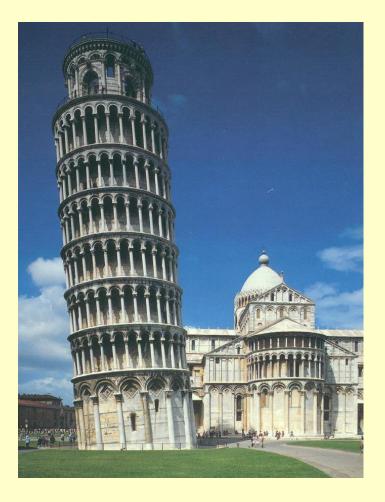

Site Exploration and Characterization; Part I

The Context for Geotechnical Exploration

What you know....
 Planned site development
 Proposed structure information
 Surface and subsurface data

What you want to know...
 Geotechnical Design Recommendations
 Preliminary
 Final

What is Site Characterization?


One working definition:

 "The *process* by which a [geo-professional] identifies and describes both the surface and the subsurface materials and conditions at a project site relative to an established design objective."

Or:

• "A project site so described."

Why Do It?

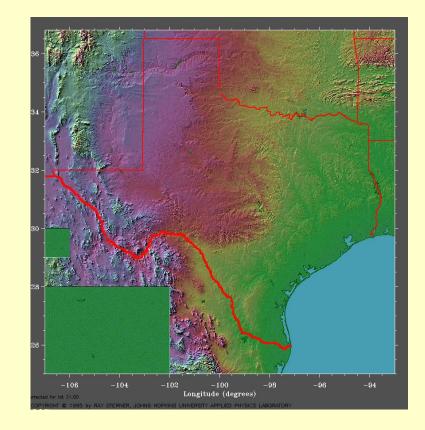
"Subsurface material properties cannot be specified; they must be <u>deduced</u> through exploration."

Charles Dowding (1979)

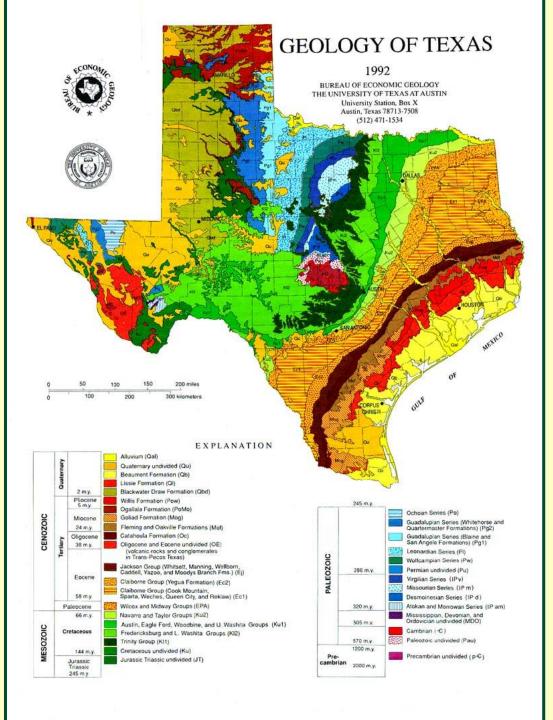
Some Common Objectives

- Identify & describe pertinent surface conditions
- Determine location and thickness of soil and rock strata (subsurface soil profile)
- Determine location of groundwater table
- Recover samples for laboratory testing
- Conduct lab and/or field testing
- Identify special problems and concerns

Geotechnical Project Sequence


- Site Research
- Field Reconnaissance
- Field Exploration
- Laboratory Investigations
- Geotechnical Interpretations, Analysis
- Report of Exploration

Non-Intrusive Exploration

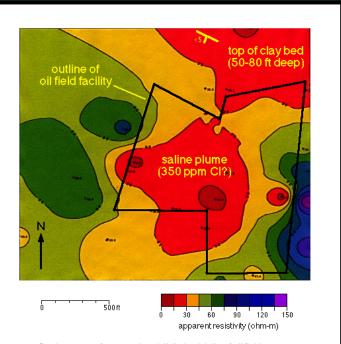


Site Research (Published Information)

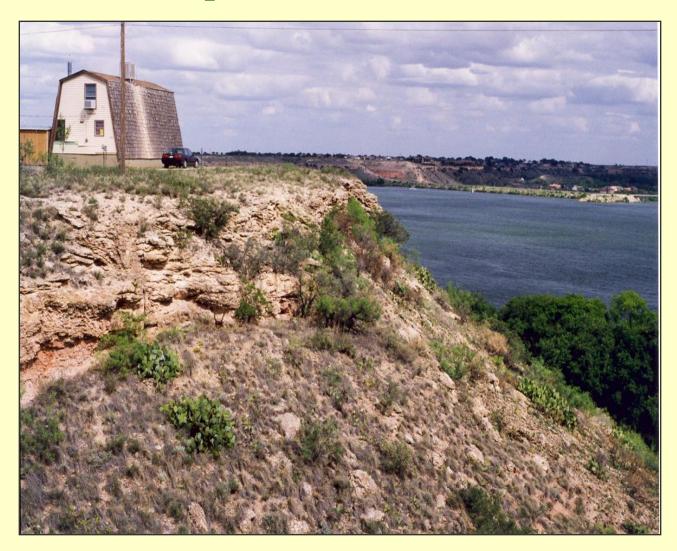
- Development Plans
- Construction Plans
- Site Location Maps
- Topographic Maps
- Aerial Photographs
- Geologic Maps
- Soil Survey Maps

Geologic Maps

Field Reconnaissance

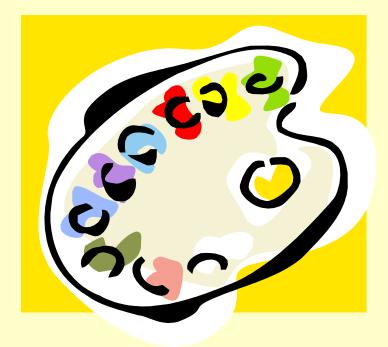

- Observation of Surface Conditions
 - Accessibility
 - Traffic Control
 - Surface Drainage
 - Geologic Features
 - Vegetation
 - Slopes
 - Water

Geophysical Methods


- Electrical Resistivity Surveys
- Geophysical Logging

Contour map of apparent resistivity in vicinity of oil field facility corresponding to a Schlumberger electrode spacing (AB/2) of 100 ft. Contour map is representative of hydrology and geology at a depth of 50-80 feet. Interpretations are supported by well data and computer models of resistivity data.

Example Non-Intrusive Exploration



Example Non-Intrusive Exploration

Intrusive (Field) Exploration

Preliminaries: How Many Borings & How Deep?

"No hard-and-fast rule exists for determining the number of borings or the depth to which borings are to be advanced."

<u>Reference</u>: Braja M. Das, *Principles of Geotechnical Engineering*, 6th Edition

Preliminaries: How Many Borings?

- Conventional Wisdom :
 - The number (density) of borings will increase:
 - As soil variability increases
 - As the loads increase
 - For more critical/significant structures
- Rules of Thumb :
 - Soft Soils (<10 bpf) Space 100' to 200'
 - As soils become harder, spacing may be increased up to 500'

Preliminaries: How Many Borings?

Structure or Project	Subsurface Variability	Spacing of Borings (ft)		
Highway Subgrade	Irregular	100-1000 (200, typical)		
	Average	200-2000 (500, typical)		
	Uniform	400-4000 (1000, typical)		
Multistory Building	Irregular	25-75		
	Average	50-150		
	Uniform	100-300		

How Many Borings?

Subsurface Conditions	Structure Footprint Area for Each Exploratory Boring			
	(m ²)	(ft^2)		
Poor quality and/or erratic	100-300	1,000–3,000		
Average	200-400	2,000–4,000		
High quality and uniform	300-1,000	3,000–10,000		

How Deep?

Subsurface Conditions	Minimum Depth of Borings (S = number of stories; D = anticipated depth of foundation)			
_	(m)	(ft)		
Poor	$6 S^{0.7} + D$	$20 S^{0.7} + D$		
Average	$5 S^{0.7} + D$	$15 S^{0.7} + D$		
Good	$3 S^{0.7} + D$	$10 S^{0.7} + D$		

Preliminaries: How Deep (Bridges)?


- Boring depth is governed by various factors, including:
 - Foundation type
 - Foundation load
 - Lowering of grade line at underpass?
 - Channel relocation, widening, dredging?
 - Scour?
- Rules of Thumb
 - Generally speaking, 50'- 80' is reasonable
 - Local experience is helpful
 - Look at nearby structures if available
 - If no experience or other info available, plan for long first hole, then adjust.

Preliminaries: How Deep (Retaining Walls)?

- Boring depth is governed by various factors, including:
 - Wall type (Fill vs. Cut)
 - Lowering of grade line at wall?
 - Scour?
- Rules of Thumb :
 - Fill Walls:
 - Soil Nailed Walls:
 - Drilled Shaft Walls:

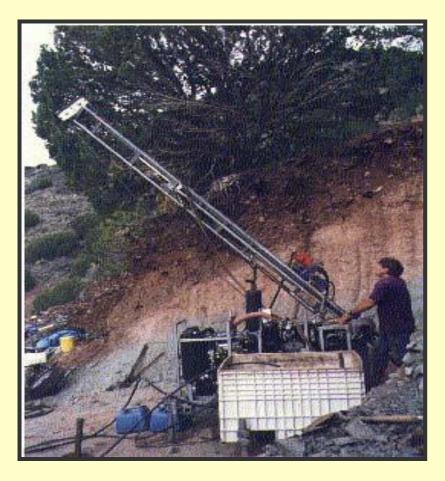
- Depth = Wall Height +/-
- Depth = Through Nailed Area, plus 10'
- Depth = Through Exposed Wall Height, plus 150% of Wall Height

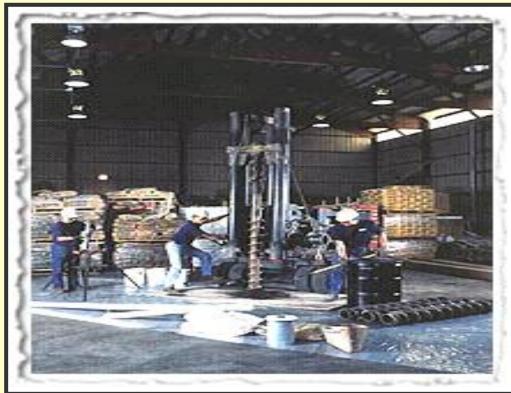
Types of Drilling Equipment

Truck-Mounted Drill Rig

- Typical Equipment Used for Geotechnical Drilling
- Truck Mounted Drill Rig & Support Truck (Water Tank)

Field Drilling and Sampling

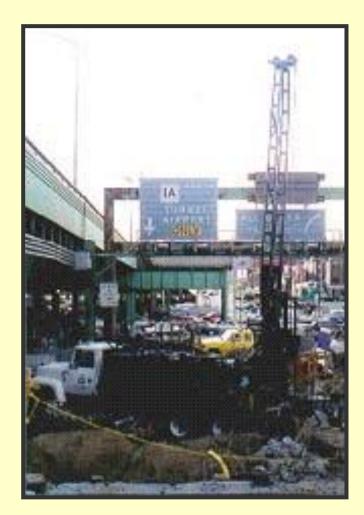

Air or Mud Rotary Drilling


Angle Drilling

- Assess geologic features (dip, strike, joints, etc.)
- Foundation testing for bridge abutments.

<u>Confined Access/ Interior</u> <u>Drilling</u>

- Limited Access Drill Rigs are small in size, but have the torque of many full size truck rigs.
- Capability, boring depths, size, etc. vary
- Esp. useful for remedial sampling


Offshore Drilling/ Barge Rig

 Exploration for abutments, bridges, docks, etc.

Congested Busy Sites

- Reliable underground utility locate is critical
- Traffic control is a must
- Large percentage of effort is in the planning
- Special ordinances/ regulations may apply

Soil & Rock Drilling & Sampling

Drilling vs. Sampling

- Think in terms of a <u>continuum</u>
- Many methods to advance an exploratory shaft
- You get what you pay for

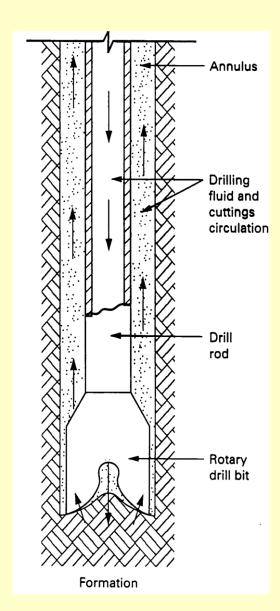
	Drilling •			Sampling ▼			
Effort	LOW						нісн
Cost	LOW						нібн
Time	LOW						нібн
Data	LOW						нісн
Quality	LOW						нібн
Samples	NOTHING	CUTTINGS	CUTTINGS AT DEPTH	CUTTINGS W/ PENETRATION TEST	INTERMITTENT DISTURBED	INTERMITTENT UNDISTURBED	Continuous/ Undisturbed

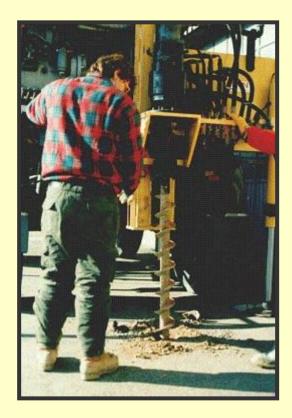
۳.

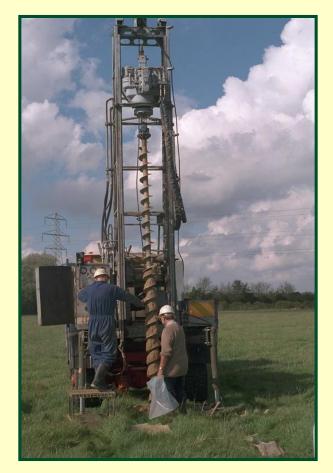
Drilling vs. Sampling

- Drilling "Just" a hole... no sample
- Disturbed <u>Sampling</u>

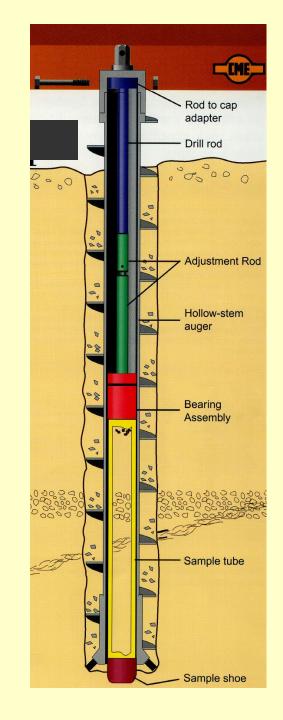
"...Estimating the nature of the formation from the cuttings is like identifying the cow from the hamburgers." G.F. Sowers


- Undisturbed <u>Sampling</u>
 - Retrieve a continuous core
 - Applicable to both soil and rock




Drilling: Rotary Bit

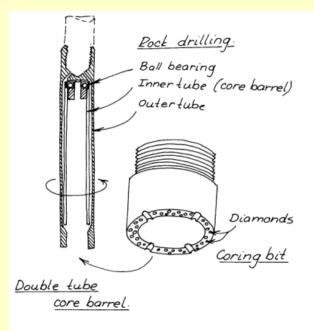
- Bit at the end of drill rod rotated and advanced
- Soil/rock cuttings removed by circulating drilling fluid
- Common drilling fluid;
 bentonite in water with slurry density 68-72pcf
- Air may be used as drilling fluid


Drilling: Continuous Flight Auger

Drilling & Sampling Hollow Stem Auger

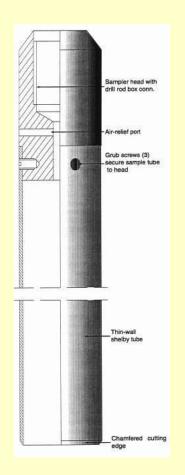
- Casing with outer spiral
- Inner rod with plug/or pilot assembly
- For sampling, remove pilot assembly and insert sampler
- Typically 5ft sections, keyed, box & pin connections
- Maximum depth 60-150ft


Drilling & Sampling Hollow Stem Auger


Drilling & Sampling **Rock Coring**

- Double-tube core barrel is typical
- Diamond or tungstencarbide tooth bit
- Size of core samples varies (NX, NQ, HQ,

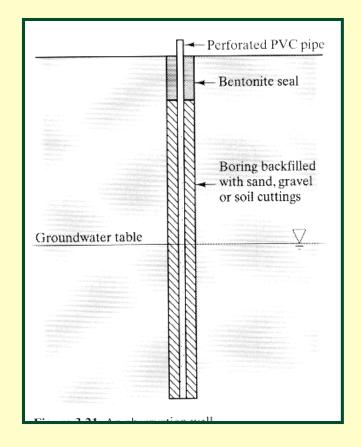
etc.)


Drilling & Sampling Rock Core Quality

- Core recovery percentage
- Rock Quality Designation (RQD)
 - Defines the fraction of solid core recovered greater than 4 inches in length
 - Calculated as the ratio of the sum of length of core fragments greater than 4 inches to the total drilled footage per run, expressed as a percentage

Drilling & Sampling Shelby Tube Sampler

- Suitable for SOIL
- Thin-wall Steel Tubes
- 3.0" OD, 2.875" ID, 30.0" long,
 7.2 lbs



Ground Water

Groundwater Monitoring


- Groundwater level must be determined during geotechnical exploration
- Measure at time of drilling and later (24 hrs, 1 week, etc.)
- Can be accomplished by leaving selected soil borings open
- Or, install a piezometer

Ground Water

- Piezometers
- Monitor Wells & Sampling
- Permeability Tests

