Site Exploration and Characterization; Part II

In-situ Testing

- When it is difficult to obtain "undisturbed" samples
- Cohesionless soils, Sensitive clays, Cohesive Stiff to Hard Soils
- In-situ Test Methods
 - Standard Penetration Test (SPT)
 - Cone Penetration Test (CPT)
 - Vane Shear Test (VST)

Standard Penetration Test (SPT)

- 140 lb (63.5 kg) Hammer
- 30in (76 cm) free fall
- Drive sampler over 18 inches
- Record no. of blows per each 6 inch penetration
- SPT blow count=blows for 2nd 6 inch penetration + blows for 3rd 6inch penetration

Standard Split Spoon Sampler

- Thick wall (0.25in) cylinder
- Sampling tube is split along the length
- Hammered into the ground

Standard Split Spoon Sampler

Types of SPT Hammers

SPT: Automatic Trip Hammer

Corrections to SPT blow Counts

Factors affecting SPT blow count:

- Hammer Efficiency (See Table 4.3)
- Borehole diameter (See Table 4.4)
- Type of sampler (See Table 4.4)
- Rod length (See Table 4.4)

Country	Hammer Type (per Figure 4.10)	Hammer Release Mechanism	Hammer Efficiency E _m			
Argentina	Donut	Cathead	0.45			
Brazil	Pin weight	Hand dropped	0.72			
China	Automatic	Trip	0.60			
	Donut	Hand dropped	0.55			
	Donut	Cathead	0.50			
Colombia	Donut 🔎	Cathead	0.50			
Japan	Donut	Tombi trigger	0.78-0.85			
	Donut	Cathead 2 turns + special release	0.65-0.67			
UK	Automatic	Trip	0.73			
US	Safety	2 turns on cathead	0.55-0.60			
	Donut	2 turns on cathead	0.45			
Venezuela	Donut	Cathead	0.43			

TABLE 4.3 SPT HAMMER EFFICIENCIES (Adapted from Clayton, 1990).

TABLE 4.4 BOREHOLE, SAMPLER, AND ROD CORREC-TION FACTORS (Adapted from Skempton, 1986).

Factor	Equipment Variables	Value		
Borehole diameter	65–115 mm (2.5–4.5 in)	1.00		
factor, C _B	150 mm (6 in)	1.05		
	200 mm (8 in)	1.15		
Sampling method factor, C_s	Standard sampler	1.00		
	Sampler without liner (not recommended)	1.20		
Rod length factor, C_R	3-4 m (10-13 ft)	0.75		
	4-6 m (13-20 ft)	0.85		
	6–10 m (20–30 ft)	0.95		
	>10 m (>30 ft)	1.00		

SPT Correction Factors

$$N_{60} = \frac{E_{m}C_{B}C_{S}C_{R}N}{0.60}$$

- hammer efficiency (E_m) Table 4.3
- bore hole diameter (C_B)Table 4.4.
- sampler correction (C_s)Table 4.4

SPT Overburden Correction

$$(N_1)_{60} = N_{60} \sqrt{\frac{2000 \ lb / ft^2}{\sigma'_z}}$$
 (Customary)

$$(N_1)_{60} = N_{60} \sqrt{\frac{100 \ kPa}{\sigma'_z}}$$
 (SI)

Use of SPT Data

- To Determine Relative Density, D_r
 - From AASHTO Chart
 - From Eq. (4.3) p.122
- To determine φ
 - From Figure 4.11 (p.123)
- To determine C
 - From AASHTO Chart

$$D_{r} = \sqrt{\frac{(N_{1})_{60}}{C_{P}C_{A}C_{OCR}}} \times 100\%$$

$$C_{P} = 60 + 25 \log D_{50}$$

$$C_{A} = 1.2 + 0.05 \log \left(\frac{t}{100}\right)$$

$$C_{\rm OCR} = {\rm OCR}^{0.18}$$

Figure 4.11 Empirical correlation between N_{60} and ϕ' for uncemented sands (Adapted from DeMello, 1971).

Cone Penetration Test (CPT)

- Originally Developed in Netherlands 1930s
- Further developments in 1950s
- "Dutch Cone"
- ASTM D 3441
- Types of CPT devices
 - mechanical cone
 - electric cone
 - piezocone

Mechanical Cone

separately measures skin friction developed on jac out of gap formed when cone is pushed. Pushing

Cone Penetrometer

CPT Truck

Crawler Type CPT Truck

CPT Truck; Interior

Cone Penetration Test (CPT)

Measures:

- Cone Resistance, q_c
- Sleeve Resistance, f_{sc}
- Typical CPT results

Typical CPT Data

CPT Versus SPT

- CPT: Advantages over SPT
 - provides much better resolution, reliability
 - versatility; pore water pressure, dynamic soil properties
- CPT: Disadvantages
 - Does not give a sample
 - Will not work with soil with gravel
 - Need to mobilize a special rig

Vane Shear Test

- Originally developed by Swedish Engineer, John Olsson in 1920s
- Now Standardized as ASTM D2573
- Specially suited for soft, sensitive clays
- Quick test, used to determine undrained shear strength

Vane Shear Test

- Drill test hole
- Insert vane
- Rotate head
- Measure torque
- Relate
 resistance to
 soil shear
 strength

Vane Shear Test

 Relationship between S_u and applied Torque:

$$S_u = \frac{6T_f}{7\pi d^3}$$

 Relationship between Su and applied Torque (after correction factor):

$$S_u = \frac{6\lambda T_f}{7\pi d^3}$$

Drilling and Sampling Texas Cone Penetrometer

- Developed in 1949
- Useful for wide range of SOIL and ROCK types and strengths
- Design Charts related TCP values to soil bearing strength

Drilling and Sampling Texas Cone Penetrometer

- 3" diameter
 hardened
 steel cone
- 60 degree point

Drilling and Sampling Texas Cone Penetrometer

DRIVING FORCE

- 170 Pound hammer,
 24" drop
- 6" penetration or 50 blows, and repeat

Drilling and Sampling Texas Cone Penetrometer

PROCEDURE

- Seat penetrometer cone
- Make reference marks
- Drive cone 12 inches into soft materials or 100 blows into hard materials

Pressuremeter

37

Pressuremeter Test

Flat Plate Dilatometer

Flat Plate Dilatometer

Comparison of In-Situ Test Methods

- Table 3.5
- Simplicity & ruggedness
- Ease of Testing
- Resolution
- Basis for Interpretation
- Types of Soils
- Equipment Availability
- Potential for Future Development

TABLE 3.5 ASSESSMENT OF IN-SITU TEST METHODS (Adapted from Mitchell, 1978; used with permission of ASCE)

-	Standard Penetration Test	Cone Penetration Test	Pressuremeter Test	Dilatometer Test	Becker Penetration Test			
Simplicity and Durability of Apparatus	Simple; rugged	Complex; rugged	Complex; delicate	Complex; moderately rugged	Simple, rugged			
Ease of Testing	Easy	Easy	Complex	Easy	Easy			
Continuous Profile or Point Values	Point	Continuous	Point	Point	Continuous			
Basis for Interpretation	Empirical	Empirical; theory	Empirical; Empirical; theory theory		Empirical			
Suitable Soils	All except gravels	All except gravels	A11	All except gravels	Sands through boulders			
Equipment Availability and Use in Practice	Universally available: used routinely	Generally available; used routinely	Difficult toDifficult tolocate; used onlocate; usedspecialon specialprojectsprojects		Difficult to locate; used on special projects			
Potential for Future Development	Limited	Great	Great	Great	Uncertain			

Reliability & Validity of Field Penetration Test Data

- Do you KNOW you have <u>reliable</u> results?
- Do you KNOW you have <u>ANY</u> results?
- Correlations with other test methods

Ex Situ vs. In Situ Testing

Ex-Situ (Laboratory) Tests

- *ex-situ* -- "out of its original place"
- Laboratory testing is the <u>most common</u> method for measuring soil and rock properties
- Numerous examples...

- Moisture content
- Unit weight
- Sieve analysis
- Atterberg limits
- Compaction
- Hydraulic conductivity
- Consolidation
- Direct shear
- Triaxial shear
- Unconfined compression

Ex-Situ (Laboratory) Tests

Ex-Situ (Laboratory) Tests

Data Presentation

Data Presentation Scope of Information

- Log of Boring
 - Soil Test Boring Records
 - Test Pit Records
- Data Included
 - Field
 - Laboratory
- Software Based Programs

Company Information Here			LOG OF BORING B-1 PAGE 1 OF 1				DATE 2/4/97								
		PROJECT: <u>gINT</u> Tutorial				SURFACE ELEVATION 432.1									
		PROJECT NO.: 1234.56		BORING TYPE: Hollow Stem Auger			2	AT L	ATTERBERG LIMITS(%)		æ	RKS C			
	-	LOCATION	-	BLOW COUNT BLOW COUNT 20 40 60 80 A C	(bci)	6	an (3)	G	Natural Moisture Content and	NTENT (E	MIT	, INDEX	SIEVE (IGLE OF ICTION (& REMA
PLES	USC B	30' northwest of northwest corner of administration building.	A ENGTH	1.0 2.0 3.0 4.0 ■ SS (tsf) ■ 1.0 2.0 3.0 4.0	DENSITY	HEAR NGTH (ts	JRE STR	SURE (p	Attenberg Limits Plastic Moisture Liquid Limit Content Limit	TURE CO	SUID LIM	ASTIC LI	ASTICITY	ING #200	AATED AV RNAL FR R TESTS
SAM	TALAT.	MATERIAL DESCRIPTION	FIEL STR DAT	♣ Torvane (pst) ♣ - 200 400 600 800	DRΥ	UU STRE	FALL	PRES	⊢ — ● — — I 20 40 60 80	MOIS	Ц.	린	린	PASS	ESTIN INTER OTHE
	CH CL CL	FAT CLAY high plasticity, trace fine sand, black, wet Z SANDY CLAY firm, mode tate plasticity, , fine to medium sand, mottled tan and gray, *saturated etiff Bottom of Boring	N = 6 N = 10 P = 4.5+ P = 4.5 + N = 60 / 3'		. 80	4.3	6	11		10 15 20 24	45	20	25	86	65(A-10) 56(A-22)
ter Le der O ling.	vel bservation Water sam	Eft.: O Measured: Y Perched: Y : Water Evel measured 4.5 hours after ples taken for analysis.	Key to Abbr N - SP P - Po T - To C - Un	eviations: T Data (Blows/Fg) wate (bas) series (bst) wate (bst) series (bst)	Notes	s: is flat.	and d	iny wit	h bow shrubs. 98 = 9 rain Size	. 80	= Sp	ecific	Grav	ity	

Log of Boring Required Information

- Drilling & Sampling Depths & Methods
- Field Test Data
- Drilling Notes
- Soil appearance, stratification
- "A complete record..."
- Pass/Fail

"If it's not written down, it didn't happen..."

Data Presentation Cross Sections

- Source is soil boring logs
- Yields a 2D or 3D rendering of the subsurface
 - Interpolation
 - Extrapolation
 - Guesswork
- Helps visualize the subsurface

Philosophy of Exploration

Philosophy of Exploration

The Blind Men and the Elephant John Godfrey Saxe (1816-1887)

Uncertainty vs. Risk

- More often than not, you develop your exploration *not* to <u>find out</u> the subsurface conditions of the site, but to validate and refine your assumptions of what you believe are the likely subsurface conditions at the site.
- The exploration becomes an exercise in reducing uncertainty / risk.
- "Much, you do not know."

Economics

Balancing Cost & Risk

"The [scope of a subsurface exploration] for any particular site is a difficult problem which is closely linked with the relative cost of the investigation and the project for which it is undertaken."

VNS Murthy: Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering