:
Mold height:	Mold volume (V_m) :
Notes, observations, and deviations from ASTM D698 ar	nd D1557 test standards:

III. MEASUREMENTS AND CALCULATIONS

Location Within Specimen	Тор	Middle	Bottom
Container ID			
Mass of container (M_c)			
Mass of moist soil + container (M_1)			
Mass of dry soil + container (M_2)			
Moisture Content (w)			
Average Water Content (w_{avg})			

Net Mass of Compacted Specimen (*M*):

Dry Unit Weight (γ_d):

IV. EQUATIONS AND CALCULATION SPACE

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

 $\gamma_d = \frac{Mg}{(1 + w_{avg})V_m}$

COMPACTION CURVE PLOT (ASTM D698, D1557)

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Specific Gravity of Soil Solids (G_s) :		
Notes, observations, and deviations from ASTM D698 and D1557 test standards:		

III. MEASUREMENTS AND CALCULATIONS

Standard (ASTM	Proctor D698)	Modified (ASTM	l Proctor [D1557)	ZAV C	Curve
W	Ya	w	Ya	w	Ya

IV. EQUATION AND CALCULATION SPACE

ZAV:
$$\gamma_d = \frac{G_s \gamma_w}{I + wG_s}$$

Dry Unit Weight, γ_d (

Moisture Content, *w* ()

SAND CONE TEST (ASTM D1556) FIELD DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Field compaction method:	Date material compacted:
Soil description:	

II. TEST DETAILS

Description of sand used in sand cone (particle shape, C_u , D_{100} , %-#60):

Description of calibration chamber (shape and dimensions):

Calibration chamber volume (V_I) :Max. particle size of compacted material:Notes, observations, and deviations from ASTM D1556 test standard:

III. MEASUREMENTS AND CALCULATIONS

Calibration	Measurement
Mass of filled device (M_6) :	Mass of filled device (M_{10}) :
Mass of device after filling base plate and funnel (M_7) :	Mass of device after filling base plate, funnel, and test hole (M_{11}) :
Mass of sand in the base plate and funnel (M_2) :	Mass of sand in the base plate, funnel, and test hole (M_1) :
Mass of refilled device (M_{δ}) :	Volume of test hole (<i>V</i>):
Mass of refilled device after filling base plate, funnel, and calibration chamber (M_9) :	Mass of moist material excavated from the test hole (M_3) :
Mass of sand in the calibration chamber (M_5) :	Dry mass of material excavated From the test hole (M_4) :
Total unit weight of the sand (γ_l) :	

Moisture content (<i>w</i>):	Dry unit weight (γ_d) :

IV. EQUATIONS AND CALCULATION SPACE

$$M_{2} = M_{6} - M_{7} \qquad M_{1} = M_{10} - M_{11} \qquad w = \frac{M_{3} - M_{4}}{M_{4}} \times 100\%$$
$$M_{5} = M_{8} - M_{9} - M_{2} \qquad V = \frac{(M_{1} - M_{2})g}{\gamma_{1}} \qquad \gamma_{d} = \frac{M_{4}g}{V}$$

 $\gamma_1 = \frac{M_5 g}{V_1}$

HYDRAULIC CONDUCTIVITY OF GRANULAR SOIL UNDER CONSTANT HEAD (ASTM D2434) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Max. particle size:	$P_{\pm \#10}$ or $P_{\pm 3/8 in}$ (state which):
Specimen diameter, D:	Specimen area, A:
Manometer port spacing, L_c :	Specimen length:
Dry mass of soil, <i>M</i> _s :	Volume of soil, <i>V</i> :
Specific gravity of soil solids, G_s :	Dry unit weight, γ_d :
Void ratio, e: Scale type/se	rial no./precision:
Saturation vacuum level:	Saturation vacuum duration:
Specimen preparation method:	
Notes, observations, and deviations from ASTM	D2434 test standard:

III. MEASUREMENTS AND CALCULATIONS

Test No.	Head Loss (∆h)	Hydraulic Gradient (<i>i</i>)	Flow Volume <i>(Q)</i>	Time (<i>t</i>)	Flow Rate (q)	Hydraulic Conductivity (k)

IV. EQUATION AND CALCULATION SPACE

 $A = \frac{\pi D^2}{4} \qquad q = \frac{Q}{t}$

$$i = \frac{\Delta h}{L_c} \qquad \qquad k = \frac{QL_c}{\Delta hAt}$$

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) MACHINE DEFLECTION MEASUREMENTS LABORATORY DATA SHEET

I. GENERAL INFORMATION

Test performed by:	Date tested:	
Lab partners/organization:		
Load frame type/serial no.:		
Load duration:	Blank material and thickness:	
Filter paper type:		
Porous stone type and thickness:		
Deformation indicator type and conversion factor <i>K</i> (if applicable):		
Notes, observations, and deviations f	rom ASTM D2435 test standard:	

II. MEASUREMENTS

Pressure (psf)	Deformation Reading ()

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) SPECIMEN PREPARATION MEASUREMENTS LABORATORY DATA SHEET

I. GENERAL INFORMATION

Specimen prepared by:	Date:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Load frame type/serial no.:	
Scale type/serial no./precision:	
Consolidation ring diameter:	Initial specimen height, H_o :
Consolidation ring mass:	Specimen volume, $V_{o:}$
Specific gravity of soil solids, G_s :	
Notes, observations, and deviations from ASTM I	02435 test standard:

III. MEASUREMENTS AND CALCULATIONS

_	Before Test	After Test
Mass of moist soil + ring		
Mass of moist soil	$M_{To} =$	$M_{Tf} =$
Mass of dry soil + ring		
Mass of dry soil	$M_d =$	$M_d =$
Mass of moisture		
Moisture content	$W_o =$	$w_f =$
Void ratio	$e_o =$	$e_f =$
Degree of saturation	$S_o =$	$S_f =$

IV. EQUATION AND CALCULATION SPACE

$$e_o = \frac{V_o - \frac{M_d}{G_s \rho_w}}{\frac{M_d}{G_s \rho_w}}$$

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) TIME-DEFORMATION MEASUREMENTS LABORATORY DATA SHEET

I. GENERAL INFORMATION

Test performed by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Load frame type/serial no.:		
Scale type/serial no./precision:		
Load no.:	Load increment, σ ':	
Filter paper type:		
Porous stone type and thickness:		
Machine deflection:		
Deformation indicator type and conversion factor <i>K</i> (if applicable):		
Notes, observations, and deviations from ASTM D2435 test standard:		

III. MEASUREMENTS AND CALCULATIONS

Date	Clock Time	Elapsed Time	Raw Deformation	Deflection-Corrected
(mm/dd/yy)	(hh:mm:ss)	(hh:mm:ss)	()	

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) TIME-DEFORMATION PLOTTING USING THE LOG TIME METHOD

I. GENERAL INFORMATION

Data plotted by:	Date:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Load no.:	Load, σ ':		
Initial specimen height, H_o :	Deflection units:		
Dial gauge conversion factor, <i>K</i> :			
Notes, observations, and deviations from ASTM D2435 test standard:			

III. MEASUREMENTS AND CALCULATIONS

σ ':	d_{100} :
t_2 :	d_2 :
t_l :	d_l :
Δd :	d_o :
d_{50} :	t_{50} :
H_{D50} :	C_{v} :

IV. EQUATIONS

 $t_1 = t_2/4$ $\Delta d = d_2 - d_1$ $d_0 = d_1 - \Delta d$ $d_{50} = (d_0 + d_{100})/2$

$$H_{D50} = \frac{H_o - d_{50}(K)}{2}$$
 or $H_{D50} = \frac{H_o - d_{50}}{2}$ $c_v = \frac{0.197(H_{D50})^2}{t_{50}}$

CALCULATION SPACE:

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) TIME-DEFORMATION PLOTTING USING THE ROOT TIME METHOD

I. GENERAL INFORMATION

Data plotted by:	Date:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Load no.:	Load, σ ':		
Initial specimen height, H_o :	Deflection units:		
Dial gauge conversion factor, K:			
Notes, observations, and deviations from ASTM D2435 test standard:			

III. MEASUREMENTS AND CALCULATIONS

σ ':	d_0 :
<i>X</i> :	1.15X:
d_{90} :	<i>t</i> ₉₀ :
d_{100} :	H_{D50} :
C_{v} :	

IV. EQUATIONS

$$d_{100} = d_0 + 1.11(d_{90} - d_o)$$
 $c_v = \frac{0.848(H_{D50})^2}{t_{90}}$

EXAMPLE:

CALCULATION SPACE:

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) CONSTRUCTION OF $e - \log \sigma$ CURVE

I. GENERAL INFORMATION

Plotted by:	Dates tested:		
Lab partners/organization:			
Client:	Project:		
Boring no.:	Recovery depth:		
Soil description:			

II. TEST DETAILS

nitial specimen height, H_o : Specimen diameter:		
Initial specimen volume, V _o :	Specific gravity of soil solids, G_s :	
Net dry mass of specimen, M_d :	Initial void ratio, e_o :	
Deflection units:	Dial gauge conversion factor, <i>K</i> :	
Height of solids, <i>H_s</i> :		
Notes, observations, and deviations from ASTM D2435 test standard:		

III. MEASUREMENTS AND CALCULATIONS

σ'	d_{100}	∆e	е

C_r :	
C_c :	
σ'_{max} :	

IV. EQUATIONS

$$e_o = \frac{V_o - \frac{M_d}{G_s \rho_w}}{\frac{M_d}{G_s \rho_w}} \qquad \qquad H_s = \frac{H_o}{1 + e_0} \qquad \qquad \Delta e = \frac{\Delta H}{H_s} = \frac{d_{100}(K)}{H_s} \text{ or } \Delta e = \frac{\Delta H}{H_s} = \frac{d_{100}}{H_s}$$

$$e = e_0 - \Delta e \qquad \qquad C = \frac{e_1 - e_2}{\log \sigma_2 - \log \sigma_1}$$

DIRECT SHEAR TEST (ASTM D3080) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:		
Lab partners/organization:			
Client: Project:			
Boring no.:	Recovery depth:		
Recovery date:	Recovery method:		
Soil description:			

II. TEST DETAILS

Sample diameter:	Sample area, A:	
Normal force, N:	Normal stress, σ .	
Deformation rate:	Deformation indicator type:	
Shear force measurement instrument type:		
Horizontal dial gauge conversion factor, K_H :		
Vertical dial gauge conversion factor, K_V :		
Proving ring dial gauge conversion factor, K_F :		
Notes, observations, and deviations from ASTM D3080 test standard:		

III. MEASUREMENTS AND CALCULATIONS

Horizontal	Vertical	Force	Horizontal	Vertical	Shear	Shear
Deformation	Deformation	Reading	Displacement	Displacement	Force	Stress
Reading	Reading	-	-	<u>^</u>		
(G_V)	(G_H)	(G_F)	(ΔH)	(ΔV)	(F)	(τ)
						_

Shear strength (τ_f) :

UNCONFINED COMPRESSIVE STRENGTH TEST (ASTM D2166) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:			
Lab partners/organization:				
Client:	Project:			
Boring no.:	Recovery depth:			
Recovery date:	Recovery method:			
Soil description:				

II. TEST DETAILS

Initial specimen diameter, D _o :		Initial specimen area, A_o :			
Initial specimen length, L_o :		Initial specimen volume, V _o :			
Moist mass of specimen, M:		Dry mass of specimen, M_s :			
Moisture content, w:	Total unit weigh	unit weight, γ .		Dry unit weight, γ_d :	
Specimen preparation method:					
Deformation indicator type:			Axial strain rate, $\Delta \varepsilon_l / \Delta t$:		
Deformation dial gauge conversion factor, K_L :					
Force measurement instrument type:					
Proving ring dial gauge conversion factor, K_P :					
Notes, observations, and deviations from ASTM D2166 test standard:					

III. MEASUREMENTS AND CALCULATIONS

III. MEASUREMENTS AND CALCULATIONS						EQUATIONS:	
Deformation Reading	Axial Deformation	Load Reading	Axial Load	Axial Strain	Corrected Area	Axial Stress	$\mathcal{E}_{I} = \Lambda L/L_{z}$
(G_L)	(ΔL)	(G_P)	(P)	(\mathcal{E}_l)	(A)	(σ_l)	
	, í			· · · ·			$A = A_o / (1 - \varepsilon_l)$
							$\sigma_l = P/A$
							AI - C V
							$\Delta L = G_L \Lambda_L$
							$P = G_P K_P$
							$s_u = q_u/2$
			-				
]

Unconfined compressive strength, q_u : Undrained shear strength, *s*_{*u*}:

UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST (ASTM D2850) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:				
Lab partners/organization:					
Client:	Project:				
Boring no.:	Recovery depth:				
Recovery date:	Recovery method:				
Soil description:					

II. TEST DETAILS

Initial specimen diameter, D_o :		Initial specimen area, A_o :			
Initial specimen length, L_o :		Initial specimen volume, V_o :			
Moist mass of specimen, M:		Dry mass of specimen, M_s :			
Moisture content, w:		Total unit weight, γ .			
Dry unit weight, γ_i :		Degree of saturation, S:			
Membrane type:		Axial strain rate, $\Delta \varepsilon_l / \Delta t$:			
Deformation indicator:		Force indicator:			
Deformation conversion factor, K_L :		Proving ring conversion factor, <i>K</i> _P :			
Cell pressure, σ_3 :	Specimen preparation method:				
Notes, observations, and deviations from ASTM D2850 test standard:					

III. MEASUREMENTS AND CALCULATIONS

Deformation Reading	Axial Deformation	Load Reading	Axial Load	Axial Strain	Corrected Area	Deviator Stress	EQUATIONS
(G_L)	(ΔL)	(G_P)	(<i>P</i>)	(\mathcal{E}_l)	(A)	$(\Delta \sigma)$	$\varepsilon_l = \Delta L/L_o$
							$A = A_o / (1 - \varepsilon_l)$
							$\Delta \sigma = P/A$
							$\Delta L = G_L K_L$
							$P = G_P K_P$
							$\sigma_{lf} = \sigma_3 + \Delta \sigma_f$
							- 19 - 5 - 9
							σ_3 : $\Delta \sigma_f$:
							σ_{lf} .