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Preface

This book covers the fundamental mechanics of fluids as they are treated at
the senior level or in first graduate courses. Many excellent books exist that
treat special areas of fluid mechanics such as ideal-fluid flow or boundary-
layer theory. However, there are very few books at this level that sacrifice an
in-depth study of one of these special areas of fluid mechanics for a briefer
treatment of a broader area of the fundamentals of fluid mechanics. This
situation exists despite the fact that many institutions of higher learning
offer a broad, fundamental course to a wide spectrum of their students
before offering more advanced specialized courses to those who are spe-
cializing in fluid mechanics. This book is intended to remedy this situation.

The book is divided into four parts. Part I, ‘‘Governing Equations,’’
deals with the derivation of the basic conservation laws, flow kinematics,
and some basic theorems of fluid mechanics. Part II is entitled ‘‘Ideal-Fluid
Flow,’’ and it covers two-dimensional potential flows, three-dimensional
potential flows, and surface waves. Part III, ‘‘Viscous Flows of Incom-
pressible Fluids,’’ contains chapters on exact solutions, low-Reynolds-



number approximations, boundary-layer theory, and buoyancy-driven
flows. The final part of the book is entitled ‘‘Compressible Flow of Inviscid
Fluids,’’ and this part contains chapters that deal with shock waves, one-
dimensional flows, and multidimensional flows. Appendixes are also inclu-
ded which summarize vectors, tensors, the governing equations in the
common coordinate systems, complex variables, and thermodynamics.

The treatment of the material is such as to emphasize the phenomena
associated with the various properties of fluids while providing techniques
for solving specific classes of fluid-flow problems. The treatment is not
geared to any one discipline, and it may readily be studied by physicists and
chemists as well as by engineers from various branches. Since the book is
intended for teaching purposes, phrases such as ‘‘it can be shown that’’ and
similar clichés which cause many hours of effort for many students have
been avoided. In order to aid the teaching process, several problems are
included at the end of each of the 13 chapters. These problems serve to
illustrate points brought out in the text and to extend the material covered in
the text.

Most of the material contained in this book can be covered in about 50
lecture hours. For more extensive courses the material contained here may
be completely covered and even augmented. Parts II, III, and IV are
essentially independent so that they may be interchanged or any one or more
of them may be omitted. This permits a high degree of teaching flexibility,
and allows the instructor to include or substitute material which is not
covered in the text. Such additional material may include free convection,
density stratification, hydrodynamic stability, and turbulence with applica-
tions to pollution, meteorology, etc. These topics are not included here, not
because they do not involve fundamentals, but rather because I set up a
priority of what I consider the basic fundamentals.

For the third edition, I redrew all the line drawings, of which there are
over 100. The problems have also been reviewed, and some of them have
been revised in order to clarify and=or extend the questions. Some new
problems have also been included.

Many people are to be thanked for their direct or indirect contribu-
tions to this text. I had the privilege of taking lectures from F. E. Marble,
C. B. Millikan, and P. G. Saffman. Some of the style and methods of these
great scholars are probably evident on some of the following pages. The
National Research Council of Canada are due thanks for supplying the
photographs that appear in this book. My colleagues at the University of
Toronto have been a constant source of encouragement and help. Finally,
sincere appreciation is extended to the many students who have taken my
lectures at the University of Toronto and who have pointed out errors and
deficiencies in the material content of the draft of this text.

vi Preface



Working with staff at Marcel Dekker, Inc., has been a pleasure. I am
particularly appreciative of the many suggestions given by Mr. John J.
Corrigan, Acquisitions Editor, and for the help he has provided in the
creation of the third edition. Marc Schneider provided valuable information
relating to software for the preparation of the line drawings. Erin Nihill, the
Production Editor, has been helpful in many ways and has converted a
patchy manuscript into a textbook.

I. G. Currie

Preface vii
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I

GOVERNING EQUATIONS

In this ¢rst part of the book a su⁄cient set of equationswill be derived,based
on physical laws and postulates, governing the dependent variables of a £uid
that is moving. The dependent variables are the £uid-velocity components,
pressure, density, temperature, and internal energy or some similar set of
variables. The equations governing these variables will be derived from the
principles of mass,momentum, and energy conservation and fromequations
of state. Having established a su⁄cient set of governing equations, some
purely kinematical aspects of £uid £ow are discussed, at which time the
concept of vorticity is introduced. The ¢nal section of this part of the book
introduces certain relationships that can be derived from the governing
equations under certain simplifying conditions.These relationships may be
used in conjunction with the basic governing equations or as alternatives to
them.

Taken as a whole, this part of the book establishes the mathematical
equationsthatresult frominvokingcertainphysical lawspostulatedtobevalid
for a moving £uid. These equations may assume di¡erent forms, depending
uponwhichvariables arechosenanduponwhich simplifyingassumptionsare
made.The remaining parts of thebook aredevoted to solving these governing
equations for di¡erent classes of £uid £ows and thereby explaining quantita-
tively someof thephenomena that areobserved in £uid£ow.

1



1

Basic Conservation Laws

The essential purpose of this chapter is to derive the set of equations that
results from invoking the physical laws of conservation of mass,momentum,
and energy. In order to realize this objective, it is necessary to discuss certain
preliminary topics.The¢rst topic of discussion is the twobasicways inwhich
the conservation equations may be derived: the statistical method and the
continuummethod.Having selected the basic method to be used in deriving
the equations, one is then faced with the choice of reference frame to be
employed, eulerian or lagrangian.Next, a general theorem, called Reynolds’
transport theorem, is derived, since this theorem relates derivatives in the
lagrangian framework to derivatives in the eulerian framework.

Having established the basicmethod to be employed and the tools to be
used, the basic conservation laws are then derived.The conservation of mass
yields the so-called continuity equation. The conservation of momentum
leads ultimately to the Navier-Stokes equations, while the conservation of
thermal energy leads to the energy equation.The derivation is followed by a
discussion of the set of equations so obtained, and ¢nally a summary of the
basic conservation laws is given.

3



1.1 STATISTICAL ANDCONTINUUMMETHODS

There are basically two ways of deriving the equations that govern the
motion of a £uid. One of these methods approaches the question from the
molecular point of view.That is, this method treats the £uid as consisting of
molecules whose motion is governed by the laws of dynamics. The macro-
scopic phenomena are assumed to arise from the molecular motion of the
molecules, and the theory attempts to predict the macroscopic behavior of
the £uid from the laws of mechanics and probability theory.For a £uid that is
in a state not too far removed from equilibrium, this approach yields the
equations of mass, momentum, and energy conservation. The molecular
approach also yields expressions for the transport coe⁄cients, such as the
coe⁄cient of viscosity and the thermal conductivity, in terms of molecular
quantities such as the forces acting between molecules or molecular dia-
meters. The theory is well developed for light gases, but it is incomplete for
polyatomic gas molecules and for liquids.

The alternative method used to derive the equations governing the
motion of a £uid uses the continuum concept. In the continuum approach,
individual molecules are ignored and it is assumed that the £uid consists of
continuousmatter.At each point of this continuous £uid there is supposed to
be a unique value of the velocity, pressure, density, and other so-called ¢eld
variables. The continuous matter is then required to obey the conservation
laws of mass, momentum, and energy,which give rise to a set of di¡erential
equations governing the ¢eld variables. The solution to these di¡erential
equations then de¢nes the variationof each ¢eld variable with space and time
which corresponds to themean value of themolecularmagnitude of that ¢eld
variable at each corresponding position and time.

The statistical method is rather elegant, and it may be used to treat gas
£ows in situationswhere the continuumconcept is no longer valid.However,
as was mentioned before, the theory is incomplete for dense gases and for
liquids. The continuum approach requires that the mean free path of the
molecules be very small compared with the smallest physical-length scale of
the £ow ¢eld (such as the diameter of a cylinder or other body about which
the £uid is £owing). Only in this way can meaningful averages over the
molecules at a ‘‘point’’ be made and the molecular structure of the £uid be
ignored. However, if this condition is satis¢ed, there no distinction among
light gases, dense gases, or even liquids�the results apply equally to all.
Since the vast majority of phenomena encountered in £uid mechanics fall
well within the continuum domain and may involve liquids as well as gases,
the continuum method will be used in this book.With this background, the
meaning and validity of the continuumconcept will nowbe explored in some
detail.The ¢eld variables, such as the density r and the velocity vector u,will

4 Chapter1



in general be functions of the spatial coordinates and time. In symbolic form
this is written as r ¼ rðx; tÞ and u ¼ uðx; tÞ, where x is the position vector
whose certesian coordinates are x, y, and z. At any particular point in space
these continuum variables are de¢ned in terms of the properties of the var-
iousmolecules that occupy a small volume in the neighborhood of that point.

Consider a small volume of £uid DV containing a large number of
molecules. Let Dm and v be the mass and velocity of any individual molecule
contained within the volume DV, as indicated in Fig. 1.1.The density and the
velocity at a point in the continuum are then de¢ned by the following limits:

r ¼ lim
DV!e

P
Dm

DV

� �

u ¼ lim
DV!e

P
vDmP
Dm

� �

where e is a volumewhich is su⁄ciently small that e1=3 is small comparedwith
the smallest signi¢cant length scale in the £ow ¢eld but is su⁄ciently large
that it contains a large number of molecules. The summations in the above
expressions are taken over all themolecules containedwithin the volumeDV.

FIGURE 1.1 An individual molecule in a small volume DV having a mass Dm and
velocity v.
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The other ¢eld variables may be de¢ned in terms of the molecular properties
in an analogous way.

A su⁄cient condition, though not a necessary condition, for the con-
tinuum approach to be valid is

1
n
� e � L3

where n is the number of molecules per unit volume and L is the smallest
signi¢cant length scale in the £ow ¢eld, which is usually called the macro-
scopic length scale.The characteristicmicroscopic length scale is the mean free
path between collisions of the molecules. Then the above condition states
that the continuum concept will certainly be valid if some volume e can be
found that is much larger than the volume occupied by a single molecule of
the £uid but much smaller than the cube of the smallest macroscopic length
scale (such as cylinder diameter). Since a cube of gas, at normal temperature
and pressure,whose side is 2 micrometers contains about 2� 108 molecules
and the corresponding ¢gure for a liquid is about 2� 1011 molecules, the
continuum condition is readily met in the vast majority of £ow situations
encountered in physics and engineering. Itmay be expected to break down in
situations where the smallest macroscopic length scale approaches micro-
scopic dimensions, such as in the structure of a shock wave, and where the
microscopic length scale approachesmacroscopic dimensions, such aswhen
a rocket passes through the edge of the atmosphere.

1.2 EULERIAN AND LAGRANGIAN COORDINATES

Having selected the continuum approach as the method that will be used to
derive the basic conservation laws, one is next faced with a choice of refer-
ence frames inwhich to formulate the conservation laws.There are two basic
coordinate systems that may be employed, these being eulerian and lagran-
gian coordinates.

In the eulerian framework the independent variables are the spatial
coordinates x, y, and z and time t. This is the familiar framework in which
most problems are solved. In order to derive the basic conservation equa-
tions in this framework, attention is focused on the £uid which passes
through a control volume that is ¢xed in space. The £uid inside the control
volume at any instant in time will consist of di¡erent £uid particles from that
which was there at some previous instant in time. If the principles of con-
servation of mass, momentum, and energy are applied to the £uid passing
through the control volume,the basic conservation equations are obtained in
eulerian coordinates.
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In the lagrangian approach, attention is ¢xed on a particular mass of
£uid as it £ows. Suppose we could color a small portion of the £uid without
changing its density. Then in the lagrangian framework we follow this
colored portion as it £ows and changes its shape, but we are always con-
sidering the same particles of £uid.The principles of mass, momentum, and
energy conservation are then applied to this particular element of £uid as it
£ows, resulting in a set of conservation equations in lagrangian coordinates.
In this reference frame x,y, z, and t are no longer independent variables, since
if it is known that our colored portion of £uid passed through the coordinates
x0, y0, and z0 at some time t0, then its position at some later time may be cal-
culated if the velocity components u, v, and w are known.That is, as soon as a
time interval (t � t0) is speci¢ed, the velocity components uniquely deter-
mine the coordinate changes (x � x0), ( y � y0), and (z � z0) so that x,y, z, and t
are no longer independent.The independent variables in the lagrangian sys-
tem are x0, y0, z0, and t,where x0, y0, and z0 are the coordinates which a spe-
ci¢ed £uid element passed through at time t0.That is, the coordinates x0, y0,
and z0 identify which £uid element is being considered, and the time t iden-
ti¢es its instantaneous location.

The choice of which coordinate system to employ is largely a matter of
taste. It is probably more convincing to apply the conservation laws to a
control volume that always consists of the same £uid particles rather than
one through which di¡erent £uid particles pass. This is particularly true
when invoking the law of conservation of energy,which consists of applying
the ¢rst law of thermodynamics, since the same £uid particles are more
readily justi¢ed as a thermodynamic system. For this reason, the lagrangian
coordinate system will be used to derive the basic conservation equations.
Although the lagrangian system will be used to derive the basic equations,
the eulerian system is the preferred one for solving the majority of problems.
In the next section the relation between the di¡erent derivatives will be
established.

1.3 MATERIAL DERIVATIVE

Let a be any ¢eld variable such as the density or temperature of the £uid.
From the eulerian viewpoint, a may be considered to be a function of the
independent variables x, y, z, and t. But if a speci¢c £uid element is observed
for a short period of time dt as it £ows, its positionwill change by amounts dx,
dy, and dzwhile its value of awill change by an amount da.That is, if the £uid
element is observed in the lagrangian framework, the independent variables
are x0, y0, z0, and t, where x0, y0, and z0 are initial coordinates for the £uid
element. Thus, x, y, and z are no longer independent variables but are
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functions of t as de¢ned by the trajectory of the element. During the time dt
the change in amay be calculated from di¡erential calculus to be

@a
@t

dt þ @a
@x

dx þ @a
@y

dy þ @a
@z

dz

Equating the preceding change in a to the observed change da in the lagran-
gian framework and dividing throughout by dt gives

da
dt

¼ @a
@t

þ dx
dt

@a
@x

þ dy
dt

@a
@y

þ dz
dt

@a
@z

The left-hand side of this expression represents the total change in a as
observed in the lagrangian framework during the time dt, and in the limit it
represents the time derivative of a in the lagrangian system, which will be
denoted by Da=Dt. It may be also noted that in the limit as dt ! 0 the ratio
dx=dt becomes thevelocitycomponent in the xdirection,namely,u. Similarly,
dy=dt ! v and dz=dt ! w as dt ! 0, the expression for the change in
abecomes

Da
Dt

¼ @a
@t

þ u
@a
@x

þ v
@a
@y

þ w
@a
@z

In vector form this equation may be written as follows:

Da
Dt

¼ @a
@t

þ ðu�HÞa
Alternatively, using the Einstein summation convention where repeated
subscripts are summed, the tensor formmay be written as

Da
Dt

¼ @a
@t

þ uk
@a
@xk

ð1:1Þ

The termDa=Dt in Eq. (1.1) is the so-called material derivative. It represents
the total change in the quantity a as seen by an observer who is following the
£uid and iswatching a particular mass of the £uid.The entire right-hand side
of Eq. (1.1) represents the total change in aexpressed in eulerian coordinates.
The term ukð@a=@xkÞ expresses the fact that in a time-independent £ow ¢eld
in which the £uid properties depend upon the spatial coordinates only, there
is a change in a due to the fact that a given £uid element changes its position
with time and therefore assumes di¡erent values of a as it £ows. The term
@a=@t is the familiar eulerian time derivative and expresses the fact that at
any point in space the £uid properties may change with time.Then Eq. (1.1)
expresses the lagrangian rate of changeDa=Dt of a for a given £uid element in
terms of the eulerian derivatives @a=@t and @a=@xk .
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1.4 CONTROLVOLUMES

The concept of a control volume, as required to derive thebasic conservation
equations, has been mentioned in connection with both the lagrangian and
the eulerian approaches. Irrespective of which coordinate system is used,
there are two principal control volumes fromwhich to choose.One of these is
a parallelepiped of sides dx, dy, and dz. Each £uid property, such as the velo-
city or pressure, is expanded in aTaylor series about the center of the control
volume to give expressions for that property at each face of the control
volume.The conservation principle is then invoked, and when dx, dy, and dz
are permitted to become vanishingly small, the di¡erential equation for that
conservation principle is obtained. Frequently, shortcuts are taken and the
control volume is taken tohave sides of lengthdx,dy, anddzwithonly the ¢rst
term of theTaylor series being carried out.

The second type of control volume is arbitrary in shape, and each con-
servation principle is applied to an integral over the control volume. For
example, the mass within the control volume is

R
V r dV , where r is the £uid

density and the integration is carried out over the entire volumeVof the £uid
contained within the control volume.The result of applying each conserva-
tion principle will be an integro-di¡erential equation of the type

Z
V
La dV ¼ 0

where L is some di¡erential operator and a is some property of the £uid. But
since the control volume V was arbitrarily chosen, the only way this equa-
tion can be satis¢ed is by settingLa ¼ 0,which gives the di¡erential equation
of the conservation law. If the integrand in the above equation was not equal
to zero, it would be possible to rede¢ne the control volumeV in such a way
that the integral of La was not equal to zero, contradicting the integro-
di¡erential equation above.

Each of these two types of control volumes has some merit, and in this
book each will be used at some point, depending uponwhich gives the better
insight to the physics of the situation under discussion.The arbitrary control
volume will be used in the derivation of the basic conservation laws, since it
seems to detract less from the principles being imposed. Needless to say the
results obtained by the twomethods are identical.

1.5 REYNOLDS’ TRANSPORT THEOREM

The method that has been selected to derive the basic equations from
the conservation laws is to use the continuum concept and to follow an
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arbitrarily shaped control volume in a lagrangian frame of reference. The
combination of the arbitrary control volume and the lagrangian coordinate
system means that material derivatives of volume integrals will be encoun-
tered. As was mentioned in the previous section, it is necessary to transform
such terms into equivalent expressions involving volume integrals of
eulerian derivatives. The theorem that permits such a transformation is
called Reynolds’ transport theorem.

Consider a speci¢c mass of £uid and follow it for a short period of time
dt as it £ows.Let abe any property of the £uid such as itsmass,momentum in
some direction, or energy. Since a speci¢c mass of £uid is being considered
and since x0, y0, z0, and t are the independent variables in the lagrangian
framework, the quantity a will be a function of t only as the control volume
moves with the £uid.That is, a ¼ aðtÞonly and the rate of change of the inte-
gral of awill be de¢ned by the following limit:

D
Dt

Z
V ðtÞ

aðtÞ dV ¼ lim
dt!0

1
dt

Z
V ðtþdtÞ

aðt þ dtÞ dV �
Z
V ðtÞ

aðtÞ dV
" #( )

where V ðtÞ is the control volume containing the speci¢ed mass of £uid and
which may change its size and shape as it £ows.The quantity aðt þ dtÞ inte-
grated over V ðtÞ will now be subtracted, then added again inside the above
limit.

D
Dt

Z
V ðtÞ

aðtÞ dV ¼ lim
dt!0

(
1
dt

Z
V ðtþdtÞ

aðt þ dtÞ dV �
Z
V ðtÞ

aðt þ dtÞ dV
" #

þ 1
dt

Z
V ðtÞ

aðt þ dtÞ dV �
Z
V ðtÞ

aðtÞ dV
" #)

The ¢rst two integrals inside this limit correspond to holding the integrand
¢xed and permitting the control volume V to vary while the second two
integrals correspond to holding V ¢xed and permitting the integrand a to
vary.The latter component of the change is, by de¢nition, the integral of the
familiar eulerian derivative with respect to time.Then the expression for the
lagrangian derivative of the integral of a may be written in the following
form:

D
Dt

Z
V ðtÞ

aðtÞ dV ¼ lim
dt!0

1
dt

Z
V ðtþdtÞ�V ðtÞ

aðt þ dtÞ dV
" #( )

þ
Z
V ðtÞ

@a
@t

dV

The remaining limit, corresponding to the volume V changing while a
remains ¢xed, may be evaluated from geometric considerations.
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Figure1.2a shows thecontrol volumeV ðtÞ thatencloses themassof £uid
beingconsideredbothat time tandat time t þ dt.During this time interval the
control volume has moved downstream and has changed its size and shape.
The surface that encloses V ðtÞ is denoted by SðtÞ, and at any point on this
surface the velocity may be denoted by u and the unit outward normal by n.

Figure1.2b shows the control volumeV ðt þ dtÞ superimposed onV ðtÞ,
and an element of the di¡erence in volumes is detailed. The perpendicular
distance from any point on the inner surface to the outer surface is u�n dt, so
that an element of surface area dS will correspond to an element of volume
change dV in which dV ¼ u�n dt dS.Then the volume integral inside the limit

FIGURE 1.2 (a) Arbitrarily shaped control volume at times t and tþ dt, and

(b) superposition of the control volumes at these times showing an element dV of
the volume change.
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in the foregoing equationmay be transformed into a surface integral inwhich
dV is replaced by u�n dt dS.

D
Dt

Z
V ðtÞ

aðtÞ dV ¼ lim
dt!0

Z
SðtÞ

aðt þ dtÞu�n dS
" #( )

þ
Z
V ðtÞ

@a
@t

dV

¼
Z
SðtÞ

aðtÞu�n dS þ
Z
V ðtÞ

@a
@t

dV

Having completed the limiting process, the lagrangian derivative of a volume
integral has been converted into a surface integral and a volume integral in
which the integrands contain only eulerian derivatives. Aswasmentioned in
the previous section, it is necessary to obtain each term in the conservation
equations as the volume integral of something. The foregoing form of
Reynolds’ transport theorem may be put in this desired form by converting
the surface integral to a volume integral by use of Gauss’ theorem,which is
formulated in Appendix A. In this way the surface-integral term becomesZ

SðtÞ
aðtÞu�n dS ¼

Z
V ðtÞ

=�ðauÞ dV
Substituting this result into the foregoing expression and combining the two
volume integrals gives the preferred form of Reynolds’ transport theorem.

D
Dt

Z
V
a dV ¼

Z
V

@a
@t

þ =�ðauÞ
� �

dV

Or, in tensor notation,

D
Dt

Z
V
a dV ¼

Z
V

@a
@t

þ @

@xk
ðaukÞ

� �
dV ð1:2Þ

Equation (1.2) relates the lagrangian derivative of a volume integral of a given
mass toavolume integral inwhich the integrandhaseulerianderivativesonly.

Having established the method to be used to derive the basic con-
servation equations and having established the necessary background
material, it remains to invoke the various conservation principles. The ¢rst
such principle to be treated will be the conservation of mass.

1.6 CONSERVATIONOFMASS

Consider a speci¢c mass of £uid whose volumeV is arbitrarily chosen. If this
given £uid mass is followed as it £ows, its size and shape will be observed to
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change but its mass will remain unchanged. This is the principle of mass
conservationwhich applies to £uids inwhich no nuclear reactions are taking
place.The mathematical equivalence of the statement of mass conservation
is to set the lagrangian derivative D=Dt of the mass of £uid contained inV,
which is

R
V r dV , equal to zero. That is, the equation that expresses con-

servation of mass is

D
Dt

Z
V
r dV ¼ 0

This equation may be converted to a volume integral in which the integrand
contains only eulerian derivatives by use of Reynolds’ transport theorem
[Eq. (1.2)], in which the £uid property a is, in this case, the mass density r.

Z
V

@r
@t

þ @

@xk
ðrukÞ

� �
dV ¼ 0

Since the volumeVwas arbitrarily chosen, the only way in which the above
equation can be satis¢ed for all possible choices ofV is for the integrand to be
zero.Then the equation expressing conservation of mass becomes

@r
@t

þ @

@xk
ðrukÞ ¼ 0 ð1:3aÞ

Equation (1.3a) expresses more than the fact that mass is conserved. Since it
is a partial di¡erential equation, the implication is that the velocity is con-
tinuous. For this reason Eq. (1.3a) is usually called the continuity equation.
The derivation which has been given here is for a single-phase £uid in which
no change of phase is taking place. If two phases were present, such as water
and steam, the starting statement would be that the rate at which the mass of
£uid 1 is increasing is equal to the rate at which the mass of £uid 2 is
decreasing. The generalization to cases of multiphase £uids and to cases of
nuclear reactions is obvious. Since such cases cause no changes in the basic
ideas or principles, they will not be included in this treatment of the
fundamentals.

In many practical cases of £uid £ow the variation of density of the £uid
may be ignored, as for most cases of the £owof liquids. In such cases the £uid
is said to be incompressible, which means that as a given mass of £uid is fol-
lowed, not only will its mass be observed to remain constant but its volume,
and hence its density,will be observed to remain constant. Mathematically,
this statement may be written as
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Dr
Dt

¼ 0

In order to use this special simpli¢cation, the continuity equation is ¢rst
expanded by use of a vector identity given in Appendix A.

@r
@t

þ uk
@r
@xk

þ r
@uk
@xk

¼ 0

The ¢rst and second terms in this form of the continuity equation will be
recognized as being the eulerian form of the material derivative as given by
Eq. (1.1).That is, an alternative form of Eq. (1.3a) is

Dr
Dt

þ r
@uk
@xk

¼ 0 ð1:3bÞ

This mixed form of the continuity equation in which one term is given as a
lagrangian derivative and the other as an eulerian derivative is not useful for
actually solving £uid-£ow problems. However, it is frequently used in the
manipulations that reduce the governing equations to alternative forms, and
for this reason it has been identi¢ed for future reference. An immediate
example of such a case is the incompressible £uid under discussion. Since
Dr=Dt ¼ 0 for such a £uid, Eq. (1.3b) shows that the continuity equation
assumes the simpler form rð@uk=@xkÞ ¼ 0.Since r cannot be zero in general,
the continuity equation for an incompressible £uid becomes

@uk
@xk

¼ 0 ðincompressibleÞ ð1:3cÞ

It should be noted that Eq. (13c) is valid not only for the special case of
Dr=Dt ¼ 0 in which r¼ constant everywhere, but also for strati¢ed-£uid
£ows of the type depicted in Fig. 1.3. A £uid particle that follows the lines
r ¼ r1 or r ¼ r2 will have its density remain ¢xed at r ¼ r1 or r ¼ r2 so that
Dr=Dt ¼ 0. However, r is not constant everywhere, so that @r=@x 6¼ 0 and
@r=@y 6¼ 0. Such density strati¢cations may occur in the ocean (owing to
salinity variations) or in the atmosphere (owing to temperature variations).
However, in the majority of cases in which the £uid may be considered to be
incompressible, the density is constant everywhere.

Equation (1.3), in either the general form (1.3a) or the incompressible
form (1.3c), is the ¢rst condition that has to be satis¢ed by the velocity and
the density. No dynamical relations have been used to this point, but the
conservation-of-momentum principle will utilize dynamics.
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1.7 CONSERVATIONOFMOMENTUM

The principle of conservation of momentum is, in e¡ect, an application of
Newton’s second law of motion to an element of the £uid.That is,when con-
sideringagivenmassof £uid ina lagrangian frameof reference, it isstated that
the rateatwhichthemomentumof the£uidmass ischanging isequal to thenet
external force acting on the mass. Some individuals prefer to think of forces
only and restate this law in the form that the inertia force (due to acceleration
of the element) is equal to the net external force acting on the element.

The external forces thatmay act on amass of the £uidmay be classed as
either body forces, such as gravitational or electromagnetic forces,or surface
forces, such as pressure forces or viscous stresses. Then, if f is a vector that
represents the resultant of the body forces per unit mass, the net external
body force acting on a mass of volumeVwill be

R
V rf dV . Also, if P is a sur-

face vector that represents the resultant surface force per unit area, the net
external surface force acting on the surface S containingVwill be

R
s PdS.

According to the statement of the physical law that is being imposed in
this section, the sum of the resultant forces evaluated above is equal to the
rate of change of momentum (or inertia force).Themass per unit volume is r
and its momentum is ru, so that the momentum contained in the volumeV isR
V ru dV .Then, if the mass of the arbitrarily chosen volumeV is observed in
the lagrangian frame of reference, the rate of change of momentum of the
mass contained with V will be ðD=DtÞ RV ru dV . Thus, the mathematical

FIGURE 1.3 Flow of a density-stratified fluid in which Dr=Dt ¼ 0 but for which
@r=@x 6¼ 0 and @r=@y 6¼ 0.
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equation that results from imposing the physical law of conservation of
momentum is

D
Dt

Z
V
ru dV ¼

Z
s
P dS þ

Z
V
rf dV

In general, there are nine components of stress at any givenpoint,one normal
component and two shear components on each coordinate plane.These nine
components of stress aremost easily illustrated by use of a cubical element in
which the faces of the cube are orthogonal to the cartesian coordinates, as
shown in Fig.1.4, and inwhich the stress componentswill act at a point as the
lengthof the cube tends to zero. InFig.1.4 the cartesian coordinates x,y, and z
have been denoted by x1, x2, and x3, respectively. This permits the compo-
nents of stress to be identi¢ed by a double-subscript notation. In this nota-
tion, a particular component of the stressmay be represented by the quantity
sij , in which the ¢rst subscript indicates that this stress component acts on

FIGURE1.4 Representation of the nine components of stress that may act at a point
in a fluid.
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the plane xi ¼constant and the second subscript indicates that it acts in the xj
direction.

The fact that the stress may be represented by the quantity sij, in
which i and j may be 1, 2, or 3, means that the stress at a point may be
represented by a tensor of rank 2. However, on the surface of our control
volume it was observed that there would be a vector force at each point,
and this force was represented by P. The surface force vector P may be
related to the stress tensor sij as follows: The three stress components act-
ing on the plane x1 ¼ constant are s11, s12, and s13. Since the unit normal
vector acting on this surface is n1, the resulting force acting in the x1
direction is P1 ¼ s11n1. Likewise, the forces acting in the x2 direction and
the x3 direction are, respectively, P2 ¼ s12n1 and P3 ¼ s13n1. Then, for an
arbitrarily oriented surface whose unit normal has components n1, n2, and
n3, the surface force will be given by Pj ¼ sijni in which i is summed from 1
to 3. That is, in tensor notation the equation expressing conservation of
momentum becomes

D
Dt

Z
V
ruj dV ¼

Z
s
sijni dS þ

Z
V
rfj dV

The left-hand side of this equation may be converted to a volume integral in
which the integrand contains only eulerian derivatives by use of Reynolds’
transport theorem, Eq. (1.2), in which the £uid property a here is the
momentum per unit volume ruj in the xj direction. At the same time the sur-
face integral on the right-hand side may be converted into a volume integral
by use of Gauss’ theorem as given in Appendix B. In this way the equation
that evolved fromNewton’s second law becomesZ

V

@

@t
ðrujÞ þ @

@xk
ðrujukÞ

� �
dV ¼

Z
V

@sij
@xi

dV þ
Z
V
rfj dV

All these volume integrals may be collected to express this equation in the
form

R
V f gdV ¼ 0,where the integrand is a di¡erential equation in eulerian

coordinates.Asbefore, the arbitrariness of the choice of the control volumeV
is now used to show that the integrand of the above integro-di¡erential
equation must be zero. This gives the following di¡erential equation to be
satis¢ed by the ¢eld variables in order that the basic law of dynamics may be
satis¢ed:

@

@t
ðrujÞ þ @

@xk
ðrujukÞ ¼ @sij

@xi
þ rfj
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The left-hand side of this equation may be further simpli¢ed if the two terms
involved are expanded in which the quantity rujuk is considered to be the
product of ruk and uj .

r
@uj
@t

þ uj
@r
@t

þ uj
@

@xk
ðrukÞ þ ruk

@uj
@xk

¼ @sij
@xi

þ rfj

The second and third terms on the left-hand side of this equation are now
seen to sum to zero, since they amount to the continuity Eq. (1.3a) multiplied
by the velocity uj.With this simpli¢cation, the equation that expresses con-
servation of momentum becomes

r
@uj
@t

þ ruk
@uj
@xk

¼ @sij
@xi

þ rfj ð1:4Þ

It is useful to recall that this equation came from an application of Newton’s
second law to an element of the £uid. The left-hand side of Eq. (1.4) repre-
sents the rate of change of momentum of a unit volume of the £uid (or the
inertia force per unit volume). The ¢rst term is the familiar temporal accel-
eration term, while the second term is a convective acceleration and
accounts for local accelerations (such as around obstacles) even when the
£ow is steady.Note also that this second term is nonlinear, since the velocity
appears quadratically. On the right-hand side of Eq. (1.4) are the forces
causing the acceleration. The ¢rst of these is due to the gradient of surface
shear stresses while the second is due to body forces, such as gravity,which
act on themass of the £uid.Aclear understanding of the physical signi¢cance
of each of the terms in Eq. (1.4) is essential when approximations to the full
governing equationsmust bemade.The surface-stress tensor sijhas not been
fully explained up to this point, but it will be investigated in detail in a later
section.

1.8 CONSERVATIONOF ENERGY

The principle of conservation of energy amounts to an application of the ¢rst
law of thermodynamics to a £uid element as it £ows.The ¢rst law of thermo-
dynamics applies to a thermodynamic system that is originally at rest and,
after some event, is ¢nally at rest again. Under these conditions it is stated
that the change in internal energy, due to the event, is equal to the sum of the
total workdone on the systemduring the course of the event and any heat that
was added. Although a speci¢ed mass of £uid in a lagrangian frame of refer-
encemay be considered tobe a thermodynamic system, it is, in general, never
at rest and therefore never in equilibrium. However, in the thermodynamic
sense a £owing £uid is seldom far from a state of equilibrium, and the
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apparent di⁄culty may be overcome by considering the instantaneous
energy of the £uid to consist of two parts: intrinsic or internal energy and
kinetic energy. That is, when applying the ¢rst law of thermodynamics, the
energy referred to is considered to be the sum of the internal energy per unit
mass e and the kinetic energy per unit mass 1

2 u�u. In this way the modi¢ed
form of the ¢rst law of thermodynamics that will be applied to an element of
the £uid states that the rate of change of the total energy (intrinsic plus
kinetic) of the £uid as it £ows is equal to the sum of the rate at which work is
being done on the £uid by external forces and the rate at which heat is being
added by conduction.

With this basic law in mind, we again consider any arbitrary mass of
£uid of volumeVand follow it in a lagrangian frame of reference as it £ows.
The total energy of this mass per unit volume is re þ 1

2 ru�u, so that the total
energy contained inVwill be

R
V ðre þ 1

2ru�uÞ dV . As was established in the
previous section, there are two types of external forces that may act on the
£uid mass under consideration.The work done on the £uid by these forces is
given by the product of the velocity and the component of each force that is
colinear with the velocity.That is, the work done is the scalar product of the
velocity vector and the force vector. One type of force that may act on the
£uid is a surface stress whose magnitude per unit area is represented by
the vectorP.Then the total work done owing to such forces will be

R
s u�P dS,

where S is the surface area enclosingV. The other type of force that may act
on the £uid is a body force whose magnitude per unit mass is denoted by
the vector f. Then the total work done on the £uid due to such forces will
be
R
V u�rf dV . Finally, an expression for the heat added to the £uid is

required. Let the vector q denote the conductive heat £ux leaving the control
volume.Then the quantity of heat leaving the £uidmass per unit time per unit
surface area will be q�n, where n is the unit outward normal, so that the net
amount of heat leaving the £uid per unit time will be

R
s q�n dS.

Having evaluated eachof the terms appearing in the physical law that is
to be imposed, the statement may now be written down in analytic form. In
doing so, it must be borne in mind that the physical law is being applied to a
speci¢c, though arbitrarily chosen, mass of £uid so that lagrangian deriva-
tives must be employed. In this way, the expression of the statement that the
rate of change of total energy is equal to the rate at which work is being done
plus the rate at which heat is being added becomes

D
Dt

Z
V
ðre þ 1

2ru�uÞ dV ¼ Rs u�P dS þ RV u�rf dV � Rs q�n dS
This equationmay be converted to one involving eulerian derivatives only by
use of Reynolds’ transport theorem, Eq. (1.2), in which the £uid property a is
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here the total energy per unit volume ðre þ 1
2ru�uÞ. The resulting integro-

di¡erential equation isZ
V

@

@t

�
re þ 1

2
ru�u

�
þ @

@xk

��
re þ 1

2
ru�u

�
uk

�� �
dV

¼
Z
s
u�P dS þ

Z
V
u�rf dV �

Z
s
q�n dS

The next step is to convert the two surface integrals into volume integrals so
that the arbitrariness of Vmay be exploited to obtain a di¡erential equation
only.Using the fact that the force vectorP is related to the stress tensor sij by
the equation Pj ¼ sijni , aswas shown in the previous section, the ¢rst surface
integral may be converted to a volume integral as follows:Z

s
u�P dS ¼

Z
s
ujsijni dS ¼

Z
V

@

@xi
ðujsijÞ dV

Here use has been made of Gauss’ theorem as documented in Appendix B.
Gauss’ theoremmay be applied directly to the heat-£ux term to giveZ

s
q�n dS ¼

Z
s
qjnj dS ¼

Z
V

@qj
@xj

dV

Since the stress tensor sij has been brought into the energy equation, it is
necessary to use the tensor notation from this point on.Then the expression
for conservation of energy becomesZ

V

@

@t
ðre þ 1

2rujujÞ þ
@

@xk
½ðre þ 1

2rujujÞuk �
� �

dV

¼
Z
V

@

@xi
ðujsijÞ dV þ

Z
V
ujrfj dV �

Z
V

@qj
@xj

dV

Having converted each term to volume integrals, the conservation equation
may be considered to be of the form

R
V f g dV ¼ 0,where the choice of V is

arbitrary.Then thequantity inside thebrackets in the integrandmust be zero,
which results in the following di¡erential equation:

@

@t
ðre þ 1

2rujujÞ þ
@

@xk
½ðre þ 1

2rujujÞuk � ¼
@

@xi
ðujsijÞ þ ujrfj � @qj

@xj

This equation may be made considerably simpler by using the equations
which have already beenderived, aswill nowbedemonstrated.The ¢rst term
on the left-hand side may be expanded by considered re and 1

2rujuj to be the
products (r)(e) and ðrÞð12ujujÞ, respectively.Then
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@

@t
ðre þ 1

2rujujÞ ¼ r
@e
@t

þ e
@r
@t

þ r
@

@t
ð12ujujÞ þ 1

2ujuj
@r
@t

Similarly, the second term on the left-hand side of the basic equation may be
expanded by considering reuk to be the product (e)(ruk) and 1

2rujujuk to be
the product ð12ujujÞðrukÞ.Thus,

@

@xk
½ðre þ 1

2rujujÞuk� ¼ e
@

@xk
ðrukÞ þ ruk

@e
@xk

þ 1
2ujuj

@

@xk
ðrukÞ þ ruk

@

@xk
ð12ujujÞ

In this last equation, the quantity ð@=@xkÞðrukÞ,which appears in the ¢rst and
third terms on the right-hand side, may be replaced by�@r=@t in view of the
continuity Eq. (1.3a). Hence it follows that

@

@xk
½ðre þ 1

2rujujÞuk � ¼ �e
@r
@t

þ ruk
@e
@xk

� 1
2ujuj

@r
@t

þ ruk
@

@xk
ð12ujujÞ

Now when the two components constituting the left-hand side of the basic
conservation equation are added, the two terms with minus signs above are
canceled by corresponding terms with plus signs to give

@

@t
ðre þ 1

2rujujÞ þ
@

@xk
½ðre þ 1

2rujujÞuk�

¼ r
@e
@t

þ ruk
@e
@xk

þ r
@

@t
ð12ujujÞ þ ruk

@

@xk
ð12ujujÞ

¼ r
@e
@t

þ ruk
@e
@xk

þ ruj
@uj
@t

þ rujuk
@uj
@xk

Then, noting that

@

@xi
ðujsijÞ ¼ uj

@sij
@xi

þ sij
@uj
@xi

the equation that expresses the conservation of energy becomes

r
@e
@t

þ ruk
@e
@xk

þ ruj
@uj
@t

þ rujuk
@uj
@xk

¼ uj
@sij
@xi

þ sij
@uj
@xi

þ ujrfj � @qj
@xj

Now it can be seen that the third and fourth terms on the left-hand side are
canceled by the ¢rst and third terms on the right-hand side, since these terms

Basic Conservation Laws 21



collectively amount to the product of uj with the momentum Eq. (1.4).Thus
the equation expressing conservation of thermal energy becomes

r
@e
@t

þ ruk
@e
@xk

¼ sij
@uj
@xi

� @qj
@xj

ð1:5Þ

The terms that were dropped in the last simpli¢cation were the mechanical-
energy terms.The equation of conservation of momentum, Eq. (1.4), may be
regarded as an equation of balancing forces with j as the free subscript.
Therefore, the scalar product of each force with the velocity vector, or the
multiplication by uj, gives the rate of doing work by the mechanical forces,
which is the mechanical energy. On the other hand, Eq. (1.5) is a balance of
thermal energy, which is what is left when the mechanical energy is sub-
tracted from the balance of total energy, and is usually referred to as simply
the energy equation.

As with the equation of momentum conservation, it is instructive to
interpret each of the terms appearing in Eq. (1.5) physically. The entire left-
hand side represents the rate of change of internal energy, the ¢rst termbeing
the temporal change while the second is due to local convective changes
caused by the £uid £owing from one area to another. The entire right-hand
side represents the cause of the change in internal energy. The ¢rst of these
terms represents the conversion of mechanical energy into thermal energy
due to the action of the surface stresses.Aswill be seen later, part of this con-
version is reversible and part is irreversible. The ¢nal term in the equation
represents the rate at which heat is being added by conduction fromoutside.

1.9 DISCUSSIONOFCONSERVATION EQUATIONS

The basic conservation laws, Eqs. (1.3a), (1.4), and (1.5), represent ¢ve scalar
equations that the £uid properties must satisfy as the £uid £ows. The con-
tinuity and the energy equations are scalar equations,while the momentum
equation is a vector equation which represents three scalar equations. Two
equations of statemay be added tobring the number of equations up to seven,
but our basic conservation laws have introduced seventeen unknowns.
These unknowns are the scalars r and e, the density and the internal energy,
respectively; the vectors uj and qj, the velocity and heat £ux, respectively,
each vector having three components; and the stress tensor sij,which has, in
general, nine independent components.

In order to obtain a complete set of equations, the stress tensor sij and
the heat-£ux vector qj must be further speci¢ed. This leads to the so-called
constitutive equations inwhich the stress tensor is related to the deformation
tensor and the heat-£ux vector is related to temperature gradients. Although
the latter relation is very simple, the former is quite complicated and requires
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either an intimate knowledge of tensor analysis or a clear understanding of
the physical interpretation of certain tensor quantities.For this reason, prior
to establishing the constitutive relations the tensor equivalents of rotation
and rate of shear will be established.

1.10 ROTATION ANDRATEOF SHEAR

It is the purpose of this section to consider the rotation of a £uid element
about its own axis and the shearing of a £uid element and to identify the
tensor quantities that represent these physical quantities.This is most easily
done by considering an in¢nitesimal £uid element of rectangular cross sec-
tion and observing its change in shape and orientation as it £ows.

Figure 1.5 shows a two-dimensional element of £uid (or the projection
of a three-dimensional element)whose dimensions at time t¼ 0 are dx and dy.
The £uid element is rectangular at time t¼ 0, and its centroid coincides with
the origin of a ¢xed-coordinate system. For purposes of identi¢cation, the
corners of the £uid element have been labeled A,B,C, andD.

After a short time interval dt, the centroid of the £uid element will have
moved downstream to some new location as shown in Fig. 1.5.The distance
the centroid will have moved in the x direction will be given by

FIGURE1.5 An infinitesimal element of fluid at time t ¼ 0 (indicated by ABCD) and
at time t ¼ dt (indicated by A0B0C0D0).
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Dx ¼
Z dt

0
u½xðtÞ; yðtÞ� dt

Since the values of x and ymust be close to zero for short times such as dt, the
velocity componentumaybeexpanded in aTaylor series about the point (0,0)
to give

Dx ¼
Z dt

0
uð0; 0Þ þ xðtÞ @u

@x
ð0; 0Þ þ yðtÞ @u

@y
ð0; 0Þ þ � � �

� �
dt

where the dots represents terms that are smaller than those presented and
that will eventually vanish as the limit of dt! 0 is taken. Integrating the
leading term explicitly gives

Dx ¼ uð0; 0Þdt þ
Z dt

0
xðtÞ @u

@x
ð0; 0Þ þ yðtÞ @u

@y
ð0; 0Þ þ � � �

� �
dt

¼ uð0; 0Þdt þ � � �

similarly

Dy ¼ vð0; 0Þdt þ � � �

As well as moving bodily, the £uid element will rotate and will be dis-
torted as indicated by the corners, which are labeled A0;B0;C 0, and D0 to
represent the element at time t¼ dt. The rotation of the side CD to its new
position C 0D0 is indicated by the angle da,where a is positive when measured
counterclockwise. Similarly, the rotation of the side BC to its new position
B0C 0 is indicated by the angle db, where b is positive when measured clock-
wise. Expressions for da and db in terms of the velocity components may be
obtained as follows:
From the geometry of the element as it appears at time t ¼ dt,

da ¼ tan�1 y component of D0C 0

x component of D0C 0

� �

¼ tan�1 ½vð12dx;�1
2dyÞ dt þ � � �� � ½vð�1

2dx;�1
2dyÞ dt þ � � ��

dx þ � � �
� �

where v is evaluated ¢rst at the point D, whose coordinates are ð12dx;�1
2dyÞ,

and secondly at the point C, whose coordinates are ð�1
2dx;�1

2dyÞ. The
x component of the side D0C 0 will be only slightly di¡erent from dx, and
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it turns out that the precise departure from this value need not be evaluated
explicitly.

Expanding the velocity component v in aTaylor series about the point
(0,0) results in the following expression for da:

da ¼ tan�1 ½vð0; 0Þ þ 1
2 dxð@v=@xÞð0; 0Þ � 1

2 dyð@v=@yÞð0; 0Þ þ � � �� dt
dxð1þ � � �Þ

�

�½vð0; 0Þ � 1
2 dxð@v=@xÞð0; 0Þ � 1

2 dyð@v=@yÞð0; 0Þ þ � � �� dt
dxð1þ � � �Þ

�

¼ tan�1 ½dxð@v=@xÞð0; 0Þ þ � � �� dt
dxð1þ � � �Þ

� �

¼ tan�1 ½ð@v=@xÞð0; 0Þ þ � � �� dt
ð1þ � � �Þ

� �

¼ tan�1 @v

@x
ð0; 0Þ þ � � �

� �
dt

� �

Since the argument of the arctangent is small, the entire right-hand side may
be expanded to give

da ¼ @v

@x
ð0; 0Þ þ � � �

� �
dt þ � � �

da
dt

¼ @v

@x
ð0; 0Þ þ � � �

This expression represents the change in the angle a per unit time so that in
the limit as dx, dy, and dt all tend to zero, this expression becomes

_aa ¼ @v

@x
ð0; 0Þ

where _aa is the time derivative of the angle a. By an identical procedure it fol-
lows that the time derivative of the angle b is given by

_bb ¼ @u
@y

ð0; 0Þ
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Recall that a is measured counterclockwise and b is measured clockwise.
Thus the rate of clockwise rotation of the £uid element about its centroid is
given by

1
2ð _bb� _aaÞ ¼ 1

2
@u
@y

� @v

@x

� �

Likewise the shearing action is measured by the rate at which the sides B0C 0

andD0C 0 are approaching each other and is therefore given by the quantity

1
2ð_bbþ _aaÞ ¼ 1

2
@u
@y

þ @v

@x

� �

The foregoing analysis was carried out in two dimensions which may be
considered as the projection of a three-dimensional element on the xy plane.
If the analysis is carried out in the other planes, it may be veri¢ed that the rate
of rotation of the element about its own axes and the rate of shearing are
given by

Rate of rotation ¼ 1
2

@ui
@xj

� @uj
@xi

� �
ð1:6aÞ

Rate of shearing ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
ð1:6bÞ

That is, both the rate of rotation and the rate of shearing may be represented
by tensors of rank 2. It will be noted that the rate-of-rotation tensor is anti-
symmetric and therefore has only three independent components while the
rate-of-shearing tensor is symmetric and therefore has six independent
components. These two quantities are actually the antisymmetric part and
the symmetric part of another tensor called the deformation-rate tensor, as
may be shown as follows:De¢ne the deformation-rate tensor eij as

eij ¼ @ui
@xj

¼ 1
2

@ui
@xj

� @uj
@xi

� �
þ 1
2

@ui
@xj

þ @uj
@xi

� �

That is, the antisymmetric part of the deformation-rate tensor represents the
rate of rotationof a £uid element in that £ow ¢eld about its own axeswhile the
symmetric part of the deformation-rate tensor represents the rate of shearing
of the £uid element.
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1.11 CONSTITUTIVE EQUATIONS

In this section the nine elements of the stress tensor sij will be related to the
nine elements of the deformation-rate tensor ekl by a set of parameters. All
these parameters except two will be evaluated analytically, and the remain-
ing two,which are the viscosity coe⁄cients,must be determined empirically.
In order to achieve this end, the postulates for a newtonian £uid will be
introduced directly. Water and air are by far the most abundant £uids on
earth, and they behave like newtonian £uids, as do many other common
£uids. It should be pointed out, however, that some £uids do not behave in a
newtonian manner, and their special characteristics are among the topics of
current research. One example is the class of £uids called viscoelastic £uids,
whose properties may be used to reduce the drag of a body. Since this book is
concerned with the classical fundamentals only, the newtonian £uid will be
treated directly. If the various steps are clearly understood, there should be
no conceptual di⁄culty in following the details of some of themore complex
£uids such as viscoelastic £uids.

Certain observations and postulates will now be made concerning the
stress tensor.The precise manner in which the postulates are made is largely
a mater of taste, but when the newtonian £uid is being treated, the resulting
equations are always the same. The following are the four conditions the
stress tensor is supposed to satisfy:

1. When the fluid is at rest, the stress is hydrostatic and the pressure
exerted by the fluid is the thermodynamic pressure.

2. The stress tensor sij is linearly related to the deformation-rate ten-
sor ekl and depends only on that tensor.

3. Since there is no shearing action in a solid-body rotation of the
fluid, no shear stresses will act during such a motion.

4. There are not preferred directions in the fluid, so that the fluid
properties are point functions.

Condition1 requires that the stress tensor sij be of the form

sij ¼ �pdij þ tij

where tij depends upon the motion of the £uid only and is called the shear-
stress tensor.The quantity p is the thermodynamic pressure and dij is the Kro-
necker delta. The pressure term is negative, since the sign convention being
used here is that normal stresses are positive when they are tensile in nature.

The remaining unknown in the constitutive equation for stress is the
shear-stress tensor tij. Condition 2 postulates that the stress tensor, and
hence the shear-stress tensor, is linearly related to the deformation-rate
tensor. This is the distinguishing feature of newtonian £uids. In general, the
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shear-stress tensor could depend upon some power of the velocity gradients
other than unity, and it could depend upon the velocity itself as well as the
velocity gradient.The condition postulated here can be veri¢ed experimen-
tally in simple £ow ¢elds inmost common £uids, and the results predicted for
more complex £ow ¢elds yield results that agree with physical observations.
This is the sole justi¢cation for condition 2.

There are nine elements in the shear-stress tensor tij, and each of these
elements may be expressed as a linear combination of the nine elements in
the deformation-rate tensor ekl ( just as a vector may be represented as a lin-
ear combination of components of the base vectors).That is, each of the nine
elements of tijwill in general be a linear combination of the nine elements of
ekl so that 81parameters are needed to relate tij to ekl.Thismeans that a tensor
of rank 4 is required so that the general form of tij will be, according to
condition 2,

tij ¼ aijkl
@uk
@xl

It was shown in the previous section that the tensor @uk=@xl, like any other
tensor of rank 2, could be broken down into an antisymmetric part and a
symmetric part. Here the antisymmetric part corresponds to the rate
of rotation of a £uid element and the symmetric part corresponds to the
shearing rate. According to condition 3, if the £ow ¢eld is executing a simple
solid-body rotation, there should be no shear stresses in the £uid. But for a
solid-body rotation the antisymmetric part of @uk=@xl , namely,
1
2ð@uk= @xl � @ul=@xkÞ,will not be zero.Hence, in order that condition 3may
be satis¢ed, the coe⁄cients of this part of the deformation-rate tensor must
be zero.That is, the constitutive relation for stress must be of the form

tij ¼ 1
2bijkl

@uk
@xl

þ @ul
@xk

� �

The 81 elements of the fourth-rank tensor bijkl are still undertermined, but
condition 4 has yet to be imposed.This condition is the so-called condition
of isotropy,which guarantees that the results obtained should be independent
of the orientation of the coordinate system chosen. In Appendix B, the sum-
mary of some useful tensor relations, it is pointed out that the most general
isotropic tensor of rank 4 is of the form

bijkl ¼ ldijdkl þ mðdikdjl þ dildjkÞ þ gðdikdjl � dildjkÞ

where l, m, and g are scalars.The proof of this is straightforward but tedious.
The general tensor is subjected to a series of coordinate rotations and
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in£ections, and the condition of invariance is applied. In this way the 81
quantities contained in the general tensor are reduced to three independent
quantities in the isotropic case. In the case of the fourth-rank tensor relating
the shear-stress tensor to the deformation-rate tensor, namely, bijkl, not only
must it be isotropic but it must be symmetric in view of condition 3.That is,
the coe⁄cient gmust be zero in this case so that the expression for the shear
stress becomes

tij ¼ 1
2½ldijdkl þ mðdikdjl þ dildjkÞ� @uk

@xl
þ @ul
@xk

� �

Using the fact that dkl¼ 0 unless l¼k shows that

1
2ldijdkl

@uk
@xl

þ @ul
@xk

� �
¼ ldij

@uk
@xk

in which l has been replaced by k. Likewise, replacing k by i and l by j shows
that

1
2mdikdjl

@uk
@xl

þ @ul
@xk

� �
¼ 1

2m
@ui
@xj

þ @uj
@xi

� �

and replacing l by i and k by j shows that

1
2mdildjk

@uk
@xl

þ @ul
@xk

� �
¼ 1

2m
@uj
@xi

þ @ui
@xj

� �

Hence the expression for the shear-stress tensor becomes

tij ¼ ldij
@uk
@xk

þ m
@ui
@xj

þ @uj
@xi

� �

Thus the constitutive relation for stress in a newtonian £uid becomes

sij ¼ �pdij þ ldij
@uk
@xk

þ m
@ui
@xj

þ @uj
@xi

� �
ð1:7Þ

which shows that the stress is represented by a second-order symmetric
tensor.

The nine elements of the stress tensor sij have now been expressed in
terms of the pressure and the velocity gradients, which have all been pre-
viously introduced, and two coe⁄cients l and m.These coe⁄cients cannot be
determined analytically and must be determined empirically. Up to this
point both l and m are just coe⁄cients but their nature and physical sig-
ni¢cance will be discussed in the next section.
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The second constitutive relation involves the heat-£ux vector qj,which
is due to conduction alone. Fourier’s law of heat conduction states that the
heat £ux by conduction is proportional to the negative temperature gradient
so that

qj ¼ �k
@T
@xj

ð1:8Þ

This is the constitutive equation for the heat £ux,where the proportionality
factor k in Fourier’s law is the thermal conductivity of the £uid. In using
Eq. (1.8), it is implicitly assumed that the concept of temperature, as
employed in equilibrium thermodynamics, also applies to a moving £uid.

1.12 VISCOSITYCOEFFICIENTS

It was pointed out in the previous section that the parameters l and m,which
appear in the constitutive equations for stress, must be determined experi-
mentally. It is the purpose of this section to establish a physical interpreta-
tion of these two parameters and thus show themanner inwhich they may be
evaluated.

Consider a simple shear £ow of an incompressible £uid in which the
velocity components are de¢ned by

u ¼ uðyÞ
v ¼ w ¼ 0

That is, only the x component of velocity is nonzero, and that component is a
function of y only.From the de¢nition of this £ow ¢eld the components of the
stress tensor may be evaluated from Eq. (1.7) to give

s12 ¼ s21 ¼ m
du
dy

s11 ¼ s22 ¼ s33 ¼ �p

s13 ¼ s31 ¼ s23 ¼ s32 ¼ 0

That is, the normal components of the stress are de¢ned by the thermo-
dynamic pressure, and the nonzero shear components of the stress are
proportional to the velocity gradient with the parameter m as the pro-
portionality factor. But, from Newton’s law of viscosity, the proportionality
factor between the shear stress and the velocity gradient in a simple shear
£ow is the dynamic viscosity. Hence the quantity m that appears in the con-
stitutive equation for stress is thedynamic viscosityof the £uid.Frequently the
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kinematic viscosity, de¢ned by v ¼ m=r, is used instead of the dynamic
viscosity.

The parameter l in Eq. (1.7) is usually referred to as the second viscosity
coe⁄cient. In order to establish its signi¢cance, the average normal stress
component �ppwill be calculated.

� �pp ¼ 1
3ðs11 þ s22 þ s33Þ

This average normal stress is the mechanical pressure in the £uid and it is
equal to one-third of the trace of the stress tensor. Since the mechanical
pressure is either purely hydrostatic or hydrostatic plus a component
induced by the stresses that result from the motion of the £uid, it will, in
general, be di¡erent from the thermodynamic pressure p.Using Eq. (1.7), the
mechanical pressure �ppmay be evaluated as follows:

��pp ¼ 1
3

�pþ l
@uk
@xk

þ 2m
@u
@x

� �
þ �pþ l

@uk
@xk

þ 2m
@v

@y

� ��

þ �pþ l
@uk
@xk

þ 2m
@w
@z

� ��

¼ �pþ l
@uk
@xk

þ 2
3m

@uk
@xk

¼ �pþ lþ 2
3m

� � @uk
@xk

That is, the di¡erence between the thermodynamic pressure and the
mechanical pressure is proportional to the divergence of the velocity vector.
The proportionality factor is usually referred to as the bulk viscosity and is
denoted by K.That is,

p� �pp ¼ K
@uk
@xk

where K ¼ lþ 2
3 m. Of the three viscosity coe⁄cients m, l, and K, only two

are independent and the third is de¢ned by the above equation. For pur-
poses of physical interpretation of these viscosity coe⁄cients it is preferred
to discuss m (which has already been done) and K, leaving l to be de¢ned by
l ¼ K � 2

3m.
In order to identify the physical signi¢cance of the bulk viscosity, some

of the results of the kinetic theory of gaseswill be used.Themechanical pres-
sure is ameasureof the translationalenergyof themoleculesonly,whereas the
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thermodynamic pressure is a measure of the total energy, which includes
vibrational and rotational modes of energy as well as the translational mode.
For liquids, other forms of energy are also included such as intermolecular
attraction.These di¡erent modes of molecular energy have di¡erent relaxa-
tion times, so that in a £ow ¢eld it is possible to have energy transferred
from one mode to another.The bulk viscosity is a measure of this transfer of
energy from the translational mode to the other modes, as may be seen
from the relation p� �pp ¼ Kð@uk=@xkÞ. For example, during the passage
through a shock wave the vibrational modes of energy are excited at the
expense of the translationalmodes, so that the bulk viscosity will be nonzero
in this case.

The above discussion has been for a polyatomic molecule of a liquid or
a gas. If the £uid is amonatomic gas, the onlymode of molecular energy is the
translational mode. Then, for such a gas the mechanical pressure and the
thermodynamic pressure are the same, so that the bulk viscosity is zero.
That is,

l ¼ �2
3m

which is called Stokes’ relation, so that there is only one independent viscos-
ity coe⁄cient in the case of monatomic gases. For polyatomic gases and for
liquids the departure from K¼ 0 is frequently small, and many authors
incorporate Stokes’ relation in the constitutive relation (1.7) for stress. In any
case, for incompressible £uids Eq. (1.7) shows that it is immaterial whether
l ¼ � 2

3m or not, for then the term involving l is zero by virtue of the con-
tinuity equation.

1.13 NAVIER-STOKES EQUATIONS

The equation of momentumconservation (1.4) together with the constitutive
relation for a newtonian £uid [Eqs. (1.7)] yield the famous Navier-Stokes
equations, which are the principal conditions to be satis¢ed by a £uid as it
£ows. Having obtained an expression for the stress tensor, the term @sij=@xi
which appears in Eq. (1.4) may be evaluated explicitly as follows:

@sij
@xi

¼ @

@xi
�pdij þ ldij

@uk
@xk

þ m
@ui
@xj

þ @uj
@xi

� �� �

¼ � @p
@xj

þ @

@xj
l
@uk
@xk

� �
þ @

@xi
m

@ui
@xj

þ @uj
@xi

� �� �
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where, in the ¢rst two terms, i has been replaced by j, since it is only when i¼ j
that these terms are nonzero. Substituting this result into Eq. (1.4) gives

r
@uj
@t

þ ruk
@uj
@xk

¼ � @p
@xj

þ @

@xj
l
@uk
@xk

� �
þ @

@xi
m

@ui
@xj

þ @uj
@xi

� �� �
þ rfi ð1:9aÞ

Equations (1.9a) are known as the Navier-Stokes equations, and they repre-
sent three scalar equations corresponding to the three possible values of the
free subscript j. In the most frequently encountered situations the £uid may
be assumed to be incompressible and the dynamic viscosity may be
assumed to be constant. Under these conditions the second term on the
right-hand side of Eqs. (1.9a) is identically zero and the viscous-shear term
becomes

@

@xi
m

@ui
@xj

þ @uj
@xi

� �� �
¼ m

@

@xj

@ui
@xi

� �
þ @2uj
@xi@xi

� �
¼ m

@2uj
@xi@xi

That is, the viscous-shear term is proportional to the laplacian of the velocity
vector, and the constant of proportionality is the dynamic viscosity.Then the
Navier-Stokes equations for an incompressible £uid of constant density
become

r
@uj
@t

þ ruk
@uj
@xk

¼ � @p
@xj

þ m
@2uj
@xi@xi

þ rfj ð1:9bÞ

In the special case of negligible viscous e¡ects, Eqs. (1.9a) become

r
@uj
@t

þ ruk
@uj
@xk

¼ � @p
@xj

þ rfi ð1:9cÞ

Equations (1.9c) are known as Euler equations and the £uid is called inviscid.

1.14 ENERGY EQUATION

The term sijð@uj=@xiÞwhich appears in the equation of energy conservation
(1.5) may now be evaluated explicitly by use of Eq. (1.7).

sij
@uj
@xi

¼ �pdij þ ldij
@uk
@xk

þ m
@ui
@xj

þ @uj
@xi

� �� �
@uj
@xi
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Using the fact that in the ¢rst two terms of the stress tensor i¼ j for the non-
zero elements, this expression becomes

sij
@uj
@xi

¼ �p
@uk
@xk

þ l
@uk
@xk

� �2

þm
@ui
@xj

þ @uj
@xi

� �
@uj
@xi

It will be recalled that the term sijð@uj=@xiÞ represents the work done by the
surface forces. The ¢rst term in the expression for this work done, namely,
�pð@uk=@xkÞ, represents the reversible transfer of energy due to compres-
sion.The remaining two terms are collectively called the dissipation function
and are denoted by f.That is,

F ¼ l
@uk
@xk

� �2

þm
@ui
@xj

þ @uj
@xi

� �
@uj
@xi

ð1:10Þ

The reason F is called the dissipation function is that it is a measure of the
rate at whichmechanical energy is being converted into thermal energy.This
may be readily veri¢ed by considering an incompressible £uid in a cartesian-
coordinate system.Then

F ¼ m
@ui
@xj

þ @uj
@xi

� �
@uj
@xi

¼ m
@ui
@xj

þ @uj
@xi

� �
1
2

@uj
@xi

� @ui
@xj

� �
þ 1
2

@uj
@xi

þ @ui
@xj

� �� �

¼ 1
2m

@ui
@xj

þ @uj
@xi

� �2

which is a positive de¢nite quantity.This shows that the dissipation function
always works to increase irreversibly the internal energy of an incompres-
sible £uid.

In terms of the dissipation function, the total work done by the surface
stresses is given by

sij
@uj
@xi

¼ �p
@uk
@xk

þ F

Using this result and the constitutive relation for the heat £ux [Eq. (1.8)] in
the equationof conservationof energy,Eq. (1.5),yields the energy equation for
a newtonian £uid.
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r
@e
@t

þ ruk
@e
@xk

¼ �p
@uk
@xk

þ @

@xj
k
@T
@xj

� �
þ F ð1:11Þ

whereF is de¢ned by Eq. (1.10).

1.15 GOVERNING EQUATIONS FOR NEWTONIAN
FLUIDS

The equations that govern themotion of a newtonian £uid are the continuity
equation (1.3a), the Navier-Stokes equations (1.9a), the energy equation
(1.11), and equations of state. For purposes of summary and discussion these
equations will be repeated here.

@r
@t

þ @

@xk
ðrukÞ ¼ 0 ð1:3aÞ

r
@uj
@t

þ ruk
@uj
@xk

¼ � @p
@xj

þ @

@xj
l
@uk
@xk

� �
þ @

@xi
m

@ui
@xj

þ @uj
@xi

� �� �
þ rfi ð1:9aÞ

r
@e
@t

þ ruk
@e
@xk

¼ �p
@uk
@xk

þ @

@xj
k
@T
@xj

� �
þ l

@uk
@xk

� �2

þm
@ui
@xj

þ @uj
@xi

� �
@uj
@xi
ð1:11Þ

p ¼ pðr;T Þ ð1:12Þ

e ¼ eðr;T Þ ð1:13Þ

The last two equations are general representations of the thermal and caloric
equations of state, respectively.Themost frequently encountered formof the
thermal equation of state is the ideal-gas law p¼ rRT, while the most fre-
quently encountered form of the caloric equation of state is e ¼ CvT ,where
Cv is the speci¢c heat at constant volume.

Thepreceding set of equations represents sevenequations that are tobe
satis¢ed by seven unknowns. Each of the continuity, energy, and state equa-
tions supplies one scalar equation,while the Navier-Stokes equations supply
three scalar equations.The seven unknowns are the pressure, density, inter-
nal energy,temperature, and velocity components, that is,p, r,e,T, anduj.The
parameters l, m, and k are assumed to be known from experimental data, and
theymaybe constants or speci¢ed functionsof the temperature andpressure.
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It is not always necessary to solve the complete set of equations in order
to de¢ne the £ow ¢eld analytically. For example, if compressible e¡ects are
thought to be unimportant in the £ow ¢eld being considered, the incom-
pressible form of the governing equations may be used. The continuity
equation and the Navier-Stokes equations are them simpler, as indicated by
Eqs. (1.3c) and (1.9b), respectively, but the greatest simpli¢cation comes from
the fact that the energy equation is mathematically uncoupled from these
two equations.The continuity and Navier-Stokes equations o¡er four scalar
equations involving only p and uj.That is, the pressure and velocity ¢eldsmay
be established without reference to the energy equation. Having done this,
the temperature ¢eld may be established,which may have the trivial solution
T¼constant. In cases of forced convection heat transfer in which the £ow is
turbulent, the continuity and Navier^Stokes equations are frequently
replaced by an empirical velocity distribution and the energy equation is
solved to yield the temperature distribution. More frequently, however,
thermal e¡ects are unimportant and the continuity and Navier-Stokes
equations alone must be solved.

Themost common type of body force acting on a £uid is due to gravity,
so that the body force fj that appears in the Navier-Stokes equations is
de¢ned in magnitude and direction by the acceleration due to gravity.
Sometimes, however, electromagnetic e¡ects are important, and in such
cases f ¼ ðrcEþ J� BÞ, which is the Lorentz force. Here rc is the charge
density, E is the electric ¢eld vector, J is the electric current density, and B is
the magnetic ¢eld vector. The electric and magnetic ¢elds themselves must
obey a set of physical laws which are expressed by Maxwell’s equations.The
solution to such problems requires the simultaneous solution of the equa-
tions of £uid mechanics and of electromagnetism. One special case of this
type of coupling is the ¢eld known asmagnetohydrodynamics.

It may also be pointed out that the governing equations summarized
here contain the equations of hydrostatics and heat conduction as special
cases. If the £uid is at rest, the velocity componentswill all be zero,so that the
Navier-Stokes equations (1.9a) become

0 ¼ � @p
@xj

þ rfj

If the body force fj is now set equal to the gravitational force, the equation of
hydrostatics is obtained. For example, if gravity acts in the negative z direc-
tion, fj ¼ �gez,where ez is the unit vector in the z direction.Then

@p
@xj

¼ �rgez
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which shows that @p=@x ¼ @p=@y ¼ 0 and @p=@z ¼ �rg . In the case of zero
velocity the energy equation becomes

r
@e
@t

¼ @

@xj
k
@T
@xj

� �

Introducing the enthalpy h ¼ e þ p=r and using the fact that p and r are
constant in the stationary £uid gives

r
@h
@t

¼ @

@xj
k
@T
@xj

� �

If the £uid is thermally perfect,hwill be a function of Tonly, so that

@h
@t

¼ @h
@T

@T
@t

¼ Cp
@T
@t

Where Cp is the speci¢c heat at constant pressure,which is the appropriate
process for this case.Then the energy equation becomes

rCp
@T
@t

¼ @

@xj
k
@T
@xj

� �

which is the equation of heat conduction.

1.16 BOUNDARYCONDITIONS

The Navier-Stokes equations are, mathematically, a set of three elliptic,
second-order partial di¡erential equations.The appropriate type of bound-
ary conditions are therefore Dirichlet or Neumann conditions on a closed
boundary. Physically, this usually amounts to specifying the velocity on all
solid boundaries.Within the continuum approximation the experimentally
determined boundary condition is that there is no slip between the £uid and a
solid boundary at the interface.On the molecular scale, slippage is possible,
but it is con¢nedwithin a layer whose dimensions are of the sameorder as the
mean free path between the molecules.Then if U represents the velocity of a
solid boundary, the boundary condition that should be imposed on our con-
tinuum velocity is

u ¼ U on solid boundaries ð1:14Þ

In the case of an in¢nite expanse of £uid, one common form of Eq. (1.14) is
that u!0 as x!1.
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If thermal e¡ects are included, a boundary condition on the tempera-
ture is also required. As in the case of heat-conduction problems, this may
take the formof specifying the temperatureor theheat£uxonsomeboundary.

PROBLEMS

1.1 Derive the continuity equation from first principles using an infinitesi-
mal control volume of rectangular shape and having dimensions
ðdx; dy; dzÞ. Identify the net mass flow rate through each surface of this
element as well as the rate at which the mass of the element is increas-
ing. The resulting equation should be expressed in terms of the carte-
sian coordinates (x, y, z, t), the cartesian velocity components (u, v,w),
and the fluid density r.

1.2 Derive the continuity equation from first principles using an infini-
tesimal control volume of cylindrical shape and having dimensions
ðdR;Rdy; dzÞ.Identify thenetmass flow rate througheachsurfaceof this
element aswell as the rate at which themassof the element is increasing.
The resulting equation should be expressed in terms of the cylindrical
coordinates (R, y, z, t), the cylindrical velocity components
ðuR; uy; uzÞ, and the fluid density r.

1.3 Derive the continuity equation from first principles using an infinitesi-
mal control volume of spherical shape and having dimensions
ðdr; r dy; r sin y doÞ. Identify the netmass flow rate througheach surface
of this element as well as the rate at which the mass of the element is
increasing.The resulting equation should be expressed in terms of the
cylindrical coordinates (r, y, o, t), the cylindrical velocity components
ður ; uy; uoÞ, and the fluid density r.

1.4 Obtain the continuity equation in cylindrical coordinates by expanding
the vector form in cylindrical coordinates. To do this, make use of the
following relationships connecting the coordinates and the velocity
components in cartesian and cylindrical coordinates:

x ¼ R cos y

y ¼ R sin y

z ¼ z

u ¼ uR cos y� uy sin y

v ¼ uR sin yþ uy cos y

w ¼ uz
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1.5 Obtain the continuity equation in spherical coordinates by expanding
the vector form in spherical coordinates. Make use of the vector rela-
tionships outlined in Appendix A and follow the procedures used in
Prob.1.4.

1.6 Evaluate the radial component of the inertia term ðu �HÞu in cylindrical
coordinates using the following identities:

x ¼ R cos y

y ¼ R sin y

uex þ vey ¼ uReR þ uyey

and any other vector identities from Appendix A as required. Here R
and y are cylindrical coordinates, uR and uy are the corresponding
velocity components, and eR; ey are the unit base vectors.

1.7 Evaluate the radial component of the inertia term ðu�HÞu in spherical
coordinates by use of the vector identities given in Appendix A.

1.8 Start with the shear stress tensor tij.Write out the independent com-
ponents of this tensor in cartesian coordinates ðx; y; zÞ using the carte-
sian representation ðu; v;wÞ for the velocity vector. Specialize these
expressions for the case of a monatomic gas for which the Stokes rela-
tion applies.

1.9 Write out the expression for the dissipation function, F, for the same
conditions and using the same notation as defined in Prob.1.8.

1.10 Write out the equations governing the velocity and pressure in steady,
two-dimensional flow of an inviscid, incompressible fluid in which the
effects of gravitymay be neglected. If the fluid is stratified, the density r
will depend, in general, on both x and y. Show that the transforma-
tion:

u� ¼
ffiffiffiffiffi
r
r0

r
u

v� ¼
ffiffiffiffiffi
r
r0

r
v

in which r0 is a constant reference density, transforms the governing
equations into those of a constant-density fluid whose velocity com-
ponents are u� and v�.
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2

Flow Kinematics

This chapter explores some of the results that may be deduced about the
nature of a £owing continuum without reference to the dynamics of the
continuum.

The ¢rst topic, £ow lines, introduces the notions of streamlines, path-
lines, and streaklines.These concepts not only are useful for £ow-visualiza-
tion experiments, but they supply the means by which solutions to the
governing equations may be interpreted physically.

The concepts of circulation and vorticity are then introduced.
Although these quantities are treated only in a kinematic sense at this stage,
their full usefulnesswill become apparent in the later chapterswhen they are
used in the dynamic equations of motion.

The concept of the streamline leads to the concept of a stream tube
or a stream ¢lament. Likewise, the introduction of the vorticity vector
permits the topic of vortex tubes and vortex ¢laments to be discussed.
Finally, this chapter ends with a discussion of the kinematics of vortex
¢laments or vortex lines. In this treatment, a useful analogy with the £ow
of an incompressible £uid is used. The results of this study form part
of the so-called Helmholtz equations, the remaining parts being taken up
in the next chapter, which deals with, among other things, the dynamics
of vorticity.
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2.1 FLOW LINES

Three types of £ow lines are used frequently for £ow-visualization purposes.
These £ow lines are called streamlines, pathlines, and streaklines, and in a
general £ow ¢eld they are all di¡erent.The de¢nitions and equations of these
various £ow lines will be obtained separately below.

Streamlines

Streamlines are lines whose tangents are everywhere parallel to the velocity
vector. Since, in unsteady £ow, the velocity vector at a given point will
change both its magnitude and its direction with time, it is meaningful to
consider only the instantaneous streamlines in the case of unsteady £ows.

In order to establish the equations of the streamlines in a given £ow
¢eld,consider ¢rst a two-dimensional £ow ¢eld inwhich the velocity vector u
has components u and v in the x and ydirections, respectively.Then,by virtue
of the de¢nition of a streamline, its slope in the xy plane, namely, dy=dx, must
be equal to that of the velocity vector, namely, v=u.That is, the equation of the
streamline in the xy plane is

dy
dx

¼ v

u

where, in general, both u and vwill be functions of x and y. Integration of this
equation with respect to x and y, holding t ¢xed,will then yield the equation
of the streamline in the xy plane at that instant in time.

In the case of a three-dimensional £ow ¢eld, the foregoing analysis is
valid for the projection of the velocity vector on the xy plane. By similarly
treating the projections on the xz plane and on the yz plane, the slopes of the
streamlines are found to be

dz
dx

¼ w
u

dz
dy

¼ w
v

on the xz and yz planes, respectively. These three equations de¢ning the
streamline may be written in the form

dy
v
¼ dx

u
dz
w

¼ dx
u

dz
w

¼ dy
v
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Written in this form, it is clear that these three equationsmay be expressed in
the following, more compact form:

dx
u

¼ dy
v
¼ dz

w

Integration of these equations for ¢xed twill yield, for that instant in time, an
equation of the form z ¼ zðx; yÞ,which is the required streamline.The easiest
way of carrying out the required integration is to try to obtain the parametric
equations of the curve z ¼ zðx; yÞ in the form x ¼ xðsÞ, y ¼ yðsÞ, and z ¼ zðsÞ.
Elimination of the parameter s among these equations will then yield the
equation of the streamline in the form z ¼ zðx; yÞ.

Thus a parameter s is introduced whose value is zero at some reference
point in space and whose value increases along the streamline. In terms
of this parameter the equations of the streamline become

dx
u

¼ dy
v
¼ dz

w
¼ ds

These three equations may be combined in tensor notation to give

dxi
ds

¼ uiðxi; tÞ t fixed ð2:1Þ

in which it is noted that if the velocity components depend upon time, the
instantaneous streamline for any ¢xed value of t is considered. If the
streamline that passes through the point ðx0; y0; z0Þ is required, Eqs. (2.1) are
integrated and the initial conditions that when s ¼ 0, x ¼ x0, y ¼ y0, and
z ¼ z0 are applied.This will result in a set of equations of the form

xi ¼ xiðx0; y0; z0; t; sÞ

which, as s takes on all real values, traces out the required streamline.
As an illustration of the determination of streamline patterns for a

given £ow ¢eld, consider the two-dimensional £ow ¢eld de¢ned by

u ¼ xð1þ 2tÞ
v ¼ y

w ¼ 0

From Eqs. (2.1), the equations to be satis¢ed by the streamlines in the xy
plane are
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dx
ds

¼ xð1þ 2tÞ
dy
ds

¼ y

Integration of these equations yields

x ¼ C1eð1þ2tÞs

y ¼ C2es

which are the parametric equations of the streamlines in the xy plane. In
particular, suppose the streamlines passing through the point (1; 1) are
required.Using the initial conditions that when s ¼ 0, x ¼ 1and y ¼ 1 shows
that C1 ¼ C2 ¼ 1.Then the parametric equations of the streamlines passing
through the point (1, 1) are

x ¼ eð1þ2tÞs

y ¼ es

The fact that the streamlines change with time is evident from the preceding
equations. Suppose the streamline passing through the point (1, 1) at time
t ¼ 0 is required; then

x ¼ es

y ¼ es

Hence the equation of the streamline is

x ¼ y

This streamline is shown in Fig. 2.1 together with other £ow lines which are
discussed below.

Pathlines

Apathline is a line traced out in timeby a given £uid particle as it £ows.Since
the particle under consideration is moving with the £uid at its local velocity,
pathlines must satisfy the equations

dxi
dt

¼ uiðxi; tÞ ð2:2Þ

The equation of the pathline that passes through the point ðx0; y0; z0Þ at time
t ¼ 0will then be the solution to Eq. (2.2),which satis¢es the initial condition
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that when t ¼ 0, x ¼ x0, y ¼ y0, and z ¼ z0.The solution will therefore yield a
set of equations of the form

xi ¼ xiðx0; y0; z0; tÞ

which, as t takes on all values greater than zero, will trace out the required
pathline.

As an illustration of the manner in which the equation of a pathline is
obtained, consider again the £ow ¢eld de¢ned by

u ¼ xð1þ 2tÞ
v ¼ y

w ¼ 0

From Eqs. (2.2), the di¡erential equations to be satis¢ed by the pathlines are

dx
dt

¼ xð1þ 2tÞ
dy
dt

¼ y

FIGURE2.1 Comparison of the streamline through the point (1, 1) at t ¼ 0 with the

pathline of a particle that passed through the point (1, 1) at t ¼ 0 and the streakline
through the point (1, 1) at t ¼ 0 for the flow field u ¼ xð1þ 2tÞ; v ¼ y;w ¼ 0.
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Integration of these equations gives

x ¼ C1etð1þtÞ

y ¼ C2et

These are the parametric equations of all the pathlines in the xy plane for this
particular £ow ¢eld. In particular, if the pathline of the particle that passed
through the point (1, 1) at t ¼ 0 is required, these parametric equations
become

x ¼ etð1þtÞ

y ¼ et

Eliminating t from these equations shows that the equation of the required
pathline is

x ¼ y1þlog y

This pathline is shown in Fig. 2.1, from which it will be seen that the
streamline that passes through (1, 1) at t ¼ 0 does not coincide with
the pathline for the particle that passed through (1, 1) at t ¼ 0.

Streaklines

A streakline is a line traced out by a neutrally buoyant marker £uid that is
continuously injected into a £ow ¢eld at a ¢xed point in space. The marker
£uid may be smoke (if the main £ow involves air or some other gas) or a dye
(if the main £ow involves water or some other liquid).

A particle of the marker £uid that is at the location ðx; y; zÞ at time t
must have passed through the injection point ðx0; y0; z0Þ at some earlier time
t ¼ t. Then the time history of this particle may be obtained by solving the
equations for the pathline [Eqs. (2.2)] subject to the initial conditions that
x ¼ x0, y ¼ y0, and z ¼ z0 when t ¼ t.Then as t takes on all possible values in
the range �1 � t � t, all £uid particles on the streakline will be obtained.
That is, the equation of the streakline through the point ðx0; y0; z0Þ is obtained
by solving Eqs. (2.2) subject to the initial conditions that when t ¼ t, x ¼ x0,
y ¼ y0, and z ¼ z0.This will yield an expression of the form

xi ¼ xiðx0; y0; z0; t; tÞ

Then as t takes on the values t � t, these equations will de¢ne the instanta-
neous location of that streakline.
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As an illustrative example, consider the £ow ¢eld that was used to
illustrate the streamline and the pathline.Then the equations to be solved for
the streakline are

dx
dt

¼ xð1þ 2tÞ
dy
dt

¼ y

which integrate to give
x ¼ C1etð1þtÞ

y ¼ C2et

Using the initial conditions that x ¼ y ¼ 1 when t ¼ t, these equations
become

x ¼ etð1þtÞ�tð1þtÞ

y ¼ et�t

These are the parametric equations of the streakline that passes through the
point (1, 1), and they are valid for all times t. In particular, at t ¼ 0 these
equations become

x ¼ e�tð1þtÞ

y ¼ e�t

Eliminating t from these parametric equations shows that the equationof the
streakline that passes through the point (1, 1) is, at time t ¼ 0,

x ¼ y1�log y

This streakline is shown in Fig. 2.1along with the streamline and the pathline
that were obtained for the same £ow ¢eld. It will be noticed that none of the
three £ow lines coincide.

2.2 CIRCULATION ANDVORTICITY

The circulation contained within a closed contour in a body of £uid is de¢ned
as the integral around the contour of the component of the velocity vector
that is locally tangent to the contour.That is, the circulation G is de¢ned as

G ¼
I
^ u · d l ð2:3Þ
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where dl represents an element of the contour. The integration is taken
counterclockwise around the contour, and the circulation is positive if this
integral is positive.

The vorticity of an element of £uid is de¢ned as the curl of its velocity
vector.That is, the vorticityv is de¢ned by

v ¼ =� u ð2:4Þ

In tensor notation, Eqs. (2.4) may be written in the form

oi ¼ �eijk
@uj
@xk

¼ @uk
@xj

� @uj
@xk

� �

From this de¢nition it is evident, by comparison with Eq. (1.6a), that the
vorticity vector is numerically twice the angular speed of rotation of the £uid
element about its own axes. That is, the vorticity is equal to twice the anti-
symmetric part of the deformation-rate tensor ejk. It should be noted that a
£uid element may travel on a circular streamline while having zero vorticity.
Vorticity is proportional to the angular velocity of a £uid element about its
principal axes, not that of the center of gravity of the element about some
reference point. Thus a particle traveling on a circular streamline will have
no vorticity, provided that it does not revolve about its center of gravity as it
moves.

The vorticity contained in a £uid element is related to the circulation
around the element. This relationship may be obtained from an application
of Stokes’ theorem to the de¢nition of circulation, as follows:FromEq. (2.3),

G ¼
I
^ u · dl

¼
Z
A
ð=� uÞ · n dA

where the contour integral has been converted to a surface integral by use of
Stokes’ theorem, in which A is the area de¢ned by the closed contour around
which the circulation is calculated and n is the unit normal to the surface.
Finally, invoking the de¢nition of the vorticity vector, this relationship
becomes

G ¼
Z
A
v · n dA ð2:5Þ

Equation (2.5) shows that, for arbitrary choices of contours and enclosing
areasA, ifv ¼ 0, thenG ¼ 0 and vice versa.Flows for whichv ¼ 0 are called
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irrotational, and £ows for which this is not so are called rotational. The dis-
tinction between rotational and irrotational £ow ¢elds is an important one
from the analytic point of view, as will be seen in later chapters.

2.3 STREAM TUBESANDVORTEX TUBES

The concept of a streamline,which was introduced in an earlier section,may
be used to de¢ne a stream tubewhich is a regionwhose sidewalls aremade up
of streamlines. For any closed contour in a £ow ¢eld, each point on the con-
tour will have a streamline passing through it. Then, by considering all
points on the contour, a series of streamlines are obtained that form a sur-
face, and this surface is called a stream tube. Figure 2.2a shows a length of
stream tube de¢ned by a contour whose area isA1.The corresponding area at
some other section is shown asA2, and in generalA2 will be di¡erent fromA1
and the shapes of the two cross sections of the stream tube will be di¡erent.
If the cross section of a stream tube is in¢nitesimally small, the stream tube is
usually referred to as a stream ¢lament.

FIGURE 2.2 (a) Stream tube and (b) vortex tube subtended by a contour of area A1

in a flow field.
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By analogy with streamlines and stream tubes, the useful concepts
of vortex lines and vortex tubes may be introduced. A vortex line is a line
whose tangents are everywhere parallel to the vorticity vector.Then for any
closed contour in a £ow ¢eld, each point on the contour will have a vortex
line passing through it, and the series of vortex lines de¢ned by the closed
contour form a vortex tube. Figure 2.2b shows a length of vortex tube de¢ned
by a contour whose area is A1. The cross-sectional area and shape at any
other section of the vortex tube will, in general, be di¡erent. A vortex tube
whose area is in¢nitesimally small is usually referred to as a vortex ¢lament.

2.4 KINEMATICS OF VORTEX LINES

Certain properties of £ow lines may be established by studying the kine-
matics of vortex lines.The results so obtained formpart of what is sometimes
referred to as the Helmholtz theorems of vorticity. The other parts of the
Helmholtz theorems involve the dynamics of vorticity, which will be taken
up in the next chapter.

Equation (2.4) de¢nes the vorticity vector as the curl of the velocity
vector. Since the divergence of the curl of any vector is identically zero, it
follows that

= ·v ¼ 0

Since the vorticity vector is divergence-free, it follows that there can be no
sources or sinks of vorticity in the £uid itself.That is,vortex linesmust either
form closed loops or terminate on the boundaries of the £uid. The bound-
aries of the £uid may be either a solid surface or a free surface.

The fact that the vorticity vector is divergence-free leads to an analogy
with the £ow of an incompressible £uid. In this analogy the counterpart
of the velocity vector is the vorticity vector, and the counterpart of the
volume £ow rate is the circulation. To establish this analogy, a sequence of
operations will be performed ¢rst on the velocity vector for an incompres-
sible £ow ¢eld and then on the vorticity vector.

The continuity equation for an incompressible £uid is

= · u ¼ 0

Integrating this expression over some volume V givesZ
V
= · u dV ¼ 0
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By use of Gauss’ theorem this volume integral may be converted to the
equivalent surface integral Z

s
u · n ds ¼ 0

where the surface s encloses the volumeV. Now consider the surface s to be
the entire outer surface of an element of a stream tube or stream ¢lament, as
shown in Fig. 2.2a, including the ends. Then, since u · n ¼ 0 on the walls
of the stream tube by de¢nition, it follows thatZ

A1

u · n ds þ
Z
A2

u · n ds ¼ 0

Since n is de¢ned as the outward unit normal,Z
A1

u · n ds ¼ �Q1

and Z
A2

u · n ds ¼ Q2

where Q1 is volume £ow rate crossing the area A1 and Q2 is the volume £ow
rate crossing the area A2.That is, the fact that the vector u is divergence-free
leads to the result

Q1 ¼ Q2

which states that the volume of £uid crossing the area A1 per unit time is
equal to that crossing the area A2 per unit time. Since the £uid was assumed
to be incompressible, this result appears intuitively obvious.

Turning now to the vorticity vector, it was shown that

= ·v ¼ 0

so that
Z
V
= ·v dV ¼ 0

and
Z
s
v · n ds ¼ 0
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where the surface s enclosed the volumeV. Now consider the surface s to be
the entire outer surface of an element of a vortex tube or a vortex ¢lament as
shown in Fig. 2.2b, including the ends. By de¢nition of the vortex lines that
make up the surface of the vortex tube, v · n ¼ 0 on the walls of the vortex
tube.Then Z

A1

v · n ds þ
Z
A2

v · n ds ¼ 0

But from Eq. (2.5), Z
A1

v · n ds ¼ �G1

and
Z
A2

v · n ds ¼ G2

Hence the fact thatv is divergence-free results in the condition

G1 ¼ G2

That is, the circulation around the limiting contour of the area A1 is equal to
that around A2. Alternatively, this result may be stated in the form that the
circulation at each cross-section of a vortex tube is the same. This means
that if the cross-sectional area of the vortex tube increases, the average
value of the vorticity across that section must decrease, just as the average
velocity would decrease to satisfy continuity. In fact, the result G1 ¼ G2 may
be put in the form of the simple, one-dimensional continuity equation. If o1
denotes the average vorticity across the area A1 and o2 denotes that across
A2, the result Z

A1

v · n ds þ
Z
A2

v · n ds ¼ 0

becomes o1A1 ¼ o2A2 ð2:6Þ

The fact that the vorticity vector v is divergence-free means that vor-
tex tubes must terminate on themselves, at a solid boundary or at a free sur-
face. Smoke rings terminate on themselves, while a vortex tube in a free
surface £owmay have one end at the solid boundary forming the bottom and
the other end at the free surface.
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PROBLEMS

2.1 Consider the two-dimensional flow field defined by the following
velocity components:

u ¼ v

1þ t
v ¼ 1 w ¼ 0

For this flow field find the equation of:
(a) The streamline through the point (1, 1) at t ¼ 0:
(b) The pathline for a particle released at the point (1, 1) at t ¼ 0:
(c) The streakline at t ¼ 0 that passes through the point (1, 1).

2.2 A two-dimensional flow field has the following velocity components:

u ¼ xð1þ tÞ v ¼ 1 w ¼ 0

Determine the following quantities for this flow field:
(a) The equation of the streamline that passes through the point (1, 1)

as seen at t ¼ 0.
(b) The equation of the pathline for a particle released at the point

(1, 1) at time t ¼ 0.
(c) The equation of the streakline that passes through the point (1, 1)

as seen at t ¼ 0.
(d) The density on a particular streamline in this flow has the value

r0, which is a constant, at time t ¼ 0. Find an expression for the
density r at any subsequent time t on the same streamline.

2.3 Show that the streamlines and particle paths coincide for the flow
ui ¼ xi=ðlþ tÞ. (From Rutherford Aris,Vectors, Tensors, and the Basic
Equations of Fluid Mechanics, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1962).

2.1 The velocity components for a particular flow field are as follows:

u ¼ 16x2 þ y v ¼ 10 w ¼ yz2

(a) Determine the circulation, G, for this flow field around the
following contour by integrating the velocity around it counter-
clockwise:

0 � x � 10 y ¼ 0

0 � y � 5 x ¼ 10

0 � x � 10 y ¼ 5

0 � y � 5 x ¼ 0
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(b) Calculate the vorticity vectorv, for the given flow field and hence
evaluate:

Z
A
v · n dA

whereA is the area of the rectangle defined in (a), and n is the unit
normal to that area. Compare the result obtained in (b) with that
obtained in (a).

2.5 Consider the two-dimensional velocity distribution defined as follows:

u ¼ � x
x2 þ y2

v ¼ y
x2 þ y2

Determine the circulation for this flow field around the following con-
tour by integrating around it counterclockwise:

�1 � x � þ1 y ¼ �1
�1 � y � þ1 x ¼ þ1
�1 � x � þ1 y ¼ þ1
�1 � y � þ1 x ¼ �1

2.6 A particular three-dimensional flow field has the following velocity
components:

u ¼ 9x2 þ 2y v ¼ 10x w ¼ �2yz2

(a) Using the same contour as defined in Prob. 2.5 on the plane z ¼ 5,
determine the circulation for the given flow field.

(b) Calculate the vorticity vector for the given flow field at any point
(x, y) on the plane z ¼ 5.

(c) Using the value obtained in (b) for the velocity vector v on the
plane z ¼ 5, evaluate the following integral:Z

A
v · n dA

where A is the area of the rectangle defined in (a) and n is the unit
normal to that area in the positive z direction.Compare the result
obtained in (c) with that obtained in (a).

2.7 The velocity components for a particular two-dimensional flow field
are defined as follows:

u ¼ � y
x2 þ y2

v ¼ x
x2 þ y2
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(a) Using the same contour as defined in Prob. 2.5, determine the
circulation for the given flow field.

(b) Calculate the vorticity vector for the given flow field at any point
(x,y).

(c) Calculate the divergence of the velocity vector for the given flow
field at any point (x,y).

2.8 Calculate the vorticity at any point (R, y) for each of the following two-
dimensional flow fields:
(a) uR ¼ 0; uy ¼ oR:
(b) uR ¼ 0; uy ¼ G=2pR:
In the above, R and y are cylindrical coordinates while o and G are
constants.
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3

Special Forms of the Governing
Equations

Some alternative forms of the governing equations, as derived inChap.1,will
be discussed here.The results are all obtained from the governing equations
under various degrees of approximation such as negligible viscous e¡ects.
Some of the results are frequently referred to as theorems. They are used
either as alternatives to the general equations derived in Chap. 1, under the
speci¢ed restrictions, or as supplementary information to these equations.

The ¢rst result established is Kelvin’s theorem. This theorem estab-
lishes the conditions under which irrotational motion remains irrotational
and so justi¢es the simplifying methods of analysis that are utilized for irr-
otational £ows. Then the Bernoulli equations are derived. These equations
are integrals of the Euler equations under certain conditions.They are used
to relate the pressure and velocity ¢elds when the velocity is established
separately from, for example, the condition of irrotationality. Crocco’s
equation is derived next.This equation relates the entropy of the £uid to the
vorticity and shows that under certain conditions isentropic £ows are irro-
tational, and vice versa.Finally, the vorticity equation is derived for a £uid of
constant density and viscosity. This equation is useful in the study of rota-
tional £ows.
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3.1 KELVIN’S THEOREM

This theorem states that for an inviscid £uid inwhich the density is constant,
or inwhich the pressuredependson thedensity alone,and for which any body
forces that exist are conservative, the vorticity of each £uid particle will be
preserved. Kelvin’s theorem covers the remainder of the Helmholtz theo-
rems of vorticity that were not treated in Sec. 2.4 during the discussion of the
kinematics of vortex lines. Although Kelvin’s theorem appears to be kine-
matic in nature, the dynamic equations of motion are required in the proof.

Suppose that any body force fj per unit mass that may act on the £uid is
conservative, such as gravity.Then fj may be written as the gradient of some
scalar functionG, giving

fj ¼ @G
@xj

Then, fromEqs. (1.9c), the equations of motion for an inviscid £uid subjected
to only conservative body forces are

r
@uj
@t

þ ruk
@uj
@xk

¼ � @p
@xj

þ r
@G
@xj

Or, in terms of the material derivative,

Duj
Dt

¼ � 1
r
@p
@xj

þ @G
@xj

It is this form of the momentum equation,which is valid for an inviscid £uid
subjected to only conservative body forces, that will be used to prove
Kelvin’s theorem.

In order to determine the rate of change of vorticity associated with a
given £uid element, the material derivative of the circulation G will be cal-
culated. From Eq. (2.3),

DG
Dt

¼ D
Dt

I
^ uj dxj

¼
I
^

Duj
Dt

dxj þ uj
DðdxjÞ
Dt

� �

The quantity DðdxjÞ=Dt is the material derivative of an element dxj of the
contour around which the circulation is to be calculated. Its value may be
established as follows:
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DðdxjÞ
Dt

¼ d
Dxj
Dt

� �
¼ d

@xj
@t

þ uk
@xj
@xk

� �
¼ duj

Here the material derivative has been converted into its eulerian equivalent,
using Eq. (1.1), in which t and the spatial coordinates are independent.Thus
@xj=@t ¼ 0 and @xj=@xk ¼ djk , which is zero unless k ¼ j, at which time its
value is unity.This shows that the value ofDxj=Dt is uj and hence the value of
DðdxjÞ=Dt is duj. In this way the expression for the rate of change of circula-
tion becomes

DG
Dt

¼
I
^

Duj
Dt

dxj þ uj duj

� �

The quantity Duj=Dt will now be eliminated from this expression by using
the momentum equations that were derived above for an inviscid £uid in
which any body forces were conservative. Thus the rate of change of circu-
lation becomes

DG
Dt

¼
I
^ � 1

r
@p
@xj

dxj þ @G
@xj

dxj þ ujduj

� �

¼
I
^ � dp

r
þ dG þ 1

2
dðujujÞ

� �

where it has been observed that ð@p=@xjÞdxj ¼ dp, which is the total spatial
variation of p and likewise ð@G=@xjÞdxj ¼ dG. It is now observed that, since
the integration is to be carried out around a closed contour, the integral of dG
and that of dðujujÞ are both zero, since the body force and the velocity are
both assumed to be single-valued.Then

DG
Dt

¼ �
I
^
dp
r

Now if r¼ a constant, the remaining integral is zero for the same reason that
the other integrals were zero. However, this integral is zero under less
restrictive conditions also. Suppose the pressure pmay be considered to be a
function of the density r only as, for example, in isentropic £ows. Then for
some function g,

p ¼ gðrÞ
so that

dp ¼ g 0ðrÞdr
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The expression forDG=Dt now becomes

DG
Dt

¼ �
I
^
g 0ðrÞ
r

dr

That is, this integral falls into the same category as the two previous inte-
grals, and its value around any closed contour is zero. This gives the result
known asKelvin’s theorem:

DG
Dt

¼ 0 ð3:1Þ

Equation (3.1) says that if we follow a given contour as it £ows, the total vor-
ticity inside that contour will not change. Recall that the right-hand side of
Eq. (3.1) could be proved to be zero by considering the £uid to be inviscid, the
body forces to be conservative, and either the density to be constant or the
pressure to be a function of the density only.Relaxing any of these conditions
leads to, in general, a nonzero term on the right-hand side of Eq. (3.1).Thus it
may be deduced that the total vorticity may be changed by the action of
viscosity, the application of nonconservative body forces, or density varia-
tions that are not simply related to the pressure variation.

It should be noted that Eq. (3.1) applies to a simply connected region.
That is, for any closed contour in the £uid that contains only £uid, there will
be some de¢nite value of the circulation G. Equation (3.1) asserts that under
the conditions speci¢ed in the derivation, the value of G will not change
around that contour even though the contour itself may be deformed by the
£ow. A closed contour that originally does not include a body cannot at any
subsequent time contain a body such as a two-dimensional airfoil. There is
therefore no con£ict in the fact that such an airfoil may have a circulation
around it while immersed in an irrotational £ow.

From Kelvin’s theorem and the results established in Sec. 2.4, it is evi-
dent that the total vorticity associated with a vortex ¢lament is ¢xed and will
not change as the vortex ¢lament £owswith the £uid.Distortionof the vortex
¢lament may take place, but the total vorticity associated with it will remain
the same.The vortex ¢lament will always consist of the same £uid particles
as it £ows, and if the vortex ¢lament is elongated, the vorticity at any section
of the ¢lament will increase and the total vorticity associated with the ¢la-
ment will remain ¢xed.

The principal use of Kelvin’s theorem is in the study of incompressible,
inviscid £uid £ows. If a body is moving through such a £uid, or if a uniform
£ow of such a £uid passes around a body, then the vorticity far from the body
will be zero. Then, according to Kelvin’s theorem, the vorticity in the £uid
will everywhere be zero, even adjacent to the body. Then the condition
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=� u ¼ 0may be used to replace the Euler equations so that the condition of
irrotationality becomes the alternative form of the equations of motion for
the £uid. Again it is emphasized that this kinematic equivalent is valid only
because of Kelvin’s theorem, and in turn, the Euler equations were used to
prove Kelvin’s theorem.

3.2 BERNOULLI EQUATION

For an inviscid £uid inwhich any body forces are conservative and either the
£ow is steady or it is irrotational, the equations of momentum conservation
may be integrated to yield a single scalar equation called the Bernoulli
equation.

In the previous section it was pointed out that the equations of motion
for an inviscid £uid in which any body forces were conservative could be
written in the form

r
@uj
@t

þ ruk
@uj
@xk

¼ � @p
@xj

þ r
@G
@xj

Using a vector identity given in Appendix A, the second term on the left-
hand side of these equations may be rewritten as follows:

uk
@uj
@xk

¼ ðu ·=Þu ¼ =ð12 u · uÞ � u� ð=� uÞ

¼ =ð12 u · uÞ � u�v

In this way the Euler equations may be written in the following vector form:

@u
@t

þ =ð12 u · uÞ � u�v ¼ � 1
r=pþ =G

It is now proposed to show that the term (1=r)=p,which appears on the right-
hand side of this equation, may be written as =ðR dp=rÞ. To do this,we form
the scalar product of an element of a space curve d‘‘‘, such as an element of a
streamline,with the vector quantity (1=r)=p.

dl ·
1
r
=p

� �
¼ 1

r
d‘‘‘ ·=p ¼ 1

r
dp

Here the result d‘‘‘ ·= ¼ dxð@=@xÞ þ dyð@=@yÞ þ dzð@=@zÞ ¼ d has been
used,where the scalar operator d is the total spatial derivative.Then,using d
and its inverse integral operation, it follows that
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d‘‘‘ ·
1
r
=p

� �
¼ d

Z
dp
r

¼ d‘‘‘ ·=
Z

dp
r

� �

where, again, the equivalence of d and d‘‘‘ ·= has been used.The vectors that
form the scalar product with d‘‘‘ in this last equation must be equal since d‘‘‘
was arbitrarily chosen; hence it follows that

1
r
=p ¼ =

Z
dp
r

� �

Using this result, the Euler equations become

@u
@t

þ =

Z
dp
r

þ 1
2
u · u� G

� �
¼ u�v ð3:2aÞ

The vector Eq. (3.2a) may be integrated for steady £ow and for unsteady or
steady irrotational £ow.

Considering ¢rst steady £ow, Eq. (3.2a) become

=

Z
dp
r

þ 1
2
u · u� G

� �
¼ u�v

Forming the scalar product of the velocity vector uwith this equation gives

u ·=
Z

dp
r

þ 1
2
u · u� G

� �
¼ u · ðu�vÞ

But the vector product of u with v will yield a vector that is perpendicular
to u; hence the quantity u · ðu�vÞ is zero. Furthermore, the operator u ·=
is the steady-state form of the material derivative.Thus the preceding equa-
tion states that as we £ow along a streamline in steady £ow, the quantityR
dp=rþ 1

2 u · u� G remains constant.That is,Z
dp
r

þ 1
2 u · u� G ¼ constant along each streamline ð3:2bÞ

This result is referred to as the Bernoulli integral or the Bernoulli equation. It
should be recalled that it is valid for the steady £owof a £uid inwhich viscous
e¡ects are negligible and in which any body forces are conservative. In many
cases the £ow around some body originates in a uniform £ow, and in such
cases, and in some other cases, the constant on the right-hand side of Eq.
(3.2b) is the same for each streamline.Then the quantity

R
dp=rþ 1

2 u · u� G
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is constant everywhere. The constant is usually referred to as the Bernoulli
constant.

Equation (3.2a) may also be integrated under slightly di¡erent cir-
cumstances from those that led to Eq. (3.2b).Rather than considering steady
£ows, consider irrotational £ows. Then the vorticity v will be zero so that
(3.2a) becomes

@u
@t

þ =

Z
dp
r

þ 1
2
u · u� G

� �
¼ 0

Nowsincev ¼ =� u ¼ 0, it follows that the velocity vector umay bewritten
as the gradient of some scalar, say f, since =� =f ¼ 0 for any function f.
The quantity f is known as the velocity potential, and it will be used exten-
sively in Chap. 4.Then, replacing u by=f in the preceding equation gives

=
@f
@t

þ
Z

dp
r

þ 1
2
=f ·=f� G

� �
¼ 0

Forming the scalar product of this vector equation with an element of space
curve d‘‘‘ gives

d
@f
@t

þ
Z

dp
r

þ 1
2
=f ·=f� G

� �
¼ 0

where again the fact that d‘‘‘ ·= ¼ d has been used,where d is the total spatial
derivative.Thus integration yields

@f
@t

þ
Z

dp
r

þ 1
2
=f ·=f� G ¼ FðtÞ ð3:2cÞ

where FðtÞ is some function of time that may be added after integrating over
the space coordinates. F(t) is usually referred to as the unsteady Bernoulli
constant, even though it is not strictly a constant.Recall that Eq. (3.2c) is valid
for irrotational motion of a £uid inwhich viscous e¡ects are negligible and in
which any body forces are conservative. Kelvin’s theorem usually helps to
establish the condition of irrotationality by relating the £ow under con-
sideration to a simpler form of the £ow far upstream.

3.3 CROCCO’S EQUATION

This equation relates the vorticity of a £ow ¢eld to the entropy of the £uid.
Under certain conditions it will be shown that isentropic £ows are irrota-
tional, and vice versa. Then, if it is known that a £ow ¢eld is essentially
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isentropic, the mathematical simpli¢cations associated with irrotational
motion may be employed. This simpli¢cation will be employed in the cha-
pters dealing with compressible £uid £ow, and it is justi¢ed by Crocco’s
equation.

In order to establish Crocco’s equation, consider the £owof an inviscid
£uid in which there are no body forces. Then, from Eq. (1.9c), the Euler
equations that guarantee dynamic equilibrium become

@u
@t

þ ðu ·=Þu ¼ � 1
r
=p

The nonlinear termmay be expanded as follows using a vector identity given
in Appendix A:

ðu ·=Þu ¼ = 1
2 u · u
� �� u� ð=� uÞ

Hence the Euler equation becomes

@u
@t

þ = 1
2 u · u
� �� u�v ¼ � 1

r
=p

It is this formof the Euler equation that is the starting point for the derivation
of Crocco’s equation. In order to relate the dynamics of the £ow to its ther-
modynamics, it is proposed to eliminate the pressure p and the density r,
which appear in the term on the right-hand side of the above equation, in
favor of the enthalpy h and the entropy s. To do this, we use the ¢rst law of
thermodynamics and the de¢nition of the entropy. From Appendix E, a
change in internal energyde is caused by work done on the £uid�pd(1=r) and
by any heat that is added to the £uid dq.That is,

de ¼ �pd
1
r

� �
þ dq

¼ �pd
1
r

� �
þ T ds

where the last relation follows from the de¢nition of the entropy.Now p and r
have been related to e and s. In order to eliminate e in favor of the enthalpy h,
we use the equation that de¢nes the enthalpy, namely, e¼h�p=r. Then the
foregoing thermodynamic relation becomes
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dh� d
p
r

� �
¼ �pd

1
r

� �
þ T ds

Since d(p=r)¼ pd(1=r)þ dp=r, this equation simpli¢es to

� 1
r
dp ¼ T ds � dh

Using again the result established in the previous section that d‘‘‘ ·= ¼ d , it
follows that

� 1
r
=p ¼ T =s � =h

This result will now be used to eliminate the pressure and the density that
appear on the right-hand side of the Euler equations.

@u
@t

þ = 1
2 u · u
� �� u�v ¼ T =s � =h

Rearranging this vector equation slightly yields the result known as Crocco’s
equation:

u�vþ T =s ¼ = hþ 1
2 u · u

� �þ @u
@t

ð3:3aÞ

Equation (3.3a) are valid for £ows in which viscous e¡ects are negligible and
in which there are no body forces.

Under conditions of steady, adiabatic £ow, Eq. (3.3a) may be reduced
to a scalar equation.To show this, it will ¢rst be shown that for adiabatic £ow
of an inviscid £uid in which there are no body forces, the quantity
h0 ¼ hþ 1

2 u � u is constant along each streamline. The quantity h0 is called
the stagnation enthalpy.

From Prob. 3.1, the energy equation for adiabatic £ow of an inviscid
£uid is

r
Dh
Dt

¼ Dp
Dt

The Euler equations for a £ow without body forces are

r
Du
Dt

¼ �=p
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Forming the scalar product of this equation with the velocity vector u
gives

r
D
dt

1
2
u · u

� �
¼ �u ·=p

Adding this equation to the energy equation derived above yields

r
D
Dt

ðhþ 1
2 u · uÞ ¼

Dp
Dt

� u ·=p

or

r
Dh0
Dt

¼ @p
@t

Then, for steady £ow, the right-hand side of this equation will be zero.That
is, for steady, adiabatic £ow of an inviscid £uid in which there are no body
forces, the quantity Dh0=Dt will be zero. Hence the stagnation enthalpy h0
will be constant along each streamline.

Equation (3.3a) was derived for an inviscid £uid that is not subjected
to any body forces. Then, if, in addition, the £ow is steady and adiabatic,
Eq. (3.3a) becomes

u�vþ T =s ¼ =h0

where the quantity h0 is constant along each streamline.Hence=h0 will be a
vector perpendicular to the streamlines. But u�v is also perpendicular to
the streamlines, so that the remaining vector, namely, T=s, must also be
perpendicular to the streamlines. Then the above vector equation may be
written in the following scalar form:

UOþ T
ds
dn

¼ dh0
dn

ð3:3bÞ
Here U and O are, respectively, the magnitudes of the velocity vector u and
the vorticity vector v. The coordinate n is perpendicular to the streamlines
locally. Equation (3.3b) is valid for steady, adiabatic £ow of an inviscid £uid
in which there are no body forces.

Usually when the stagnation enthalpy is constant along each stream-
line, it is constant everywhere.That is, the value of h0 along each streamline is
the same.Under these conditions dh0=dn ¼ 0, so that Eq. (3.3b) becomes

UOþ T
ds
dn

¼ 0 ð3:3cÞ
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In this form Crocco’s equation clearly shows that if s is constant, Omust be
zero. Likewise if O is zero, ds=dn must be zero so that s must be constant.
That is, isentropic £ows are irrotational and irrotational £ows are isentropic.
This result is true, in general, only for steady £ows of inviscid £uids in which
there are no body forces and in which the stagnation enthalpy is constant.

3.4 VORTICITY EQUATION

The equation to be satis¢ed by the vorticity vector v for a £uid of constant
density and constant viscosity will be derived in this section. Such an equa-
tion is useful in the study of viscous £ows in incompressible £uids,which is
the topic of Part III of this book.One reason that the vorticity equation is of
interest is that it enables us to learn more about the physics of given £ow
¢elds.Also, in the analysis of some £ow ¢elds it is frequently possible tomake
some statement about the vorticity distribution that facilitates the analysis if
the problem is posed in terms of the vorticity.

From Eq. (1.9b), the Navier^Stokes equations for a £uid of constant
density and viscosity are

@u
@t

þ ðu ·=Þu ¼ �=
p
r

� �
þ nH2u

Replacing the nonlinear term by its equivalent form given by the vector
identities in Appendix A, this vector equation becomes

@u
@t

þ =ð1
2
u · uÞ � u� ð=� uÞ ¼ �=

p
r

� �
þ nH2u

The vorticity equation is obtained by taking the curl of this equation and
noting that the curl of the gradient of any scalar is zero.Hence

@v

@t
� =� ðu�vÞ ¼ nH2v

Using a vector identity given in Appendix A, the second term on the left-
hand side may be expanded to give

=� ðu�vÞ ¼ uð= ·vÞ �vð= · uÞ � ðu ·=Þvþ ðv ·=Þu

But = ·v ¼ 0, since the divergence of the curl of any vector is zero and
= · u ¼ 0 from the continuity equation.Hence the vorticity equation becomes

@v

@t
þ ðu ·=Þv ¼ ðv ·=Þuþ nH2v ð3:4aÞ
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For two-dimensional £ows the vorticity vector v will be perpendicular to
the plane of the £ow, so that ðv ·=Þuwill be zero.Then

@v

@t
þ ðu ·=Þv ¼ nH2v ð3:4bÞ

The vorticity equation, in either the general form (3.4a) or the two-
dimensional form (3.4b), has another advantage over and above those
mentioned in the preliminary remarks. It will be noted from these equations
that the pressure p does not appear explicitly.Thus the vorticity and velocity
¢elds may be obtained without any knowledge of the pressure ¢eld.

In order to determine the pressure distribution in termsof the vorticity,
the Navier^Stokes equations are again used in the form

@u
@t

þ ðu ·=Þu ¼ �=
p
r

� �
þ nH2u

Taking the divergence of this equation and using the result of Prob. 3.2
together with the continuity equation= · u ¼ 0, it follows that the equation to
be satis¢ed by the pressure p is

H2 p
r

� �
¼ v ·vþ u · ðH2uÞ � 1

2
H2ðu · uÞ ð3:5Þ

From the foregoing results we see that the vorticity satis¢es a di¡usion
equation while the pressure satis¢es a Poisson equation.

PROBLEMS

3.1 In vector form, the thermal energy equation is

r
De
Dt

¼ �p= · uþ = · ðk=T Þ þ F

By using the definition of the enthalpy h, show that an equivalent form
of this equation is

r
Dh
Dt

¼ Dp
Dt

þ = · ðk=T Þ þ F

3.2 Show that, for an incompressible fluid, the following identity holds
between the velocity vector u and the vorticity vectorv:

= · ½ðu ·=Þu� ¼ 1
2
H2ðu · uÞ � u · ðH2uÞ �v ·v
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3.3 In cylindrical coordinates, the velocity components for a uniform flow
around a circular cylinder are

uR ¼ U 1� a2

R2

� �
cos y

uy ¼ �U 1þ a2

R2

� �
sin y

Here U is the constant magnitude of the velocity approaching the
cylinder and a is the radius of the cylinder. If compressible and viscous
effects are negligible, determine the pressure pðR; yÞ at any point in the
fluid in the absence of any body forces. Take the pressure far from the
cylinder to be constant and equal to p0.
Specialize the result obtained above to obtain an expression for the
pressure pða; yÞ on the surface of the cylinder.

FURTHER READING�PART I

Part I of this book has been concerned with the derivation of the equations
governing the motion of a £uid. The number of books dealing with £uid
mechanics in which these equations are derived is large. The following
represents a sample of some of these books.

Aris, Rutherford: Vectors, Tensors, and the Basic Equations of Fluid Mechanics,
Prentice-Hall, Inc., Englewood, N.J., 1964.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press,
London,1967.

Chorin, A. J. and J. E.Marsden: A Mathematical Introduction to Fluid Mechanics, 3rd
ed., Springer-Verlag, Berlin, 1993.

Lagerstrom, P. A.: Laminar Flow Theory, in F. K. Moore (ed.): Theory of Laminar
Flows, Princeton University Press, Princeton, N.J., 1964.

Panton, Ronald L.: Incompressible Flow, JohnWiley & Sons, NewYork,1984.
Serrin, James: Mathematical Principles of Classical Fluid Mechanics, in S. Flu« gge

(ed.):Handbuch der Physik,vol.VIII=1, Springer-Verlag OHG, Berlin, 1959.
Yih,Chia-Shun:Fluid Mechanics,McGraw-Hill Book Company, NewYork, 1969.
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II

IDEAL-FLUID FLOW

This part of the book deals with the £ow of ideal £uids, that is, £uids that are
inviscid and incompressible.The results are therefore limited to £ow ¢elds in
which viscous e¡ects of the £uid are negligible and compressibility of the
£uid is unimportant. Then, any phenomena that are predicted by the
governing equations will be due to the inertia of the £uid.The mathematical
simpli¢cation that results from neglecting viscous and compressible e¡ects
is great, and consequently the topic of ideal-£uid £ow is,mathematically, the
best understood.

Part II contains Chaps. 4, 5, and 6. Chapter 4 deals with two-dimen-
sional potential £ows. Apart from some fundamental £ows, the £ow around
some two-dimensional bodies such as cylinders, ellipses, and airfoils is cov-
ered. Chapter 5 treats three-dimensional potential £ows including the £ow
around submerged bodies such as spheres. Finally, Chap. 6 deals with sur-
facewaves on liquids.This chapter includes traveling waves, standing waves,
and waves at the interface of two £uids.

Governing Equations and Boundary Conditions

Since the £uid is assumed to be incompressible, the equation of mass con-
servation is Eq. (1.3c). The equations of momentum conservation for an
inviscid £uid are the Euler equations, which are expressed by Eq. (1.9c).
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That is, the equations governing the velocity and pressure ¢elds for an ideal
£uid are

= · u ¼ 0 ðII:1Þ
@u
@t

þ ðu ·=Þu ¼ � 1
r
=pþ f ðII:2Þ

Equations (II.1) and (II.2) are su⁄cient to establish the velocity and the
pressure in the £ow independent of any temperature distribution that may
exist. It was pointed out in Chap. 1 that compressibility is the £uid property
that couples the equations of thermodynamics to those of dynamics so that in
the study of ideal £uids the equations of thermodynamics need not be solved
concurrently with the equations of motion. The study of ideal-£uid £ows is
frequently referred to as hydrodynamics, and Eqs. (II.1) and (II.2) are
frequently called the equations of hydrodynamics.

Within macroscopic length scales, the proper boundary condition to
be satis¢ed by the velocity is the no-slip boundary condition expressed by
Eq. (1.14). It is not possible to satisfy this boundary condition with the Euler
equations.The reason lies in the fact that the Euler equations are one order
lower than the Navier^Stokes equations because the viscous terms are
absent in the former equations. Thus the true boundary condition must be
relaxed somehow under the approximation of negligible viscous e¡ects.
Since it is primarily viscous e¡ects that prohibit a £uid from slipping along a
solid boundary, the condition of no tangential slip at boundaries is relaxed.
That is, the condition of no normal velocity at a solid boundary is retained
but the condition of no tangential velocity is dropped. Thus the boundary
condition that should be used with the Euler equations is

u · n ¼ U · n on solid boundaries ðII:3Þ
where n is the unit normal to the surface of the body and U is the velocity
vector of the body. Comparison of Eq. (II.3) with Eq. (1.14) shows that
the former constitutes one component of the true boundary condition
and the two tangential components are unspeci¢ed. Physically, this
means that the condition of no slip on a solid boundary has become the
condition that the surface of the body must be a streamline. Any boundary
condition that is to be satis¢ed far from the body, such as the £ow becoming
uniform, is una¡ected by the inviscid approximation.

Potential Flows

If the £ow of an ideal £uid about a body originates in an irrotational
£ow, such as a uniform £ow, for example, then Kelvin’s theorem [Eq.(3.1)]
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guarantees that the £ow will remain irrotational even near the body.That is,
the vorticity vector v will be zero everywhere in the £uid. Then, since
=� =f ¼ 0 for any scalar functionf, the condition of irrotationality will be
satis¢ed identically by choosing

u ¼ =f ðII:4Þ
The function f is called the velocity potential, and £ow ¢elds that are irrota-
tional, and so can be represented in the form of Eq. (II.4), are frequently
referred to as potential £ows. In order to ¢nd the equation that the velocity
potentialf satis¢es, the expression for u given byEq. (II.4) is substituted into
the continuity equation (II.1) to give

H2f ¼ 0 ðII:5Þ
Thus by solving Eq. (II.5) and utilizing Eq. (II.4), the velocity ¢eld may be
established without directly using the equations of motion [Eqs. (II.2)].This
is so because the condition of irrotationality has been used, and this condi-
tion is justi¢ed by Kelvin’s theorem,which uses Eq. (II.2) in its proof. How-
ever, the equations of motion must be used directly to obtain the pressure
distribution. Solving Eq. (II.5) for the velocity potential f determines the
velocity distribution only, and in order to determine the pressure, use must
be made of the equations of dynamics. Rather than use Eq. (II.2), their inte-
grated form, that is the Bernoulli equation,will be used.Using Eq. (3.2c), the
pressure may be determined from the following relation:

@f
@t

þ p
r
þ 1
2
=f ·=f� G ¼ FðtÞ ðII:6Þ

Having determined the velocity potential f, this becomes a simple algebraic
equation for the pressure.

From the foregoing, it is evident that a simpler form of the governing
equations exists for potential £ows.Rather than solving Eqs. (II.1) and (II.2)
directly, Eq. (II.5), together with the appropriate boundary conditions, may
be solved to yield the velocity potential and hence the velocity ¢eld. Having
done this, Eq. (II.6) may be used to establish the pressure ¢eld. This for-
mulation has certain simplifying features. First, it will be noticed that the
di¡erential equation to be solved, given by Eq. (II.5), is linear, whereas
Eq. (II.2) is nonlinear.Of course, the nonlinearity cannot be completed cir-
cumvented, and indeed it appears in the term=f ·=f in the Bernoulli equa-
tion. However, in this equation it poses no di⁄culty in the analysis. One of
the most useful properties of linear di¡erential equations is that di¡erent
solutions may be superimposed to yield other solutions. This property will
be used extensively in the following chapters.
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4

Two-Dimensional Potential Flows

It was pointed out in the introduction to Part II that potential £ows may be
analyzed in a much simpler way than general £uid £ows.Within the category
of potential £ows, the two-dimensional subset lends itself to even greater
simpli¢cation. It will be shown in this chapter that the simpli¢cation is so
great that solutions to Eqs. (II.5) and (II.6)may be obtainedwithout actually
solving any di¡erential equations. This is achieved through use of the pow-
erful tool of complex variable theory.

The chapter begins by introducing the stream function,which together
with the velocity potential, leads to the de¢nition of a complex potential.
Through this complex potential, some elementary solutions corresponding
to sources, sinks, and vortices are examined.The superposition of such ele-
mentary solutions then leads to the solution for the £ow around a circular
cylinder.The method of conformal transformations is then introduced, and
the Joukowski transformation is used to establish the solutions for the £ow
around ellipses and airfoils.The Schwarz-Christo¡el transformation is then
introduced and used to study the £ow in regions involving sharp corners.
Included in this chapter are examples of free-surface con¢gurations.
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4.1 STREAM FUNCTION

The velocity potential f was de¢ned in such a way that it automatically
satis¢ed the condition of irrotationality. The continuity equation then
showed that f had to be a solution of Laplace’s equation. A second function
may be de¢ned by a complementary procedure for two-dimensional incom-
pressible £uid £ows.That is, a function may be de¢ned in such a way that it
automatically satis¢es the continuity equation, and the equation it must
satisfy will be determined by the condition of irrotationality.

The continuity equation, in cartesian coordinates, for the £ow ¢eld
under consideration is

@u
@x

þ @v

@y
¼ 0

Now introduce a function c that is de¢ned as follows:

u ¼ @c
@y

ð4:1aÞ

v ¼ � @c
@x

ð4:1bÞ

With this de¢nition, the continuity equation is satis¢ed identically for all
functions c. The function c is called the stream function, and by virtue of
its de¢nition it is valid for all two-dimensional £ows, both rotational and
irrotational.

The equation that the stream function cmust satisfy is obtained from
the condition of irrotationality. Denoting the components of the vorticity
vector v by ðx; Z; zÞ, it is ¢rst observed that, in two dimensions, the only
nonzero component of the vorticity vector is z, the component perpendicular
to the plane of the £ow. Secondly, it is noted that z ¼ @v=@x � @u=@y. Thus,
the condition of irrotationality is

@v

@x
� @u

@y
¼ 0

Substituting for u and v fromEqs. (4.1) shows thatcmust saisfy the following
equation:

@2c
@x2

þ @2c
@y2

¼ 0 ð4:2Þ
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That is, the stream function c, like the velocity potential f, must satisfy
Laplace’s equation. The stream function c has some useful properties that
will now be derived.

The £ow lines that correspond to c ¼ constant are the streamlines of
the £ow ¢eld. To show this, it is noted that c is a function of both x and y in
general so that the total variation in c associated with a change in x and a
change in ymay be calculated from the expression

dc ¼ @c
@x

dx þ @c
@y

dy

¼ �v dx þ u dy

where Eqs. (4.1) have been used.Then the equation of the line c ¼ constant
will be

0 ¼ �v dx þ u dy

or
dy
dx

� �
c
¼ v

u

where the subscript denotes that this expression for dy=dx is valid for c held
constant.But it was shown inChap. 2 that this is precisely the equation of the
streamlines in the xy plane. Hence the lines corresponding to c ¼ constant
are the streamlines, and each value of the constant de¢nes a di¡erent
streamline. It is this property of the function c that justi¢es the name stream
function.

Another property of the stream function c is that the di¡erence of its
values between two streamlines gives the volume of £uid that is £owing
between these two streamlines.To show this, consider two streamlines cor-
responding to c ¼ c1 and c ¼ c2 as shown in Fig. 4.1. A control surface AB
of arbitrary shape but positive slope is shown joining these two streamlines,
and an element of this surface shows the positive volumetric £ow rates
crossing it in the x and y directions per unit depth perpendicular to the £ow
¢eld.Then the total volume of £uid £owing between the streamlines per unit
time per unit depth of £ow ¢eld will be

Q ¼
Z B

A
u dy �

Z B

A
v dx

But it was observed earlier that dc ¼ �v dx þ u dy, so that, integrating this
expression between the two points A and B, it follows that
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c2 � c1 ¼ �
Z B

A
v dx þ

Z B

A
u dy

Comparing these two expressions con¢rms that c2 � c1 ¼ Q.
Finally, it should be noted that the streamlines c ¼ constant and the

lines f ¼ constant, which are called equipotential lines, are orthogonal to
each other.Thismay be shown by noting that iff depends upon both x and y,
the total change in f associated with changes in both x and y will be

df ¼ @f
@x

dx þ @f
@y

dy

¼ u dx þ v dy

where Eq. (II.4) has been used. Then the lines corresponding to
f ¼ constant will be de¢ned by

0 ¼ u dx þ v dy

or

dy
dx

� �
f
¼ � u

v

FIGURE 4.1 Two streamlines showing the components of the volumetric flow rate
across an element of control surface joining the streamlines.
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That is,

dy
dx

� �
f
¼ � 1

ðdy=dxÞc

In words, the slope of the lines f ¼ constant is the negative reciprocal of the
slope of the linesc ¼ constant, so that these sets of linesmust be orthogonal.
This property of the streamlines and the equipotential lines is the basis of a
numerical procedure for solving two-dimensional potential-£ow problems.
The method is referred to as the flow net.

4.2 COMPLEX POTENTIAL AND COMPLEX
VELOCITY

The velocity components u and v may be expressed in terms of either the
velocity potential or the stream function. From Eqs. (II.4) and (4.1), these
expressions are

u ¼ @f
@x

¼ @c
@y

v ¼ @f
@y

¼ � @c
@x

That is, the functions f and c are related by the expressions

@f
@x

¼ @c
@y

@f
@y

¼ � @c
@x

But these will be recognized as the Cauchy-Riemann equations for the
functions fðx; yÞ and cðx; yÞ. Then consider the complex potential FðzÞ,
which is de¢ned as follows:

FðzÞ ¼ fðx; yÞ þ icðx yÞ ð4:3Þ

where z ¼ x þ iy. Now if FðzÞ is an analytic function, it follows that f and c
will automatically satisfy the Cauchy-Riemann equations.That is, for every
analytic function FðzÞ the real part is automatically a valid velocity potential
and the imaginary part is a valid stream function.

The foregoing result suggests a very simple way of establishing
solutions to the equations of two-dimensional potential £ows. By equating
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the real part of a given analytic function to f and the imaginary part to c,
the theory of complex variables guarantees that H2f ¼ 0 and H2c ¼ 0 as
required. The £ow ¢eld corresponding to that analytic function may be
determined by studying the streamlines c ¼ constant. The corresponding
velocity components may be calculated from Eqs. (II.4) or (4.1), and the
pressure may be obtained using Eq. (II.6). This approach has the dis-
advantage of being inverse in the sense that a problem is ¢rst solved and then
examined to see what the physical problem was in the ¢rst place. However,
for teaching purposes this is of no consequence. Another disadvantage is
that the method cannot be generalized to three-dimensional potential £ows.
On the other hand, this approach avails itself of the powerful results of com-
plex variable theory and avoids the di⁄culties of solving partial di¡erential
equations.For these reasons the complex-potential approach will be used in
this chapter.

Another quantity of prime interest, apart from the complex potential
FðzÞ, is the derivative of FðzÞ with respect to z. Since FðzÞ is supposed to be
analytic, dF=dz will be a point function whose value is independent of the
direction in which it is calculated. Then, denoting this derivative by W, its
value will be given by

W ðzÞ ¼ dF
dz

¼ @F
@x

¼ @f
@x

þ i
@c
@x

that is,

W ðzÞ ¼ dF
dz

¼ u� iv ð4:4Þ

where use has been made of Eqs. (4.3), (II.4), and (4.1b). In view of this result
the quantityW ðzÞ is called the complex velocity, although its imaginary part
is �iv. Equation (4.4) o¡ers a convenient alternative to Eqs. (II.4) and (4.1)
for ¢nding the velocity components corresponding to a given complex
potential.

Auseful property of the complex velocity is that,when multiplied by its
own complexconjugate, it gives the scalar product of the velocity vector with
itself.To show this, considerW ðzÞ and its complex conjugate �W ðzÞ.Then

W �W ¼ ðu� ivÞðuþ ivÞ
W �W ¼ u2 þ v2

ð4:5Þ
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The signi¢cance of this result is that the quantity u�u ¼ =f�=f ¼
u2 þ v2 appears in the Bernoulli equation.

Frequently it is advantageous to work in cylindrical coordinates rather
than cartesian coordinates. An expression for the complex velocity may be
readily obtained in cylindrical coordinates by converting the cartesian
components of the velocity vector ðu; vÞ to cylindrical components ðuR; uyÞ.
Figure 4.2 shows a velocity vector OP decomposed into its cartesian com-
ponents (shown solid) and also its cylindrical components (shown dotted).
From this ¢gure each of the cartesian velocity componentsmay be expressed
in terms of the two cylindrical components as follows:

u ¼ uR cos yþ uy cos
p
2
� y


 �
¼ uR cos y� uy sin y

v ¼ uR sin yþ uy sin
p
2
� y


 �
¼ uR sin yþ uy cos y

Substituting these expressions into Eq. (4.4) gives the expression for
the complex velocityW in terms of uR and uy.

FIGURE 4.2 Decomposition of a velocity vector OP into its cartesian components
ðu; vÞ and its cylindrical components ðuR; uyÞ.
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W ¼ ðuR cos y� uy sin yÞ � iðuR sin yþ uy cos yÞ
¼ uRðcos y� i sin yÞ � iuyðcos y� i sin yÞ

that is,

W ¼ ðuR � iuyÞe�iy ð4:6Þ
The foregoing results [Eqs. (4.3) to (4.6)] are su⁄cient to establish the

£ow ¢elds,which are represented by simple analytic functions.

4.3 UNIFORM FLOWS

The simplest analytic function of z is proportional to z itself, and the corre-
sponding £ow ¢elds are uniform £ows.

First, consider FðzÞ to be proportional to z where the constant of pro-
portionality is real.That is,

FðzÞ ¼ cz

where c is real.Then, from Eq. (4.4),

W ðzÞ ¼ u� iv ¼ c

Then, by equating real and imaginary parts of this equation, the velocity
components corresponding to this complex potential are

u ¼ c

v ¼ 0

But this is just the velocity ¢eld for a uniform rectilinear £ow as shown
in Fig. 4.3a.Thus the complex potential for such a £ow whose velocity mag-
nitude isU in the positive x direction will be

FðzÞ ¼ Uz ð4:7aÞ

Next consider the complex potential to be proportional to z with an
imaginary constant of proportionality.Then

FðzÞ ¼ �icz

where c is real.The minus sign has been included to make the velocity com-
ponent positive when c is positive. For this complex potential

W ðzÞ ¼ u� iv ¼ �ic
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so that the velocity components are

u ¼ 0

v ¼ c

This is a uniform vertical £ow as shown in Fig. 4.3b. Then the complex
potential for such a £ow whose velocity magnitude is V in the positive y
direction will be

FðzÞ ¼ �iVz ð4:7bÞ

Finally, consider a complex constant of proportionality so that

FðzÞ ¼ ce�iaz

where c and a are real. For this complex potential

W ðzÞ ¼ u� iv ¼ c cos a� ic sin a

Hence the velocity components of the £ow ¢eld are

u ¼ c cos a

v ¼ c sin a

This corresponds to a uniform £ow inclined at an angle a to the x axis as
shown in Fig. 4.3c. Hence the complex potential for such a £ow whose velo-
city magnitude is V will be

FðzÞ ¼ Ve�iaz ð4:7cÞ

FIGURE4.3 Uniform flow in (a) the x direction, (b) the y direction, and (c) an angle

a to the x direction.
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This last result, of course, contains the two previous results as special cases
corresponding to a ¼ 0 and a ¼ p=2.

4.4 SOURCE, SINK, ANDVORTEX FLOWS

Complex potentials that correspond to the £ow ¢elds generated by sources,
sinks, and vortices are obtained by consideringFðzÞ to be proportional to log
z.When considering log z,we consider the principal part of this multivalued
function corresponding to 0 < y < 2p.

Consider, ¢rst, the constant of proportionality to be real.Then

FðzÞ ¼ c log z

¼ c logReiy

¼ c logR þ icy

Hence, from Eq. (4.3),

f ¼ c logR

c ¼ cy

That is, the equipotential lines are the circles R ¼ constant and the stream-
lines are the radial lines y ¼ constant. This gives a £ow ¢eld as shown in
Fig. 4.4a in which the streamlines are shown solid and the direction of the
£ow is shown for c > 0. The direction of the £ow is readily con¢rmed by
evaluating the velocity components. In view of the geometry of the £ow,
cylindrical coordinates are preferred, so that

W ðzÞ ¼ c
z
¼ c

R
e�iy

Comparison with Eq. (4.6) shows that the velocity components are

uR ¼ c
R

uy ¼ 0

which con¢rms the directions indicated in Fig. 4.4a for c > 0.
The £ow ¢eld indicated in Fig. 4.4a is called a source. The velocity is

purely radial and its magnitude decreases as the £ow leaves the origin.
In fact, the origin is a singular point corresponding to in¢nite velocity, and
as the £uid £ows radially outwards, its velocity is decreased in such a way
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that the volume of £uid crossing each circle is constant, as required by the
continuity equation.

Sources are characterized by their strength, denoted by m, which is
de¢ned as the volume of £uid leaving the source per unit time per unit depth
of the £ow ¢eld. From this de¢nition it follows that

m ¼
Z 2p

0
uRR dy

¼
Z 2p

0
c dy ¼ 2pc

Here, the result uR ¼ c=R has been used. Then c may be replaced by m=2p,
giving the following complex potential for a source of strengthm:

FðzÞ ¼ m
2p

log z

The source corresponding to this complex potential is located at the
origin,the locationof the singularity.Then the complex potential for a source
of strengthm located at the point z ¼ z0 will be

FðzÞ ¼ m
2p

logðz � z0Þ ð4:8Þ

FIGURE 4.4 Streamlines (shown solid) and equipotential lines (shown dashed) for
(a) source flow and (b) vortex flow in the positive sense.
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Clearly, the complex potential for a sink, which is a negative source, is
obtained by replacingm by�m in Eq. (4.8).

Now consider the constant of proportionality in the logarithmic com-
plex potential to be imaginary.That is, consider

FðzÞ ¼ �ic log z

where c is real and theminus is included to give a positive vortex.Then,using
cylindrical coordinates,

FðzÞ ¼ �ic logReiy

¼ cy� ic logR

Then, from Eq. (4.3), the velocity potential and the stream function are

f ¼ cy

c ¼ �c logR

That is, the equipotential lines are the radial lines y ¼ constant and the
streamlines are the circles R ¼ constant as shown in Fig. 4.4b. The velocity
components may be evaluated by use of the complex velocity.

W ðzÞ ¼ �i
c
z
¼ �i

c
R
e�iy

Comparison with Eq. (4.6) shows that the velocity components are

uR ¼ 0

uy ¼ c
R

Hence the direction of the £ow is positive (counterclockwise) for c > 0, and
the resulting £ow ¢eld is called a vortex.

Avortex is characterized by its strength,which may bemeasured by the
circulation G associated with it. From Eq. (2.3), the circulation G associated
with the singularity at the origin is

G ¼
I
^ u � dl

¼
Z 2p

0
uyR dy

¼
Z 2p

0
c dy ¼ 2pc
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Here, the result uy ¼ c=R has been used. Then c may be replaced by G=2p,
giving the following complex potential for a positive (counterclockwise)
vortex of strength G.

FðzÞ ¼ �i
G
2p

log z

The singularity in this expression is located at z ¼ 0.That is, the line vortex is
located at z ¼ 0.Then the complex potential for a positive vortex located at
z ¼ z0 will be

FðzÞ ¼ �i
G
2p

logðz � z0Þ ð4:9Þ

The complex potential for a negative vortex would be obtained by replacing
Gby�G in Eq. (4.9).Note, however, that the negative coe⁄cient is associated
with the positive vortex.

The £ow ¢eld represented by Eq. (4.9),which is shown in Fig. 4.4b for
z0 ¼ 0, corresponds to a so-called free vortex.That is, for any closed contour
that does not include the singularity, the circulation will be zero and the £ow
will be irrotational.All the circulation and vorticity associatedwith this type
of vortex is concentrated at the singularity.This is in contrast with the solid-
body rotation vortex mentioned in Chap. 2.

The principal applicationof the source, the sink, and the vortex is in the
superposition with other £ows to yield more practical £ow ¢elds.

4.5 FLOW IN A SECTOR

The£owsinsharpbendsorsectorsare representedbycomplexpotentials that
are proportional to zn,where n � 1.A special case of such complex potentials
would be n ¼ 1,which represents a uniform rectilinear £ow. Then, in order
that thisspecialcasewill reduce toEq. (4.7a),consider thecomplexpotentials

FðzÞ ¼ Uzn

Substituting z ¼ Reiy and separating the real and imaginary parts of this
function gives

FðzÞ ¼ URn cos nyþ iURn sin ny

Then the velocity potential and the stream function are

f ¼ URn cos ny

c ¼ URn sin ny
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From this it is evident that when y ¼ 0 and when y ¼ p=n, the stream func-
tion c is zero. That is, the streamline c ¼ 0 corresponds to the radial lines
y ¼ 0 and y ¼ p=n. Between these two lines, the streamlines are de¢ned by
Rn sin ny ¼ constant.This gives the £ow ¢eld shown in Fig.4.5.The direction
of the £ow along the streamlines may be determined from the complex velo-
city as follows:

W ðzÞ ¼ nUzn�1 ¼ nURn�1eiðn�1Þy

¼ ðnURn�1 cos nyþ inURn�1 sin nyÞe�iy

Thus, by comparison with Eq. (4.6), the velocity components are

uR ¼ nURn�1 cos ny

uy ¼ �nURn�1 sin ny

Then, for 0 < y < ðp=2nÞ; uR is positive while uy is negative and for
ðp=2nÞ < y < ðp=nÞ; uR is negative and uy remains negative.This establishes
the £ow directions as indicated in Fig. 4.5.

FIGURE 4.5 Streamlines (shown solid) and equipotential lines (shown dashed) for
flow in a sector.
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From the foregoing, the complex potential for the £ow in a corner or sector of
angle p=n is

FðzÞ ¼ Uzn ð4:10Þ

For n ¼ 1, Eq. (4.10) gives the complex potential for a uniform rectilinear
£ow, and for n ¼ 2, it gives the complex potential for the £ow in a right-
angled corner.

4.6 FLOWAROUNDA SHARP EDGE

The complex potential for the £ow around a sharp edge, such as the edge of a
£at plate, is obtained from the function z1=2. Then consider the complex
potential

FðzÞ ¼ cz1=2

where c is real and 0 < y < 2p.Then, in cylindrical coordinates,

FðzÞ ¼ cR1=2eiy=2

so that the velocity potential and stream function are

f ¼ cR1=2 cos
y
2

c ¼ cR1=2 sin
y
2

Thus the lines y ¼ 0 and y ¼ 2p correspond to the streamline c ¼ 0. The
other streamlines are de¢ned by the equationR1=2 sin y=2 ¼ constant,which
yields the £ow pattern shown in Fig. 4.6.The direction of the £ow is obtained
from the complex velocity as follows:

W ðzÞ ¼ c
2z1=2

¼ c
2R1=2 e

�iy=2

¼ c
2R1=2 cos

y
2
þ i sin

y
2

� �
e�iy

Hence the velocity components are

uR ¼ c
2R1=2 cos

y
2

uy ¼ � c
2R1=2 sin

y
2
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Then, for 0 < y < p; uR > 0 and uy < 0. Also, for p < y < 2p; uR < 0 and
uy < 0.This gives the direction of £ow as indicated in Fig. 4.6.

The £ow ¢eld shown in Fig. 4.6 corresponds to the £ow around a sharp
edge, and so the complex potential for such a £ow is

FðzÞ ¼ cz1=2 ð4:11Þ

An important feature of this result is that the corner itself is a singular point
at which the velocity components become in¢nite. Since both uR and uy vary
as the inverse ofR1=2, it follows that the velocity is singular as the square root
of the distance from the edge.This result will be discussed in Sec. 4.15.

4.7 FLOWDUE TOADOUBLET

The function 1=z has a singularity at z ¼ 0, and in the context of complex
potentials, this singularity is called a doublet. The quickest way of establish-
ing the £ow ¢eld which corresponds to the complex potentials that are
proportional to 1=z would be to follow the methods used in the previous

FIGURE 4.6 Streamlines (shown solid) and equipotential lines (shown dashed) for
flow around a sharp edge.
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sections. However, it turns out that the doublet may be considered to be the
coalescing of a source and a sink, and the required complex potential may be
obtained through a limiting procedure that uses this fact.This interpretation
leads to a better physical understanding of the doublet, and for this reason it
will be followed here before studying the £ow ¢eld.

Referring to the geometry indicated in Fig. 4.7a, consider a source of
strengthm and a sink of strengthm , each of which is located on the real axis a
small distance e from the origin. The complex potential for such a con¢g-
uration is, from Eq. (4.8),

FðzÞ ¼ m
2p

logðz þ eÞ � m
2p

logðz � eÞ

¼ m
2p

log
z þ e
z � e


 �

¼ m
2p

log
1þ e=z
1� e=z

� �

If the nondimensional distance e=jzj is considered to be small, the argument
of the logarithmmay be expanded as follows:

FðzÞ ¼ m
2p

log 1þ e
z


 �
1þ e

z
þ O

e2

z2

� �� �� �

¼ m
2p

log 1þ 2
e
z
þ O

e2

z2

� �� �

where the designation Oðe2=z2Þ means terms of order e2=z2 or smaller. The
logarithm is now in the form logð1þ gÞ, where g � 1, so that the equivalent
expansion gþ Oðg2Þmay be used.Then

FðzÞ ¼ m
2p

2
e
z
þ O

e2

z2

� �� �

It is now proposed to let e ! 0 andm ! 1 in such a way that lime!0ðmeÞ ¼
pm,where m is a constant.Then the complex potential becomes

FðzÞ ¼ m
z

Thus the complex potential m=zmay be thought of as being the equivalent of
the superposition of a very strong source and a very strong sink that are very
close together.
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In order to establish the £ow ¢eld that the above complex potential
represents, the stream function will be established as follows:

FðzÞ ¼ m
x þ iy

¼ m
x � iy
x2 þ y2

::: c ¼ �m
y

x2 þ y2

Thus the equation of the streamlines c ¼ constant is

x2 þ y2 þ m
c
y ¼ 0

or

x2 þ y þ m
2c

� �2

¼ m
2c

� �2

FIGURE 4.7 (a) Superposition of a source and a sink leading to (b) streamline pat-
tern for the limit e ! 0 with me ¼ constant.
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But this is the equation of a circle of radius m=ð2cÞ whose center is located
at y ¼ �m=ð2cÞ. This gives the streamline pattern shown in Fig. 4.7b.
Although the direction of the £ow along the streamlines may be deduced
from the source and sink interpretation, it will be checked by evaluating the
velocity components.The complex velocity for this complex potential is

W ðzÞ ¼ � m
z2

¼ � m
R2 e

�i2y

¼ � m
R2 ðcos y� i sin yÞe�iy

Hence the velocity components are

uR ¼ � m
R2 cos y

uy ¼ � m
R2 sin y

These expressions for uR and uy con¢rm the £ow directions indicated in
Fig. 4.7b.

The £ow ¢eld illustrated in Fig. 4.7b is called a doublet £ow, and the
singularity that is at the heart of the £ow ¢eld is called a doublet. Then the
complex potential for a doublet of strength m that is located at z ¼ z0 is

FðzÞ ¼ m
z � z0

ð4:12Þ

The principal use of the doublet is in the superposition of fundamental £ow
¢elds to generate more complex and more practical £ow ¢elds. An applica-
tion of this will be illustrated in the next section.

4.8 CIRCULARCYLINDERWITHOUT
CIRCULATION

The fundamental solutions to the foregoing £ow situations provide the basis
for more general solutions through the principle of superposition. Super-
position is valid here, since the governing equation, for either the velocity
potential or the stream function, is linear.The ¢rst example of superposition
of fundamental solutions will be the £ow around a circular cylinder.

Consider the superposition of a uniform rectilinear £ow and a doublet
at the origin.Then, from Eqs. (4.7a) and (4.12), the complex potential for the
resulting £ow ¢eld will be

FðzÞ ¼ Uz þ m
z
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It will now be shown that for a certain choice of the doublet strength the cir-
cle R ¼ a becomes a streamline.On the circle R ¼ a, the value of z is aeiy, so
that the complex potential on this circle is

FðzÞ ¼ Uaeiy þ m
a
e�iy

¼ Uaþ m
a


 �
cos yþ i Ua� m

a


 �
sin y

Thus the value of the stream function on the circle R ¼ a is

c ¼ Ua� m
a


 �
sin y

For general values of m;c is clearly variable, but if we choose the strength of
the doublet to be m ¼ Ua2, then c ¼ 0 on R ¼ a. The £ow pattern for this
doublet strength is shown in Fig. 4.8a. The £ow ¢eld due to the doublet
encounters that due to the uniform £ow and is bent downstream. For
clarity, the £ow due to the doublet is shown dotted in Fig. 4.8a. It may be
seen that the doublet £ow is entirely contained within the circle R ¼ a,
while the uniform £ow is de£ected by the doublet in such a way that it is
entirely outside the circle R ¼ a. The circle R ¼ a itself is common to the
two £ow ¢elds.

Under the conditions, a thin metal cylinder of radius a could be slid
into the £ow ¢eld perpendicular to the uniform £ow so that it coincides
with the streamline on R ¼ a. Clearly the £ow due to the doublet and that
due to the free stream would be undisturbed by such a cylindrical shell.

FIGURE4.8 (a) Flow field represented by the complex potential FðzÞ ¼ Uðzþ a2=zÞ
and (b) flow around a circular cylinder of radius a.
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Having done this, the £ow due to the doublet could be removed and the
outer £ow would remain unchanged. Finally, the inside of the shell could be
¢lled to yield a solid cylinder. That is, for R � a, the £ow ¢eld due to the
doublet of strength Ua2 and the uniform rectilinear £ow of magnitude U
give the same £ow as that for a uniform £ow of magnitude U past a circular
cylinder of radius a. The latter £ow is shown in Fig. 4.8b.Then the complex
potential for a uniform £ow of magnitude U past a circular cylinder of
radius a is

FðzÞ ¼ U z þ a2

z

� �
ð4:13Þ

This result is useful in its own right, but it will also be found useful in later
sections, through the technique of conformal transformations, to obtain
additional solutions.

The solution given by Eq. (4.13) for the £ow around a circular cylinder
predicts no hydrodynamic force acting on the cylinder. This statement will
be proved quantitatively in a later section, and in the meantime it will be
proved qualitatively. Referring to Fig. 4.8b, it can be seen that the £ow is
symmetric about the x axis.That is, for each point on the upper surface there
is a corresponding point on the lower surface, vertically below it, for which
themagnitude of the velocity is the same.Then, from the Bernoulli equation,
the magnitude of the pressure is the same at these two points. Hence, by
integrating p dx around the surface of the cylinder, the lift force acting on the
cylinder must be zero. Similarly, owing to the symmetry of the £ow about the
y axis, the drag force acting on the cylinder is zero.

Although the foregoing result does not agree with our physical intui-
tion, the potential-£ow solution for the circular cylinder, and indeed for
other bodies, is valuable. The absence of any hydrodynamic force on the
cylinder is due to the neglect of viscosity. It will be seen in Part III that vis-
cous e¡ects create a thin boundary layer around the cylinder, and this
boundary layer separates from the surface at some point, creating a low-
pressure wake. The resulting pressure distribution creates a drag force.
However, it will be pointed out that the viscous boundary-layer solution is
valid only in the thin boundary layer around the cylinder, and the solution
obtained from the boundary-layer equations must be matched to that given
by Eq. (4.13) at the edge of the boundary layer.That is, Eq. (4.13) gives a valid
solution outside the thin boundary layer and upstream of the vicinity of the
separation point. It also indicates the idealized £ow situation that would be
approached if viscous e¡ects are minimized. For more streamlined bodies,
such as airfoils, the potential-£ow solution is approached over the entire
length of the body.
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4.9 CIRCULARCYLINDERWITHCIRCULATION

The £ow ¢eld studied in the previous section not only was irrotational but it
produced no circulation around the cylinder itself. It was found that there
was no hydrodynamic force acting on the cylinder under these conditions. It
will be shown in a later section that it is the circulation around a body that
produces any lift force that acts on it. It is therefore of interest to study the
£ow around a circular cylinder that has a circulation around it.

It was established in a previous section that the streamlines for a vortex
£ow form concentric circles.Therefore, if a vortex was added at the origin to
the £ow around a circular cylinder, as described in the previous section, the
fact that the circle R ¼ a was a streamline would be unchanged.Thus, from
Eqs. (4.13) and (4.9), z0 being zero in the latter, the complex potential for the
£owaround a circular cylinder with a negative bound vortex around it will be

FðzÞ ¼ U z þ a2

z

� �
þ iG
2p

log z þ c

The negative vortex has been used, since it will turn out that this leads to a
positive lift. A constant c has been added to the complex potential for the
following reason. For no circulation, it was found that not only was c con-
stant onR ¼ abut the value of the constant was zero.By adding the vortex,c
will no longer be zero on R ¼ a, although it will have some other constant
value.Since it is frequently useful to have the streamline onR ¼ abec ¼ 0, it
is desirable to adjust things so that this condition is achieved. By adding a
constant c to the complex potential,we have the £exibility to choose c in such
away thatc ¼ constant becomesc ¼ 0.This adjustment has no e¡ect on the
velocity and pressure distributions, since the velocity components are
de¢ned by derivatives ofc, so that the absolute value ofc at any point is of no
signi¢cance.

In order to evaluate the constant c, the value of the stream function on
the circle R ¼ a will be computed. Then, putting z ¼ aeiy, the complex
potential becomes

FðzÞ ¼ U ðaeiy þ ae�iyÞ þ iG
2p

log aeiy þ c

¼ 2Ua cos y� G
2p

yþ iG
2p

log aþ c

Hence on the circle R ¼ a the value of c is indeed constant, and by choosing
c ¼ �ðiG=2pÞ log a, the value of this constant will be zero.With this value of
c, the complex potential becomes
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FðzÞ ¼ U z þ a2

z

� �
þ iG
2p

log
z
a

ð4:14Þ

which describes a uniform rectilinear £ow of magnitude U approaching a
circular cylinder of radius a that has a negative vortexof strengthG around it.
As required, this result agrees with Eq. (4.13) when G ¼ 0.

In order to visualize the £ow ¢eld described by Eq. (4.14), the corre-
sponding velocity components will be evaluated from the complex velocity.

W ðzÞ ¼ U 1� a2

z2

� �
þ iG
2p

1
z

¼ U 1� a2

R2 e
�i2y

� �
þ iG
2pR

e�iy

¼ U eiy � a2

R2 e
�iy

� �
þ iG
2pR

� �
e�iy

¼ U 1� a2

R2

� �
cos yþ i U 1þ a2

R2

� �
sin yþ G

2pR

� �� �
e�iy

Hence, by comparison with Eq. (4.6), the velocity components are

uR ¼ U 1� a2

R2

� �
cos y ð4:15aÞ

uy ¼ �U 1þ a2

R2

� �
sin y� G

2pR
ð4:15bÞ

On the surface of the cylinder,where R ¼ a, Eqs. (4.15) become

uR ¼ 0

uy ¼ �2U sin y� G
2pa

The fact that uR ¼ 0 on R ¼ a is to be expected, since this is the boundary
condition (II.3). A signi¢cant point in the £ow ¢eld is a point where the
velocity components all vanish�that is, a stagnation point. For this £ow
¢eld the stagnation points are de¢ned by

sin ys ¼ � G
4pUa

ð4:16Þ

where ys is the value of y corresponding to the stagnation point. For
G ¼ 0; sin ys ¼ 0, so that ys ¼ 0 or p, which agrees with Fig. 4.8b for the cir-
cular cylinder without circulation. For nonzero circulation, the value of ys
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clearly depends upon the magnitude of the parameter G=ð4pUaÞ, and it is
convenient to discuss Eq. (4.16) for di¡erent ranges of this parameter.

First, consider the range 0 < G=ð4pUaÞ < 1. Here sin ys < 0, so that ys
must lie in the third and fourth quadrants. There are two stagnation points,
and clearly the one that was at y ¼ p is now located in the third quadrant
while the one that was located at y ¼ 0 is now located in the fourth quadrant.
The two stagnation points will be symmetrically located about the y axis in
order that sin ys ¼ �constantmay be satis¢ed.The resulting £ow situation is
shown in Fig. 4.9a.

Physically, the location of the stagnation points may be explained as
follows:The £ow due to the vortex and that due to the £ow around the cylin-
der without circulation reinforce each other in the ¢rst and second quad-
rants.On the other hand, these two £ow ¢elds oppose each other in the third
and fourth quadrants, so that at some point in each of these regions the net
velocity is zero.Thus the e¡ect of circulation around the cylinder is to make
the front and rear stagnation points approach each other, and for a negative
vortex they do so along the lower surface of the cylinder.

Consider next the case when the nondimensional circulation is unity,
that is,when G=ð4pUaÞ ¼ 1. Here sin ys ¼ �1, so that ys ¼ 3p=2.The corre-
sponding £ow con¢guration is shown in Fig. 4.9b.The two stagnation points
have been brought together by the action of the bound vortex such that they
coincide to forma single stagnationpoint at thebottomof the cylindrical sur-
face.It is evident that if the circulation is increased above this value,the single
stagnation point cannot remain on the surface of the cylinder. It willmove o¡
into the£uid as either a single stagnationpoint or two stagnationpoints.

Finally, consider the case where G=ð4pUaÞ > 1. Since it seems likely
that any stagnation points there may be will not lie on the surface of the

FIGURE 4.9 Flow of approach velocity U around a circular cylinder of radius a
having a negative bound circulation of magnitude G for (a) 0 < G=ð4pUaÞ < 1, (b)
G=ð4pUaÞ ¼ 1, and (c) G=ð4pUaÞ > 1.
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cylinder, the velocity components must be evaluated from Eqs. (4.15). Then
ifRs and ys are the cylindrical coordinates of the stagnation points, it follows
from Eqs. (4.15) that Rs and ys must satisfy the equations

U 1� a2

R2
s

� �
cos ys ¼ 0

U 1þ a2

R2
s

� �
sin ys ¼ � G

2pRs

Since it is assumed that the stagnation points are not on the surface of the
cylinder, it follows that Rs 6¼ a, so that the ¢rst of these equations requires
that ys ¼ p=2 or 3p=2. For these values of ys, the second of the above equa-
tions becomes

U 1þ a2

R2
s

� �
¼ 	 G

2pRs

where theminus sign corresponds to ys ¼ p=2 and the plus sign to ys ¼ 3p=2.
Since U > 0, the left-hand side of the above equation is positive, and since
G > 0, the minus sign must be rejected on the right-hand side. This might
have been expected, since for G=ð4pUaÞ ¼ 1 the value of ys was 3p=2,
whereas theminus sign corresponds to ys ¼ p=2,whichwould require a large
jump in ys for a small change in G.The equation for Rs now becomes

U 1þ a2

R2
s

� �
¼ G

2pRs

or

R2
s �

G
2pU

Rs þ a2 ¼ 0

hence

Rs ¼ G
4pU

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G
4pU

� �2

�a2

s

or

Rs

a
¼ G

4pUa
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4pUa

G

� �2
s2

4
3
5
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This result shows that as 4pUa=G ! 0;Rs ! 1 for the plus sign, but the
corresponding limit is indeterminate for the minus sign. This di⁄culty may
be overcome by expanding the square root for 4pUa=G � 1 as follows:

Rs

a
¼ G

4pUa
1	 1� 1

2
4pUa
G

� �2

þ � � �
" #( )

where the dots indicate terms of order ð4pa=GÞ4 or smaller. In this form it is
evident that as 4pUa=G ! 0;Rs ! 0 for theminus sign.Since this stagnation
point would be inside the surface of the cylinder, the minus sign may be
rejected, so that the coordinates of the stagnation point in the £uid outside
the cylinder are

ys ¼ 3p
2

Rs

a
¼ G

4pUa
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4pUa

G

� �2
s2

4
3
5

This gives a single stagnation point below the surface of the cylinder. The
corresponding £ow con¢guration is shown in Fig. 4.9c, from which it will
be seen that there is a portion of the £uid that perpetually encircles the
cylinder.

The £ow ¢elds for the circular cylinder with circulation, as shown in
Fig. 4.9, exhibit symmetry about the y axis. Then, following the arguments
used in the previous section, it may be concluded that there will be no drag
force acting on the cylinder. However, the existence of the circulation
around the cylinder has destroyed the symmetry about the x axis. so there
will be some force acting on the cylinder in the vertical direction. For the
negative circulation shown, the velocity on the top surface of the cylinder
will be higher than that for no circulation,while the velocity on the bottom
surface will be lower. Then, from Bernoulli’s equation, the pressure on the
top surface will be lower than that on the bottom surface, so that the ver-
tical force acting on the cylinder will be upward. That is, a positive lift will
exist. In order to determine the magnitude of this lift, a quantitative ana-
lysis must be performed, and this will be done in the next section.

The principal interest in the £ow around a circular cylinder with cir-
culation is in the study of airfoil theory.By use of conformal transformations
the £ow around certain airfoil shapes may be transformed into that of the
£ow around a circular cylinder with circulation.
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4.10 BLASIUS’ INTEGRAL LAWS

In the previous section it was argued that a lift force exists on a circular
cylinder that has a circulation around it.However, themagnitude of the force
can be established only by quantitative methods. The obvious way to evalu-
ate the magnitude of this force is to establish the velocity components from
the complex potential. Knowing the velocity components, the pressure dis-
tribution around the surface of the cylinder may be established by use of the
Bernoulli equation. Integration of this pressure distribution will then yield
the required force acting on the cylinder.

The di⁄culty with the foregoing procedure is that it would have to be
carried out for each pressure distribution and for each body under con-
sideration. The Blasius laws provide a convenient alternative. It will be
shown that if the complex potential for the £owaround a body is known,then
it is possible to evaluate the forces and the turning moment acting on the
body by means of simple contour integrals.These contour integrals, in turn,
may be readily evaluated by use of the residue theorem.The Blasius laws are
actually two separate laws, one for forces and one for the hydrodynamic
moment acting on the body.

In order to establish the forces acting on an arbitrarily shaped body in a
£ow ¢eld, consider such a body as shown in Fig. 4.10.A ¢xed control contour
C0 of arbitrary shape is drawn around the body whose surface is denoted by
Ci. The forces acting through the center of gravity, as indicated by X and Y ,
are the hydrodynamic forces acting on the body in the x and y directions,
respectively.Then, for the £uid contained between the surfaces C0 and Ci , it
may be stated that the net external force acting on the positive x direction
must equal the net rate of increase of the x component of the momentum. In
Fig. 4.10, an element of positive slope of the surfaceC0 is shown decomposed
in the x and y directions. The components of the volume £ow that pass
through this element of surface are also indicated.Then the above statement
of newtonian mechanics for the x direction may be expressed by the follow-
ing equation:

� X �
Z
C0

p dy ¼
Z
C0

rðu dy � v dxÞu

In writing this equation, it has been noted that there is no transfer of
momentumacross the surfaceCi, since it is a streamline, and that the integral
of the pressure around Ci yields the force X ,which acts in the positive direc-
tion on the body and hence in the negative direction on the £uid. Also, the
mass e¥ux across the element of the surface C0 is rðu dy � v dxÞ, so that the
product of this quantity and the x component of velocity, when integrated
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around the surfaces C0, gives the net increase in the x component of
momentum.

A similar equation may be obtained by applying the same newtonian
law to the y direction.Thus, the statement that the net external force acting in
the positive y directionmust equal the net rate of increase of the y component
of the momentum yields the equation

� Y þ
Z
C0

p dx ¼
Z
C0

rðu dy � v dxÞv

Solving these two equations for the unknown forces X and Y yields the fol-
lowing pair of integrals:

X ¼
Z
C0

ð�p dy � ru2 dy þ ruv dxÞ

Y ¼
Z
C0

ð p dx � ruv dy þ rv2 dxÞ

The pressure may be eliminated from these equations by use of the Bernoulli
equation,which for the case under consideration,may bewritten in the form

FIGURE 4.10 Arbitrarily shaped body enclosed by an arbitrary control surface. X,
Y, and M are the drag, lift, and moment acting on the body.
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pþ 1
2rðu2 þ v2Þ ¼ B

where B is the Bernoulli constant. Then, by eliminating the pressure p, the
expressions for X and Y become

X ¼ r
Z
C0

uv dx � 1
2ðu2 � v2Þ dy� 

Y ¼ �r
Z
C0

uv dy þ 1
2ðu2 � v2Þ dx� 

where the fact that
R
C0

Bdx ¼ RC0
Bdy ¼ 0 for any constant B around any

closed contour C0 has been used.
It will now be shown that the quantity X � iY may be related to a

complex integral. Consider the following complex integral involving the
complex velocityW :

i
r
2

Z
C0

W 2 dz ¼ i
r
2

Z
C0

ðu� ivÞ2ðdx þ i dyÞ

¼ i
r
2

Z
C0

ðu2 � v2Þ dx þ 2uv dy� þ i½ðu2 � v2Þ dy � 2uv dx
� � �

¼ r
Z
C0

uv dx � 1
2ðu2 � v2Þ dy� þ i uv dy þ 1

2ðu2 � v2Þ dx� � �
¼ X � iY

The last equality follows by comparison of the expanded formof the complex
integral with the expressions derived above for the body forcesX andY .That
is, the complex force X � iY may be evaluated from

X � iY ¼ i
r
2

Z
C0

W 2 dz ð4:17aÞ

whereW ðzÞ is the complex velocity for the £ow ¢eld andC0 is any closed con-
tour that encloses thebody under consideration.It shouldbenoted thatX and
Y were de¢ned as the forces acting on thebody through its center of gravity.

Equation (4.17a) constitutes one of the two Blasius laws. Normally, in
applyingEq.(4.17a),thecontourintegralisevaluatedwiththeaidoftheresidue
theorem.Anapplicationof thisprocedurewill becovered in thenext section.

In order to establish the hydrodynamic moment acting on the body,
consider again Fig. 4.10. The quantity M is the moment acting on the body
about its center of gravity. Then, taking clockwise moments as positive,
moment equilibrium of the £uid enclosed between C0 and Ci requires that
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�M þ
Z
C0

½ px dx þ py dy þ rðu dy � v dxÞuy � rðu dy � v dxÞvx� ¼ 0

The ¢rst two terms under the integral are the components of the pressure
force multiplied by their respective perpendicular distances from the center
of gravity of the body, which is at the origin of the coordinate system. The
remaining two terms under the integral represent the inertia forces, which
were evaluated in the discussion of the force equations, multiplied by their
respective perpendicular distances from the origin. These inertia forces are
equal in magnitude and opposite in direction to the rate of increase of the
horizontal and vertical momentum components.

Solving the foregoing equation for the hydrodynamic momentM gives

M ¼
Z
C0

px dx þ py dy þ rðu2 y dy þ v2 x dx � uvy dx � uvx dyÞ� 

Substituting p ¼ B� rðu2 þ v2Þ=2 from the Bernoulli equation gives

M ¼ r
Z
C0

�1
2ðu2 þ v2Þðx dx þ y dyÞ þ ðu2y dy þ v2x dxÞ � ðuvy dx þ uvx dyÞ�

where the fact has been used that
R
C0

Bx dx ¼ RC0
By dy ¼ 0 for any constant

B and any closed contourC0.Rearranging the preceding equation shows that
the integral for the momentM may be put in the following form:

M ¼ � r
2

Z
C0

ðu2 � v2Þðx dx � y dyÞ þ 2uvðx dy þ y dxÞ� 

It will now be shown that the quantityM may be related to the real part
of a complex integral. Consider the real part, designated by Re( ), of the fol-
lowing complex integral:

Re
r
2

Z
C0

zW 2 dz
� �

¼ Re
r
2

Z
C0

ðx þ iyÞðu� ivÞ2ðdx þ i dyÞ
� �

¼ Re
r
2

Z
C0

ðu2 � v2Þðx dx � y dyÞ þ 2uvðx dy þ y dxÞ� �

þi
r
2

Z
C0

ðu2 � v2Þðx dy þ y dxÞ � 2uvðx dx þ y dyÞ� �

¼ r
2

Z
C0

ðu2 � v2Þðx dx � y dyÞ þ 2uvðx dy þ y dxÞ� 
¼ �M
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The last equality follows from a comparison of the real part of the complex
integral with the expression derived for M. That is, the hydrodynamic
moment acting on a body is given by

M ¼ � r
2
Re

Z
C0

zW 2 dz
� �

ð4:17bÞ

where W ðzÞ is the complex velocity for the £ow ¢eld and C0 is any closed
contour which encloses the body. It should be noted thatM is de¢ned as the
hydrodynamic moment acting on the body, and it is positive when it acts in
the clockwise direction. Equation (4.17b) is the second of the Blasius laws,
and the contour integral in this equation is usually evaluated by use of the
residue theorem.

4.11 FORCE ANDMOMENTON ACIRCULAR
CYLINDER

It was observed in an earlier section that a force exists on a circular cylinder
that is immersed in a uniform £ow and that has a circulation around it. The
magnitude of this force may now be evaluated using the results of the pre-
vious section.

FromEq. (4.14),the complex potential for a circular cylinder of radius a
in a uniform rectilinear £ow of magnitude U and having a bound vortex of
magnitude G in the negative direction is

FðzÞ ¼ U z þ a2

z

� �
þ iG
2p

log
z
a

Then the complex velocity for this £ow ¢eld is

W ðzÞ ¼ U 1� a2

z2

� �
þ iG
2pz

::: W 2ðzÞ ¼ U 2 � 2U 2a2

z2
þ U 2a4

z4
þ iUG

pz
� iUGa2

pz3
� G2

4p2z2

But from the Blasius integral law [Eq. (4.17a)]

X � iY ¼ i
r
2

Z
C0

W 2 dz

¼ i
r
2

2pi
X

ðresidues of W 2 inside C0Þ
h i

where the last equality follows from the residue theorem. It is therefore
required to evaluate the residueofW 2ðzÞat eachof the singular points that lie
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inside an arbitrary contour in the £uid enclosing the cylinder. But
inspection of the expression derived for W 2ðzÞ above shows that the only
singularity is at z ¼ 0, corresponding to the doublet and the vortex that are
located there. Furthermore, W 2ðzÞ is in the form of its Laurent series about
z ¼ 0, from which it is seen that the only term of the form b1=z is the fourth
one. Hence, the residue of W 2ðzÞ at z ¼ 0 is iUG=p. Then the value of the
complex force is

X � iY ¼ i
r
2

2pi
iUG
p

� �� �

¼ �irUG

Equating the real and imaginary parts of this equation shows that the drag
force X is zero, as was expected, and that the value of the lift force is

Y ¼ rUG ð4:18Þ

Equation (4.18) is known as the Kutta-Joukowski law, and it asserts that, for
£ow around a circular cylinder, there will be no lift force on the cylinder if
there is no circulation around it, and if there is a circulation, the value of the
lift force will be given by the product of the magnitude of this circulation
with the free-stream velocity and the density of the £uid.The right-hand side
of Eq. (4.18) is positive, so the negative circulation that acted on the cylinder
led to a positive, that is, upward, lift force.

In order to evaluate the hydrodynamic momentM acting on the cylin-
der, the quantity zW 2 must be evaluated. From the expression forW 2ðzÞ that
was established above,

zW 2ðzÞ ¼ U 2z � 2U 2a2

z
þ U 2a4

z3
þ iUG

p
� iUGa2

pz2
� G2

4p2z

But from the Blasius integral law [Eq. (4.17b)],

M ¼ � r
2
Re

Z
C0

zW 2 dz
� �

¼ � r
2
Re 2pi

X
ðresidues of zW 2 inside C0Þ

h i

where again the residue theorem has been used. But the quantity zW 2ðzÞ, as
evaluated above, is already in the form of its Laurent series about z ¼ 0.
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From this, it is evident that the only singularity is at z ¼ 0, and the residue
there comes from the second and last terms in the expansion.Hence

M ¼ � r
2
Re 2pi �2U 2a2 � G2

4p2

� �� �

¼ 0

That is, as might be expected, there is no hydrodynamic moment acting on
the cylinder.

4.12 CONFORMALTRANSFORMATIONS

Many complicated £ow boundaries may be transformed into regular £ow
boundaries, such as the ones already studied, by the technique of conformal
transformations. Before using this fact, it is necessary to study the e¡ect of
conformal transformations on the complex potential, the complex velocity,
sources, sinks, and vortices. In carrying out this study, it will be considered
that some geometric shape in the z plane whose coordinates are x and y is
mapped into someother shape in the zplanewhose coordinates are xand Zby
means of the transformation

z ¼ f ðzÞ

where f is an analytic function.This situation is depicted in Fig. 4.11.
The basis of the complex potential was that both the velocity potential

and the stream function had to satisfy Laplace’s equation.Hence, in order to
establish the e¡ect of a conformal transformation on complex potentials,
their e¡ect on Laplace’s equation should be studied. This will be done by
transforming the second derivatives with respect to x and y into derivatives
with respect to the new coordinates, namely, x and Z.Then, considering f to
be a function of x and Z

@f
@x

¼ @x
@x

@f
@x

þ @Z
@x

@f
@Z

where @x=@x and @Z=@x will be known from the equation of the mapping,
z ¼ f ðzÞ. Now in order to transform @2f=@x2, each of the two terms on the
right-hand side of the expression for @f=@x must be di¡erentiated with
respect to x.Then, using the product rule and considering f to be a function
of x and Z,
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@

@x
@x
@x

@f
@x

� �
¼ @2x

@x2
@f
@x

þ @x
@x

@x
@x

@2f

@x2
þ @Z
@x

@2f
@x@Z

� �

and

@

@x
@Z
@x

@f
@Z

� �
¼ @2Z

@x2
@f
@Z

þ @Z
@x

@x
@x

@2f
@x@Z

þ @Z
@x

@2f
@Z2

� �

Hence the expression for @2f=@x2, in terms of derivatives with respect to x
and Z, becomes

@2f
@x2

¼ @x
@x

� �2@2f

@x2
þ @Z

@x

� �2@2f
@Z2

þ 2
@x
@x

@Z
@x

@2f
@x@Z

þ @2x
@x2

@f
@x

þ @2Z
@x2

@f
@Z

The corresponding expression for @2f=@y2 is

@2f
@y2

¼ @x
@y

� �2@2f

@x2
þ @Z

@y

� �2@2f
@Z2

þ 2
@x
@y

@Z
@y

@2f
@x@Z

þ @2x
@y2

@f
@x

þ @2Z
@y2

@f
@Z

Now since fmust satisfy Laplace’s equation in the original plane, that is, the
xy plane, the sum of the above two quantities must be zero.Then

FIGURE 4.11 Original and mapped planes for the mapping z ¼ fðzÞ where f is an
analytic function.
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@x
@x

� �2

þ @x
@y

� �2
" #

@2f

@x2
þ @Z

@x

� �2

þ @Z
@y

� �2
" #

@2f
@Z2

þ 2
@x
@x

@Z
@x

þ @x
@y

@Z
@y

� �
@2f
@x@Z

þ @2x
@x2

þ @2x
@y2

� �
@f
@x

þ @2Z
@x2

þ @2Z
@y2

� �
@f
@Z

¼ 0

This is the equation that has to be satis¢ed byfðx; ZÞ in the z plane due to any
transformation z ¼ f ðzÞ corresponding to @2f=@x2 þ @2f=@y2 ¼ 0 in the z
plane.So far, no restrictions have been imposed on the transformation.But if
the transformation is conformal, the mapping function f will be analytic and
the real and imaginary parts of the new variable zwill be harmonic.That is,
@2x=@x2 þ @2x=@y2 ¼ 0 and @2Z=@x2 þ @2Z=@y2 ¼ 0, so that the terms invol-
ving these quantities in the equation for f will be zero. Also, xðx; yÞ and
Zðx; yÞmust satisfy the Cauchy-Riemann equations if the mapping function
is analytic.That is,

@x
@x

¼ @Z
@y

and

@x
@y

¼ � @Z
@x

then

@x
@x

@Z
@x

þ @x
@y

@Z
@y

� �
¼ @x

@x
@Z
@x

� @Z
@x

@x
@x

� �
¼ 0

Using this result, the equation to be satis¢ed by f becomes

@x
@x

� �2

þ @x
@y

� �2
" #

@2f

@x2
þ @Z

@x

� �2

þ @Z
@y

� �2
" #

@2f
@Z2

¼ 0

Using the Cauchy-Riemann equations to eliminate ¢rst x, then Z, then shows
that the following pair of equations must be satis¢ed:

@Z
@x

� �2

þ @Z
@y

� �2
" #

@2f

@x2
þ @2f

@Z2

� �
¼ 0

@x
@x

� �2

þ @x
@y

� �2
" #

@2f

@x2
þ @2f

@Z2

� �
¼ 0
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But these equations must be satis¢ed for all analytic mapping functions;
hence it follows that

@2f

@x2
þ @2f

@Z2
¼ 0

That is, Laplace’s equation in the z plane transforms into Laplace’s equation
in the z plane, provided these two planes are related by a conformal trans-
formation. Then, since both f and cmust satisfy Laplace’s equation, it fol-
lows that a complex potential in the z plane is also a valid complex potential
in the z plane, and vice versa.This means that if the solution for some simple
body is known in one of these planes, say the z plane, then the solution for the
more complex body may be obtained by substituting z ¼ f ðzÞ in the complex
potential FðzÞ.

Consider now what happens to the complex velocity under a con-
formal transformation. Starting in the z plane with the de¢nition of complex
velocity,

W ðzÞ ¼ dFðzÞ
dz

¼ dz
dz

dFðzÞ
dz

W ðzÞ ¼ dz
dz

W ðzÞ

ð4:19Þ

That is, complex velocities are not, in general, mapped one to one, but they
are proportional to each other, and the proportionality factor depends on the
mapping function.

Finally, the e¡ect of a conformal transformation on the strength of the
basic singularities will be investigated. That is, the strength of transformed
sources, sinks, and vortices will be established.This is most readily done by
¢rst proving the general relation that the integral of the complex velocity
around any closed contour in the £ow ¢eld equals Gþ im,where G is the net
strength of any vortices inside the contour and m is the net strength of any
sources and sinks inside the contour.

To prove this relation, consider any closed contour C such as the one
shown in Fig. 4.12. An element dl of this contour is shown resolved into its
coordinate components. Then the net strength of all the sources inside C
(sinks being considered negative sources) and the net strength of all the vor-
tices inside Cwill be given by
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m ¼
Z
C
u�n dl ¼

Z
C
ðu dy � v dxÞ

G ¼
Z
C
u�dl ¼

Z
C
ðu dx þ v dyÞ

Now consider the integral around C of the complex velocityW(z).

Z
C
W ðzÞdz ¼

Z
C
ðu� ivÞðdx þ i dyÞ

¼
Z
C
ðu dx þ v dyÞ þ i

Z
C
ðu dy � v dxÞ

¼ Gþ im

where the last equality follows from a comparison with the expressions
derived form andG.This general result will now be applied to a single vortex
Gz and a single sourcemz located in the z plane.Then

FIGURE 4.12 Abritrary closed contour C with an element dl resolved into its coor-

dinate components.
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Gz þ imz ¼
Z
Cz

W ðzÞ dz

¼
Z
Cz

W ðzÞ dz
dz

dz

¼
Z
Cz

W ðzÞ dz

¼ Gz þ imz

whereCz is some closed contour in the z plane andCz is its counterpart in the
mapped plane. Gz andmz are the corresponding vortex and source strengths
in the zplane, and the above result shows that the vortex and source strengths
are the same in the z plane as in the z plane.That is, sources, sinks, and vor-
tices map into sources, sinks, and vortices of the same strength under a con-
formal transformation.

In summary, if the complex potential for the £ow around some body is
known in the z plane, then the complex potential for the body corresponding
to the conformal mapping z ¼ f ðzÞ may be obtained by substituting this
transformation into the complex potential FðzÞ. Complex velocities, on the
other hand,do not transformone to onebut are related byEq. (4.19).Sources,
sinks, and vortices maintain the same strength under conformal transfor-
mations.

4.13 JOUKOWSKI TRANSFORMATION

One of themost important transformations in the study of £uidmechanics is
the Joukowski transformation. By means of this transformation and the
basic £ow solutions already studied, it is possible to obtain solutions for the
£owaround ellipses and a family of airfoils.The Joukowski transformation is
of the form

z ¼ zþ c2

z
ð4:20Þ

where the constant c2 is usually taken to be real. A general property of
the Joukowski transformation is that for large values of jzj; z ! z. That is,
far from the origin the transformation becomes the identity mapping, so
that the complex velocity in the two planes is the same far from the
origin. This means that if a uniform £ow of a certain magnitude is
approaching a body in the z plane at some angle of attack, a uniform £ow
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of the same magnitude and angle of attack will approach the corresponding
body in the z plane.

From Eq. (4.20),

dz
dz

¼ 1� c2

z2

so that there is a singular point in the Joukowski transformation at z ¼ 0.
Since we are normally dealing with the £ow around some body, the point
z ¼ 0 is normally not in the £uid, and so this singularity is of no consequence.
There are also two critical points of the transformation, that is, points at
which dz=dz vanishes, at z ¼ 	c. Since smooth curves passing through cri-
tical points of a mapping may become corners in the transformed plane, it is
of interest to investigate the consequence of a smooth curve passing through
the critical points of the Joukowski transformation. To do this, consider an
arbitrary point z and its counterpart z as shown in Fig. 4.13a. Let the point z
bemeasured by the radii r1 and r2 and the angles n1 and n2 relative to the two
critical points z ¼ c and z ¼ �c, respectively. But according to the Jou-
kowski transformation the points z ¼ 	cmap into the points z ¼ 	2c.Then
let the mapping of the point z be measured by the radii R1 and R2 and the
angles y1 and y2 relative to the two points z ¼ 2c and z ¼ �2c, respectively.

Form Eq. (4.20),

z þ 2c ¼ ðzþ cÞ2
z

and

z � 2c ¼ ðz� cÞ2
z

:::
z � 2c
z þ 2c

¼ z� c
zþ c

� �2

Thus,with reference to Fig 4.13a,

R1eiy1

R2eiy2
¼ r1e

in1

r2ein2

� �2

or

R1

R2
eiðy1�y2Þ ¼ r1

r2

� �2

ei2ðn1�n2Þ
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Equating the modulus and the argument of each side of this equation shows
that

R1

R2
¼ r1

r2

� �2

and

y1 � y2 ¼ 2ðn1 � n2Þ

This last result shows that if a smooth curve passes through the point z ¼ c,
the corresponding curve in the z plane will form a knife-edge or cusp. This
may be veri¢ed by considering a smooth curve to pass through the point
z ¼ c.Two points on this curve are shown in Fig. 4.13b, fromwhich it is seen
that v1 changes from 3p=2 to p=2 and n2 changes from 2p to 0 as the critical

FIGURE 4.13 (a) Coordinate system used to investigate the critical points of the
Joukowski transformation, and (b) the coordinate changes corresponding to a
smooth curve passing through z ¼ c.
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point is passed.That is, the value of n1 � n2 changes from�p=2 to p=2, giving
a di¡erence of p. From the result y1 � y2 ¼ 2ðn1 � n2Þ, it follows that the
corresponding di¡erence in the value of y1 � y2 will be 2p. This yields a
knife-edge or cusp in the z plane as shown in Fig. 4.13b.That is, if a smooth
curve passes through either of the critical points z ¼ 	c, the corresponding
curve in the z plane will contain a knife-edge at the corresponding critical
point z ¼ 	2c.

An example of a smooth curve that passes through both critical points
is a circle centered at the origin of the z plane and whose radius is c, the con-
stant that appears in the Joukowski transformation. Then, on this circle
z ¼ cein, and the value of z will be given by

z ¼ cein þ ce�in

¼ 2c cos n

That is, the circle in the z plane maps into the strip y ¼ 0, x ¼ 2c cos n in the z
plane. It is readily veri¢ed that all points that lie outside the circle jzj ¼ c
cover the entire z plane. However, the points inside the circle jzj ¼ c also
cover the entire z plane, so that the transformation is double-valued.This is
readily veri¢ed byobserving that for any value of z, Eq. (4.20) yields the same
value of z for that value of z and also for c2=z. It will be noted that c2=z is
simply the image of the point z inside the circle of radius c.

This double-valued property of the Joukowski transformation is trea-
ted by connecting the two points z ¼ 	2c by a branch cut along the x axis and
creating two Riemann sheets. Then the mapping is single-valued if all the
points outside the circle jzj ¼ c are taken to fall on one of these sheets and all
the points inside the circle to fall on the other sheet. In £uid mechanics, dif-
¢culties due to the double-valued behavior do not usually arise because the
points jzj < c usually lie inside some body about which the £ow is being stu-
died, so that these points are not in the £ow ¢eld in the z plane.

4.14 FLOWAROUND ELLIPSES

Applications of the Joukowski transformation will be made in an inverse
sense. That is, the simple geometry of the circle, the £ow around which is
known,will be placed in the z plane, and the corresponding body that results
in the z plane will be investigated by use of Eq. (4.20).

Consider, ¢rst, the constant c in Eq. (4.20) to be real and positive, and
consider a circle of radius a > c to be centered at the origin of the zplane.The
contour in the z plane corresponding to this circle in the z plane may be
identi¢ed by substituting z ¼ aein into Eq. (4.20).
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z ¼ aein þ c2

a
e�in

¼ aþ c2

a

� �
cos nþ i a� c2

a

� �
sin n

Equating real and imaginary parts of this equation gives

x ¼ aþ c2

a

� �
cos n

y ¼ a� c2

a

� �
sin n

These are the parametric equations of the required curve in the z plane.The
equation of the curve may be obtained by eliminating n by use of the identity
cos2nþ sin2 n ¼ 1.This gives

x
aþ c2=a

� �2

þ y
a� c2=a

� �2

¼ 1

which is the equation of an ellipsewhosemajor semiaxis is of length aþ c2=a,
aligned along the x axis, and whose minor semiaxis is of length a� c2=a.
Then, in order to obtain the complex potential for a uniform £ow of magni-
tude U approaching this ellipse at an angle of attack a, the same £ow should
be considered to approach the circular cylinder in the z plane.But it is shown
in Prob. 4.5, Eq. (4.29), that the complex potential for a uniform £ow of
magnitude U approaching a circular cylinder of radius a at an angle a to the
reference axis is

FðzÞ ¼ U ze�ia þ a2

z
eia

� �

Then, by solving Eq. (4.20) for z in terms of z, the complex potential in the z
plane may be obtained. From Eq. (4.20),

z2 � zzþ c2 ¼ 0

::: z ¼ z
2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�c2

r
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Since it is known that z ! z for large values of z, the positive root must be
chosen.Then the complex potential in the z plane becomes

FðzÞ ¼ U
z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�c2

r" #
e�ia þ a2eia

z=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz=2Þ2 � c2

q
8><
>:

9>=
>;

¼ U z � z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�c2

r" #
e�ia þ a2

c2
z
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�c2

r" #
eia

( )

where the last term has been rationalized. By writing z=2 as z � z=2 in the
¢rst term, two of the terms may be combined as follows:

FðzÞ ¼ U ze�ia þ a2

c2
eia � e�ia

� �
z
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�c2

r !" #
ð4:21aÞ

Equation (4.21a) is the complex potential for a uniform £ow of magnitude U
approaching an ellipse whose major semiaxis is aþ c2=a and whose minor
semiaxis is a� c2=a at an angle of attack a to the major axis. In this form it
may be seen that the complex potential consists of that for a uniform £ow at
an angle a to the reference axis plus a perturbation which is large near the
body but vanishes for large values of z. The £ow ¢eld generated by the com-
plex potential (4.21a) is shown in Fig. 4.14a together with that for the circular
cylinder in the z plane.

The stagnation points in the z plane are located at z ¼ aeia and
z ¼ aeiðaþpÞ, that is, at z ¼ 	aeia. Then, from Eq. (4.20), the corresponding
points in the z plane are

z ¼ 	aeia 	 c2

a
e�ia

¼ 	 aþ c2

a

� �
cos a	 i a� c2

a

� �
sin a

This gives the coordinates of the stagnation points as

x ¼ 	 aþ c2

a

� �
cos a

y ¼ 	 a� c2

a

� �
sin a
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Equation (4.21a) includes two special cases within its range of validity.
For a ¼ 0 it describes a uniform rectilinear £ow approaching a horizontally
oriented ellipse, and for a ¼ p=2 it describes a uniform vertical £ow
approaching the same horizontally oriented ellipse.However, it is of interest
to note that the solution for a uniform rectilinear £ow approaching a verti-
cally oriented ellipse may be obtained directly from the Joukowski transfor-
mation with a slight modi¢cation. Substitute c ¼ ib, where b is real and
positive, into Eq. (4.20)

z ¼ z� b2

z

Then, as with the horizontal ellipse, examining the mapping of the circle
z ¼ aein gives the parametric equations of the mapped boundary.

FIGURE 4.14 (a) Uniform flow approaching a horizontal ellipse at an angle of
attack, and (b) uniform parallel flow approaching a vertical ellipse.
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x ¼ a� b2

a

� �
cos n

y ¼ aþ b2

a

� �
sin n

Thus the equation of the contour in the z plane is

x
a� b2=a

� �2

þ y
aþ b2=a

� �2

¼ 1

which is the equation of an ellipse whose major semiaxis is aþ b2=awhich is
aligned along the y axis.Then to obtain uniform rectilinear £ow approaching
such an ellipse the same £ow should approach the circle in the z plane.Thus
the required complex potential, from Eq. (4.13), is

FðzÞ ¼ U zþ a2

z

� �

But the inverted equation of the mapping for which z ! z as z ! 1 is

z ¼ z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
þb2

r

Hence the complex potential in the z plane is

FðzÞ ¼ U
z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
þb2

r
þ a2

z=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz=2Þ2 þ b2

q
2
64

3
75

FðzÞ ¼ U z � 1þ a2

b2

� �
z
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
þb2

r !" # ð4:21bÞ

in which the same rationalization and simpli¢cation has been carried out as
before. Again the complex potential is in the form of that for a uniform £ow
plus a perturbation which is large near the body and which vanishes at large
distances from the body. Equation (4.21b) describes a uniform rectilinear
£ow of magnitude U approaching a vertically oriented ellipse.The £ow ¢eld
for this situation is shown in Fig. 4.14b.
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4.15 KUTTACONDITION ANDTHE FLAT-PLATE
AIRFOIL

It was observed in Sec. 4.6 that the potential £ow solution for £ow around a
sharp edge contained a singularity at the edge itself.This singularity required
an in¢nite velocity at the point in question, which, of course, is physically
impossible.The question arises, then, as towhat the real £ow situationwould
be in a physical experiment. Depending upon the actual physical con¢gura-
tion, one of two remedial situations will prevail. One possibility is that the
£uid will separate from the solid surface at the knife-edge.The resulting free
streamline con¢guration would be such that the radius of curvature at the
edge becomes ¢nite rather than being zero. As a consequence, the velocities
there will remain ¢nite. Examples of this type of solution will be discussed
later in this chapter.

A second possibility is that a stagnation point exists at the sharp edge.
For the £ow around ¢nite bodies, stagnation points exist, and it seems pos-
sible that a stagnation point could be induced by the £ow ¢eld tomove to the
location of the sharp edge.This possibility leads to the so-called Kutta con-
dition, and it will be discussed below in the context of the £at-plate airfoil�
that is, a £at plate which is at some angle of attack to the free stream.

In the previous section, the £ow around an ellipse was obtained from
the Joukowski transformation [Eq. (4.20)] by considering the £ow around a
circular cylinder of radius a > c in the z plane. Now, if the constant c is
allowed to approach themagnitude of the radius a, the resulting ellipse in the
z plane degenerates to a £at plate de¢ned by the strip �2a � x � 2a. The
resulting £ow ¢eld, as de¢ned by Eq. (4.21a), is shown in Fig. 4.15a. Because
of the angle of attack, the stagnation points do not coincide with the leading
and trailing edges of the £at plate. Rather, the upstream stagnation point is
located on the lower surface and the downstream stagnation point is located
on the upper surface at the points x ¼ 	2a cos a. Then, around both the
leading and trailing edges, the £ow will be that associated with a sharp edge,
which was discussed in Sec. 4.6. In that section it was observed that in¢nite
velocity components existed at the edge itself, a situation that is physically
impossible to realize.

The di⁄culty encountered above with the £at-plate airfoil does not
occur at the leading edge of real airfoils because real airfoils have a ¢nite
thickness and so have a ¢nite radius of curvature at the leading edge. How-
ever, the trailing edge of airfoils is usually quite sharp, so that the di⁄culty of
in¢nite velocity components still exists there.However, this remaining di⁄-
culty would alsobeovercome if the stagnationpoint which is near the trailing
edge was actually at the trailing edge.This would be accomplished if a circu-
lation existed around the £at plate and the magnitude of this circulation was
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just the amount required to rotate the rear stagnationpoint so that its location
coincides with the trailing edge.This condition is called the Kutta condition,
and itmay be restated as follows:For bodieswith sharp trailing edges that are
at small angles of attack to the free stream, the £ow will adjust itself in such a
way that the rear stagnation point coincides with the trailing edge.

The amount of circulation required to comply with theKutta condition
may be determined as follows: In the z plane of Fig. 4.15a, the rear stagnation
point is located at the point z ¼ aeia. But, according to the Kutta condition,
the rear stagnation point should be located at the point z ¼ 2a,which corre-
sponds to the point z ¼ a. That is, the stagnation point on the downstream
face of the circular cylinder in the z plane should be rotated clockwise
through an angle a. But from Eq. (4.16), the magnitude of the circulation that
will do this is

G ¼ 4pUa sin a ð4:22aÞ

FIGURE 4.15 Flow around a flat plate at shallow angle of attack (a) without circu-

lation and (b) satisfying the Kutta condition.
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in the clockwise direction (that is, negative circulation). Then the complex
potential for the required £ow in the z plane is, from Eqs. (4.14) and (4.29),

FðzÞ ¼ U ze�ia þ a2

z
eia

� �
þ i2Ua sin a log

z
a

But the equation of the mapping is

z ¼ zþ a2

z

and the inverse,which gives z ! z as z ! 1, is

z ¼ z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�a2

r

Then the complex potential in the z plane is

FðzÞ ¼ U
z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�a2

r" #
e�ia þ a2eia

z=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz=2Þ2 � a2

q
8><
>:

þi2a sin a log
1
a

z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2


 �2
�a2

r !" #)
ð4:22bÞ

The £ow ¢eld corresponding to this complex potential is shown in Fig. 4.15b.
Although the £ow at the trailing edge is now regular, the singularity at the
leading edge still exists. In an actual £ow con¢guration the £uid would
separate at the leading edge and reattach again on the top side of the airfoil.
The streamline c ¼ 0 would then correspond to a ¢nite curvature, and the
velocity components would remain ¢nite at the leading edge.

The lift force generated by the £at-plate airfoil may be calculated from
the Kutta-Joukowski law. Then, denoting the lift force by Y and using the
value of the circulation given by Eq. (4.22a),

Y ¼ 4prU 2a sin a

It is usual to express lift forces in termsof the dimensionless lift coe⁄cient CL,
which is de¢ned as follows:

CL ¼ Y
1
2 rU

2l
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where l is the length or chord of the airfoil, which, for the £at plate under
consideration, equals 4a. Then the value of the lift coe⁄cient for the £at-
plate airfoil is

CL ¼ 2p sin a ð4:22cÞ
This result shows that the lift coe⁄cient for the £at-plate airfoil increases
with angle of attack, and for small values of a, for which sin a 
 a, the lift
coe⁄cient is proportional to the angle of attack with a constant of pro-
portionality of 2p.This result is very close to experimental observations, and
so the Kutta condition appears to be well justi¢ed. If the Kutta condition
were not valid, there would be no circulation around the £at plate, and con-
sequently no lift would be generated. This would mean that kites would not
be able to £y.

4.16 SYMMETRICAL JOUKOWSKI AIRFOIL

A family of airfoils may be obtained in the z plane by considering the Jou-
kowski transformation in conjunction with a series of circles in the z plane
whose centers are slightly displaced from the origin. These airfoils are
known as the Joukowski family of airfoils.

Consider, ¢rst, the case where the center of the circle in the z plane is
displaced from the origin along the real axis. Itmust then be decided inwhich
direction the center should be moved and what radius should be employed,
relative to the Joukowski constant c. From previous sections it is known that
if the circumference of the circle passes through either of the two critical
points of the Joukowski transformation, z ¼ 	c, then a sharp edge or cusp is
obtained in the z plane. Then, if the leading edge of the airfoil is to have a
¢nite radius of curvature and if there should be no singularities in the £ow
¢eld itself, it follows that the point z ¼ �c should be inside the circle in the z
plane. Also, since the trailing edge of the airfoil should be sharp as opposed
to being blunt, the circumference of the circle should pass through the point
z ¼ c.These conditionswill be satis¢ed by taking the center of the circle tobe
at z ¼ �m, where m is real, and by choosing the radius of the circle to be
c þm. Such a con¢guration is shown in Fig. 4.16a.The radius a is given by

a ¼ c þm ¼ cð1þ eÞ

where the parameter e ¼ m=c will be assumed to be small compared with
unity.When e ¼ 0, the £at-plate airfoil is recovered, so that for e � 1 it may
be anticipated that a thin airfoil will be obtained. The signi¢cance of the
restriction e � 1 will be that all the equations may be linearized in e, which
will permit a closed-form solution for the equation of the airfoil surface in
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the z plane. Also shown in Fig. 4.16a is the airfoil that is obtained in the z
plane and its principal parameters, the chord l and the maximum thickness t.
It is now required to relate these parameters to the free parameters a and m
and to establish the equation of the airfoil surface in the z plane.

To establish the chord of the airfoil in terms of the chosen radius a and
o¡set m, it is only necessary to ¢nd the mapping of the points z ¼ c and
z ¼ �ðc þ 2mÞ, since these points correspond to the trailing and leading
edges, respectively.Using the Joukowski transformation, the mapping of the
point z ¼ c is z ¼ 2c. Also, the mapping of the point z ¼ �ðc þ 2mÞ ¼
�cð1þ 2eÞ is

z ¼ �cð1þ 2eÞ � c
1þ 2e

Since it was decided to linearize all quantities in e, the value of z will be
obtained to the ¢rst order in e only.

z ¼ �cð1þ 2eÞ � c½1� 2eþ Oðe2Þ�
¼ �2c þ Oðe2Þ

FIGURE 4.16 The symmetrical Joukowski airfoil: (a) the mapping planes and (b)

uniform flow past the airfoil.
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That is, to the ¢rst order in e the lending edge of the airfoil is located at
z ¼ �2c, so that the chord length is

l ¼ 4c

This means that, correct to the ¢rst order in e, the length of the airfoil is
unchanged by the shifting of the center of the circle in the z plane.

In order to determine the maximum thickness t, the equation of the
airfoil surface must be obtained.This may be done by inserting the equation
of the surface in the z plane into the Joukowski transformation. But in the z
plane the polar radius R to the circumference of the circle is a function of the
angle n. In order to establish this dependence, the cosine rule will be applied
to the triangle de¢ned by the radius a, the coordinateR, and the real z axis, as
shown in Fig. 4.16a.Thus

a2 ¼ R2 þm2 � 2Rm cosðp� nÞ
¼ R2 þm2 þ 2Rm cos n

But a ¼ c þm, so that the equation above may be written in the form

ðc þmÞ2 ¼ R2 1þm2

R2 þ 2
m
R
cos n

� �

Now since R � c, it follows thatm=R � m=c so that, to ¢rst order in e ¼ m=c,
the termm2=R2 may be neglected.The equation for R then becomes

c þm ¼ R 1þ 2
m
R
cos n


 �1=2
¼ R 1þm

R
cos nþ Oðe2Þ

h i
Thus to the ¢rst order in e, this relation becomes

cð1þ eÞ ¼ R þm cos n

::: R ¼ c½1þ eð1� cos nÞ�

This is the required equation that gives the variation of the radius Rwith the
angle n for points on the circumference of the circle in the z plane. Then, in
order to determine the equation of the corresponding pro¢le in the z plane,
this result should be substituted into the Joukowski transformation
[Eq. (4.20)].Thus points on the surface of the airfoil will be de¢ned by

z ¼ c½1þ eð1� cos nÞ�ein þ ce�in

1þ eð1� cos nÞ
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This equation may also be linearized in e as follows:

z ¼ c½1þ eð1� cos nÞ�ein þ c½1� eð1� cos nÞ þ Oðe2Þ�e�in

¼ c½2 cos nþ i2eð1� cos nÞ sin nþ Oðe2Þ�

Then, by equating real and imaginary parts of this equation, the parametric
equations of the airfoil are, to ¢rst order in e,

x ¼ 2c cos n

y ¼ 2ceð1� cos nÞ sin n

Using the ¢rst of these equations to eliminate n from the second equation
gives the following equation for the airfoil pro¢le:

y ¼ 	2ce 1� x
2c


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

2c


 �2r

The location of the maximum thickness may now be obtained, and this
is most readily done by using the parametric equation for the coordinate y as
derived above.Thus setting dy=dn ¼ 0 for amaximum in y gives the following
equation for the value of n at the maximum thickness:

sin2 nþ ð1� cos nÞ cos n ¼ 0

This relation reduces to

cos 2n ¼ cos n

which is satis¢ed by n ¼ 0; n ¼ 2p=3, and n ¼ 4p=3. This solution n ¼ 0 cor-
responds to the trailing edge and so is the minimum thickness. The solu-
tions n ¼ 2p=3 and n ¼ 4p=3 give the maximum thickness, and for these
values of n the coordinates of the airfoil surface are

x ¼ �c

y ¼ 	 3
ffiffiffi
3

p

2
ce

The maximum thickness t will be twice the positive value of y, so that the
thickness ratio t=l of the airfoil will be

t
l
¼ 3

ffiffiffi
3

p

4
e
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That is, the thickness-to-chord ratio of the airfoil is proportional to e,which
is the ratio of the o¡set of the center of the circle in the z plane to the radius c
of the critical points of the transformation. Since the thickness ratio of the
airfoil is a parameter that may be thought of as being speci¢ed, it is useful to
eliminate e in terms of this parameter.Hence

e ¼ 4
3
ffiffiffi
3

p t
l
¼ 0:77

t
l

Then the equation of the airfoil surface may be written in the form

y
t
¼ 	0:385 1� 2

x
l


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

x
l


 �2r
ð4:23aÞ

where the maximum value of y=t will be 0.5 and the minimum value will be
�0:5, both of which occur at x ¼ �c.

The magnitude of the circulation required to satisfy the Kutta condi-
tion is, from Eq. (4.16), 4pUa sin a, where a ¼ c þm and m ¼ ce ¼ 0:77tc=l .
Thus the required amount of circulation is

G ¼ pUl 1þ 0:77
t
l


 �
sin a ð4:23bÞ

where c has been replaced by l=4. In this form the required circulationmay be
evaluated for the given free-stream velocity, angle of attack, and the chord
and thickness of the airfoil.Using the Kutta-Joukowski law [Eq. (4.18)], the
lift force acting on the airfoil may be evaluated as

FL ¼ prU 2l 1þ 0:77
t
l


 �
sin a

Then the lift coe⁄cient for the symmetrical Joukowski airfoil is

CL ¼ 2p 1þ 0:77
t
l


 �
sin a ð4:23cÞ

It will be noticed that this result reduces to Eq. (4.22c) for the £at-plate air-
foil as t ! 0. This indicates that the e¡ect of thickness of an airfoil is to
increase the lift coe⁄cient. However, this fact cannot be used to produce
high lift coe⁄cients through thick airfoils, since the £ow tends to separate
from blu¡ bodies much more readily than it does from streamlined bodies.
This separation of the £ow is a viscous e¡ect, and it will be discussed in the
next part of the book. In themeantime, it is su⁄cient to say that separation of
the £ow results in a low-pressure wake that destroys the lift.The same result
may occur for slender bodies, such as airfoils, that are at large angles of
attack. In this context the separation is usually referred to as stall.
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The center of the circle in the z plane is located at z ¼ �m rather than
z ¼ 0.Thus the complex potential for the £ow in the z plane may be obtained
from Eq. (4.29) by replacing z by zþm and adding circulation.The required
complex potential then becomes

FðzÞ ¼ U ðzþmÞe�ia þ a2

zþm
eia

� �
þ iG
2p

log
zþm
a

� �
ð4:23dÞ

where

a ¼ l
4
þ 0:77

tc
l

and

m ¼ 0:77
tc
l

The magnitude of the circulation G is given by Eq. (4.23b), and in the
Joukowski transformation the parameter c equals l=4.The £ow ¢eld corres-
ponding to this complex potential is shown in Fig. 4.16b.

4.17 CIRCULAR-ARC AIRFOIL

It was shown in the two previous sections that, using the Joukowski trans-
formation, a circle of radius c centered at the origin of the z plane produced a
£at-plate airfoil while a slightly larger circle centered a small distance along
the real axis from the origin produced a thin symmetrical airfoil. It will now
be shown that a circle whose radius is slightly larger than c and whose center
is located on the imaginary axis of the z plane produces an airfoil that has no
thickness but has curvature of camber.

Referring to Fig. 4.17a, consider a circle of radius a > c in the z plane
such that the center of the circle is located a distance m along the positive
imaginary axis. Since the trailing edge of the airfoil should be sharp, the
circle should pass through the critical point z ¼ c as before. Then, in this
case, the circle will also pass through the other critical point, z ¼ �c.

The equation of the airfoil in the z plane may be obtained by substitut-
ing z ¼ Rein into the Joukowski transformation,where,on the circumference
of the circle in the z plane, R is a function of n.This substitution gives

z ¼ Rein þ c2

R
e�in

¼ R þ c2

R

� �
cos nþ i R � c2

R

� �
sin n
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Thus the parametric equations of the airfoil pro¢le are

x ¼ R þ c2

R

� �
cos n

y ¼ R � c2

R

� �
sin n

The variable Rmay be eliminated from these equations as follows:

x2 sin2 n� y2 cos2 n ¼ R þ c2

R

� �2

sin2 n cos2 n� R � c2

R

� �2

sin2 n cos2 n

¼ 4c2 sin2 n cos2 n

This is the equation of the airfoil surface in the z plane,but it still contains the
variable n.This variable may be eliminated by applying the cosine rule to the

FIGURE 4.17 The circular-arc airfoil; (a) the mapping planes and (b) uniform flow
past the airfoil.
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triangle de¢ned by the radius a, the coordinate R, and the imaginary z axis.
From this it follows that

a2 ¼ R2 þm2 � 2Rm cos
p
2
� n


 �
c2 þm2 ¼ R2 þm2 � 2Rm sin n

where the fact that a2 ¼ c2 þm2 has been used. Solving this equation for
sin n, it follows that

sin n ¼ R2 � c2

2Rm

But it was shown above that y ¼ ½ðR2 � c2Þ sin n�=R; hence it follows that

sin n ¼ y
2m sin n

or

sin2 n ¼ y
2m

and so

cos2 n ¼ 1� y
2m

Using these results to eliminate n, the equation of the airfoil surface
becomes

x2
y
2m

� y2 1� y
2m


 �
¼ 4c2

y
2m

1� y
2m


 �

Collecting like terms, this equation may be put in the form

x2 þ y2 þ 2
c2

m
�m

� �
y ¼ 4c2

Completing the square in y shows that the equation of the airfoil surface is

x2 þ y þ c
c
m

�m
c


 �h i2
¼ c2 4þ c

m
�m

c


 �2� �

which is the equation of a circle. It should be noted that so far no approx-
imations have been made. But to be consistent with the analysis in the
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previous section and to permit superposition in the next section, the para-
meter e ¼ m=c will again be assumed to be small compared with unity.Then,
linearizing in e, the equation of the airfoil surface becomes

x2 þ y þ c2

m

� �2

¼ c2 4þ c2

m2

� �

That is, correct to the ¢rst order in e, the center of the circle in the z plane is
located at y ¼ �c2=m and the radius of the circle is c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2=m2

p
.

The characteristic parameters of the airfoil are the chord l and
the camber height h, and these are shown in Fig. 4.17a. Since the equation of
the airfoil has now been established, it is possible to relate these parameters
to those in the z plane, namely, c and m. Since the ends of the circular-
arc airfoil lie on the real axis y ¼ 0, the foregoing equation of the airfoil
shows that the corresponding values of x are 	2c. That is, the chord of the
airfoil is

l ¼ 4c

This is the same chord length as for the two previous airfoils.
The simplest way of establishing the camber h of the airfoil is to use the

fact that, in view of the result that the center of the circular arc is at x ¼ 0, the
maximum value of y will occur when x ¼ 0. But the parametric equation
x ¼ ðR þ c2=RÞ cos n shows that this corresponds to n ¼ p=2.Then the other
parametric equation, namely, y ¼ 2m sin2 n, shows that the maximum value
of y is 2m.That is,

h ¼ 2m

Using the foregoing results, the z-plane parameters c and m may be
replaced by the z-plane parameters l=4 and h=2, respectively. Then the
equation of the airfoil surface in the z plane may be written in the form

x2 þ y þ l2

8h

� �2

¼ l2

4
1þ l2

16h2

� �
ð4:24aÞ

In order to satisfy the Kutta condition, the rear stagnation point must
rotate through an angle greater than a, the angle of the free stream. By rotat-
ing through the angle a, the rear stagnation point will be located on the sur-
face of the circle in the zplane at a point which is in the samehorizontal plane
as the center of the circle. But the center of the circle is located a distance m
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above the real z axis.Thus, in order to be located at the point z ¼ c, the rear
stagnation point must rotate through a further angle given by

tan�1 m
c
¼ tan�1 e

¼ eþ Oðe2Þ

That is, in order to comply with the Kutta condition, the rear stagnation
pointmust rotate through the angle aþm=c, to the ¢rst order in e.Then, from
Eq. (4.16), the required circulation is

G ¼ 4pUa sin aþm
c


 �

but a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þm2

p
so that, to ¢rst order in e; a ¼ c. Hence

G ¼ 4pUc sin aþm
c


 �

Then, from the Kutta-Joukowski law, the lift force is

FL ¼ 4prU 2c sin aþm
c


 �

and the corresponding lift coe⁄cient is

CL ¼ 8p
c
l
sin aþm

c


 �

Using again the fact that c ¼ l=4 andm ¼ h=2, the lift coe⁄cient becomes

CL ¼ 2p sin aþ 2h
l

� �
ð4:24bÞ

Comparing this result with Eq. (4.22c), the corresponding result for the £at
plate, shows that the e¡ect of positive camber in an airfoil is to increase its lift
coe⁄cient. As a consequence of this increased lift coe⁄cient a nonzero lift
exists at zero angle of attack.

Since the center of the circle in the zplane is at z ¼ im rather than z ¼ 0,
the complex potential in the z plane may be obtained by replacing zby z� im
in Eq. (4.29) and adding circulation.Thus the required complex potential is

FðzÞ ¼ U ðz� imÞe�ia þ a2

z� im
eia

� �
þ iG
2p

log
z� im

a

� �
ð4:24cÞ
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where

a ¼ l
4

and

m ¼ h
2

The magnitude of the circulation G is given by

G ¼ pUl sin aþ 2h
l

� �

and the parameter c in the Joukowski transformation is l=4. The £ow ¢eld
corresponding to this complex potential is shown in Fig. 4.17b. As was the
case with the £at plate airfoil, this £ow ¢eld has a singularity at the leading
edge. This singularity would not exist for airfoils of ¢nite nose radius and
would not exist even for sharp leading edges because of separation of the £ow
at the nose. In spite of this local inaccuracy, the results derived above are
representative of the £ow around thin cambered airfoils.

4.18 JOUKOWSKI AIRFOIL

The results of the two previous sections suggest that a cambered airfoil of
¢nite thickness may be obtained by considering the Joukowski transforma-
tion in conjunction with a circle in the z plane whose center is in the second
quadrant. Such a con¢guration is shown in Fig. 4.18a in which the center of
the circle is displaced a distance m from the origin at an angle d from the
reference axis. In order that the trailing edge of the corresponding airfoil
may be sharp, the circumference of the circle passes through the critical
point z ¼ c. The principal parameters of the airfoil in the z plane are also
shown in Fig. 4.18a.These are the chord l , the maximum thickness t, and the
maximum camber of the centerline h.

From the previous two sections it follows that, to the ¢rst order in e, the
centerline of the airfoil will be a circular arc whose center is on the y axis and
the airfoil will be symmetrical about its centerline.Then the equation of the
upper and lower surfaces of the airfoil may be obtained from the equation for
the circular-arc centerline plus or minus, respectively, and thickness e¡ect.
Hence from Eqs. (4.23a) and (4.24a) the airfoil pro¢le will be given by

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4
1þ l2

16h2

� �
� x2

s
� l2

8h
	 0:385t 1� 2

x
l


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

x
l


 �2r
ð4:25aÞ
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where the plus de¢nes the upper surface and the minus de¢nes the lower
surface of the so-called Joukowski airfoil.

It was observed that the e¡ect of thickness on an airfoil was to increase
its lift by an amount 0:77t=l and that the e¡ect of camber was to increase the
e¡ective angle of attack to aþ 2h=l.The present airfoil has both these e¡ects,
so that, from Eqs. (4.23c) and (4.24b), the lift coe⁄cient for the Joukowski
airfoil will be

CL ¼ 2p 1þ 0:77
t
l


 �
sin aþ 2h

l

� �
ð4:25bÞ

The complex potential in the z plane is

FðzÞ ¼ U ðz�meidÞe�ia þ a2eia

z�meid

� �
þ iG
2p

log
z�meid

a

� �
ð4:25cÞ

FIGURE 4.18 The Joukowski airfoil: (a) the mapping planes and (b) uniform flow
past the airfoil.
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where m cos d ¼ �0:77ðtc=lÞ;m sin d ¼ h=2, a ¼ l=4þ 0:77ðtc=lÞ. These
results follow from the observation that �m cos d replaces m as used in the
symmetrical Joukowski airfoil andm sin d replacesm as used in the circular-
arc airfoil.Themagnitude of the circulationGwill includeboth the thickness
and camber e¡ects, and so it follows that

G ¼ pUl 1þ 0:77
t
l


 �
sin aþ 2h

l

� �

The £ow ¢eld corresponding to the foregoing complex potential is
shown in Fig. 4.18b. It should be remembered that there is a limit to the
amount of thickness and camber which may be introduced if the £ow ¢eld is
to remain as shown. As the thickness and/or camber of the airfoil increases,
the body departsmore andmore from a streamlined airfoil and approaches a
blu¡ body. It was pointed out earlier that a consequence of this would be
separation of the £ow,which destroys the lift force and creates the so-called
stall condition.

4.19 SCHWARZ-CHRISTOFFEL
TRANSFORMATION

Another conformal transformation of prime interest in the study of potential
£ows in the Schwarz-Christo¡el transformation. This transformation is
reviewed brie£y in Appendix D, fromwhich it will be seen that the mapping
function is the solution to the following di¡erential equation:

dz
dz

¼ Kðz� aÞa=p�1ðz� bÞb=p�1ðz� cÞg=p�1 � � �

where a; b; c, etc., are the locations in the zplane of the vertices of a polygon in
the z plane that subtend the internal angles a; b; g, etc. The quantity K is an
arbitrary constant, and normally three of the quantities a; b; c, etc., may be
chosen arbitrarily. The manner in which this transformation is used will be
illustrated through its application to a simple problem whose solution may
be deduced from previously established results.This will permit a direct and
independent check on the solution obtained through use of the Schwarz-
Christo¡el transformation.

The problem to be considered is that of obtaining the complex poten-
tial for the £ow around a £at plate of ¢nite length oriented such that it is per-
pendicular to the oncoming £ow; that is, the angle of attack is 90�. The
solution to this problem may be deduced from that of a vertically oriented
ellipse,which was treated in Sec. 4.14, by a limiting procedure.The length of
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the plate to be so obtained is 4a; such a plate will be considered here. The
stagnation streamline will be a line of symmetry for this problem, so that
only onehalf of the plate, say the tophalf, need be considered.The stagnation
streamline c ¼ 0 is shown in Fig. 4.19a for the top half of the vertical plate of
length 4a.The plate itself is considered to be made up of the line ABC,which
folds back on itself.The location of the vertices A;B, and C in the z plane are
shown as the points a; b, and c, respectively,on the zplane.The points chosen
for a; b, and c are�1; 0, and1, respectively.

The equation of the Schwarz-Christo¡el mapping function is the
solution to

dz
dz

¼ Kðzþ 1Þ�1=2ðz� 0Þ1ðz� 1Þ�1=2

where the fact that a ¼ p=2; b ¼ 2p, and g ¼ p=2, as indicated in Fig. 4.19a,
has been used.That is, the equation of the mapping function is

FIGURE 4.19 Flow around a vertical flat plate assuming that the flow does not

separate: (a) Schwarz-Christoffel mapping planes and (b) the flow field.
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dz
dz

¼ K
zffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � 1
p

or

z ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q
þ D

where D is a constant of integration that is, in general, complex. The con-
stants K and D will now be evaluated such that the points A;B;C and a; b; c
correspond to each other.The conditions to be satis¢ed are

1. When z ¼ 1; z ¼ 0.
2. When z ¼ �1; z ¼ 0.
3. When z ¼ 0; z ¼ i2a.

The ¢rst two conditions are satis¢ed by taking D ¼ 0, while the third
condition is satis¢ed by choosing K ¼ 2a. Then the required mapping func-
tion is

z ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q

The complex potential in the z plane is that of a uniform rectilinear
£ow, since the streamline c ¼ 0 has been stretched out along the real z axis.
To ¢nd the magnitude of the uniform velocity, it is observed from the
mapping function that as z ! 1, z ! 2az. Then, from Eq. (4.19),
W ðzÞ ! 2aW ðzÞ, so that for a £ow of magnitude U in the z plane, the
magnitude in the z plane should be 2aU . Thus the required complex
potential is

FðzÞ ¼ 2aU z

But from the mapping function

z ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2a


 �2
þ1

r

In order that z ! þ1 as z ! þ1, so that the direction of the £ow is correct,
the positive root must be chosen.Hence the required inverse of the mapping
function is

z ¼ 1
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 4a2

p
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The complex potential in the z plane then becomes

FðzÞ ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 4a2

p
This result may be checked by using the result for the uniform £owofmagni-
tude U past an ellipse of major semiaxis ðaþ b2=aÞ and minor semiaxis
ða� b2=aÞ,the latter being along the x axis.The resulting complex potential is
given by Eq. (4.21b),whichwas obtained through use of the Joukowski trans-
formation. As b ! a in this result, the ellipse degenerates to a vertical £at
plate of length 4a. Substituting b ¼ a in the complex potential con¢rms the
result derived above by use of the Schwarz-Christo¡el transformation. The
corresponding £ow ¢eld is shown in Fig. 4.19b. From this ¢gure, or from
inspection of the complex potential, it will be seen that in¢nite velocities, of
the type discussed in Sec. 4.6, exist at y ¼ 	2a. Clearly the Kutta condition
cannot be applied in such a case, and so the £uid will separate from the two
edges of the plate.That is, the complex potential derived here does not repre-
sent the actual £ow ¢eld accurately because the £uid does not remain in con-
tact with the plate aswas implicitly assumedhere.Amore representative£ow
con¢guration for this problemwill be analyzed at the end of this chapter.

4.20 SOURCE IN ACHANNEL

The Schwarz-Christo¡el transformation may be used to solve a sequence of
problems related to that of the £ow generated by a line source located in a
two-dimensional channel.Then consider a channel of width 2l andof in¢nite
length in which a source is located midway between the channel walls. If the
origin of the coordinate system in the z plane is taken to be at the location of
the source, it is clear that the resulting £ow ¢eld will be symmetrical about
both the x axis and the y axis. Then the entire x axis and the portion
�l � y � l of the y axis will be streamlines, so that only the ¢rst quadrant of
the £ow ¢eld need be considered; the remainder will follow from symmetry.
Figure 4.20a shows the ¢rst quadrant of the £ow ¢eld in the z plane in which
the source is located at z ¼ 0.

Considering the region 0 � x; 0 � y � l , to be bounded by the polygon
that is to be mapped, the verticesA and Bwill be chosen to correspond to the
points z ¼ �1 and z ¼ 1, as shown in Fig. 4.20a. The interior angles corre-
sponding to the verticesA andB in the z plane are p=2, so that the di¡erential
equation of the mapping is

dz
dz

¼ Kðzþ 1Þ�1=2ðz� 1Þ�1=2

¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
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hence

z ¼ K cosh�1 zþ D

where D is a constant of integration. The constants K and D will now be
evaluated such that the point A corresponds to the point a and the point B
corresponds to the point b.The required conditions are

1. When z ¼ 1; z ¼ 0.
2. When z ¼ �1; z ¼ il.

The ¢rst condition is satis¢ed by setting D ¼ 0,while the second con-
dition is satis¢ed for K ¼ l=p.Then the required mapping function is

FIGURE 4.20 (a) Mapping planes for a source in a channel, (b) the flow field for a
full or semi-infinite channel, (c) the flow field for the source at the wall, and (d) an

infinite array of sources.
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z ¼ l
p
cosh�1 z

which has the inverse

z ¼ cosh
pz
l

The £ow ¢eld in the z plane now corresponds to a source located at the point
z ¼ 1.Hence the complex potential in the z plane is

FðzÞ ¼ m
2p

logðz� 1Þ

so that the corresponding complex potential in the z plane is

FðzÞ ¼ m
2p

log cosh
pz
l
� 1


 �

This result may be simpli¢ed slightly by using the identity

cosh ðX þ Y Þ � cosh ðX � Y Þ ¼ 2 sinh X sinhY

for X ¼ Y ¼ pz=ð2lÞ. Hence

cosh
pz
l
� 1 ¼ 2 sinh2

pz
2l

Thus the complex potential may be written in the alternative form

FðzÞ ¼ m
2p

log 2 sinh2
pz
2l


 �
¼ m

p
log sinh

pz
2l


 �
þ m
2p

log 2

But the constant term may be neglected, since it does not a¡ect the velocity
components.That is, the complex potential may be taken to be

FðzÞ ¼ m
p
log sinh

pz
2l


 �
ð4:26Þ

Equation (4.26) is the complex potential for the £owcon¢gurations shown in
Fig. 4.20b, c, and d. Figure 4.20b shows the £ow ¢eld due to a source that is
located on the centerline of an in¢nitely long channel or at the center of the
end of a semi-in¢nite channel. Figure 4.20c shows the £ow ¢eld due to a
source that is located on one wall of an in¢nite channel or at a corner of a
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semi-in¢nite channel. The foregoing £ow con¢gurations are clearly related
to the largest £ow ¢eld, shown in Fig. 4.20b, by symmetry.The total quantity
of £uid leaving the source is 4lU , so that the source strengthm in Eq. (4.26)
should be 4lU in order that the channel velocity in the four con¢gurations
shown in Fig. 4.20b and c will beU.

Figure 4.20d depicts an in¢nite array of line sources spaced a distance
2l apart.The horizontal lines that pass midway between each pair of sources
will obviously be streamlines for such an array of sources. It follows that the
case of a source located in a horizontal channel may be thought of as only
one component of an in¢nite number of such channels stacked on top of
each other in the vertical direction. Mathematically, the fact that Eq. (4.26)
represents an in¢nite number of sources spread in the y direction follows
from the fact that the hyperbolic sine function repeats itself for imaginary
values of its argument.

4.21 FLOW THROUGH AN APERTURE

One of the most impressive applications of the Schwarz-Christo¡el trans-
formation, in the ¢eld of £uidmechanics, is in the study of streamingmotions
that involve free streamlines. It is not usually known where these free
streamlines lie, and this information must come out of the solution.The key
to solving such problems is the so-called hodograph plane, which uses the
fact that along such free streamlines the pressure is constant.Two examples
will be covered in this chapter, this ¢rst example being an application to the
£ow through a two-dimensional slit or aperture.

Figure 4.21a shows, in the z plane, a horizontal plate with an opening in
it.The plate contains a semi-in¢nite expanse of £uid above it, and this £uid is
draining through the aperture that is de¢ned by the section BB0 of the x axis.
At the corners B and B0 the £ow will locally behave like that for the £ow
around a sharp edge, which was discussed in Sec. 4.6. It was pointed out in
that section that if the £uid remained in contact with the solid boundary,
in¢nite velocity componentswould result at the edge itself. Since this cannot
be so physically, the £uid will not remain in contact with the solid boundary
but will separate at the edge. In the case under discussion the bounding
streamlines along the horizontal plate will curve toward the vertical plane of
symmetry, as shown in Fig. 4.21a. The magnitude of the velocity in the
resulting jet will reach some uniform magnitude U downstream of all edge
e¡ects. The principal streamlines in the £ow ¢eld have been labeled
for identi¢cation purposes.These are the bounding streamlines on the right,
identi¢ed by the points A, B, and C, the bounding streamlines on the left,
identi¢ed by the points A0;B0, andC 0, and the central streamline II 0.The free
streamlines are BC and B0C 0.
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FIGURE 4.21 (a) Mapping planes for flow through a slit, and (b) geometry of one
of the free bounding streamlines.
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The ¢rst transformation will be to the hodograph plane, which will be
designated the z plane here.The transformation will be taken to be

z ¼ U
dz
dF

¼ U
W

¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v 2

p eiy ð4:27aÞ

That is, the z plane is de¢ned by the nondimensional reciprocal of the com-
plex velocity and the last equality follows from the fact that W ¼ u� iv ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
e�iy.The signi¢cance of this transformation is that the free stream-

lines,whose positions are unknown, are mapped onto the unit circle in the z
plane, as will now be shown. In so doing, it should be noted that, by the fore-
going de¢nition, y is the angle subtended by the velocity vector in the z plane.

Along the free streamlines BC and B0C 0 the pressure will be constant,
typically atmospheric pressure, so that, from Bernoulli’s equation, the quan-
tity u2 þ v2 will be constant.The value of this constantmay be determined by
noting that away from the edge e¡ects, the velocity in the jet is U. Hence the
value of u2 þ v2 along the free streamlines isU 2.Then, along the free stream-
lines, z ¼ eiy,which is the equation of the unit circle in the z plane.To ¢nd the
portion of this unit circle that represents the free streamlines, it is observed
that along the streamlineA0B0 the angle yof the velocity vector is 0 or 2p,while
the value of y along AB is p. Also, along the streamline II 0 the angle y of the
velocity vector is 3p=2. From these observations it is evident that the lower
half of the unit circle in the zplane represents the streamlinesBC andB0C 0, as
shown in Fig. 4.21a.The other principal streamlines may be identi¢ed as fol-
lows:AlongA0B0 the value of y is 0 or 2p,while u2 þ v2 varies from0 atA0 toU 2

atB0 ; hence jzj varies from in¢nity atA0 to unity atB0. Likewise, along AB the
value of jzj varies from in¢nity at A to unity at B,with the value of y being p.
Finally,along thestreamline II 0 thevalueofy is3p=2,whileu2 þ v2 varies from
zero at I toU 2 at I 0,making jzj in¢nity at I and unity at I 0.This establishes the
£ow con¢guration shown in the z plane of Fig. 4.21a. Since the £ow is toward
the point z ¼ �i,which is identi¢ed byC;C 0, and I 0, there is a £uid sink there.

Since the principal streamlines in the z plane are either radial lines or
the unit circle, the £ow pattern may be mapped into a plane con¢guration by
means of the logarithmic transformation. Then a second mapping is pro-
posed to the z0 plane,where z0 is de¢ned by

z0 ¼ log z ð4:27bÞ

If a point in the z plane is represented by its polar coordinatesR and y,where
R ¼ U=ðu2 þ v2Þ1=2, then z ¼ Reiy, so that

z0 ¼ log z ¼ logR þ iy
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Thus the radial lines in the z plane become the horizontal lines de¢ned by
z0 ¼ logR þ i � constant in the z0 plane,while the unit circle R ¼ 1 becomes
the vertical line z0 ¼ iy. Noting that the angle y is the angle subtended by the
velocity vector in the z plane, it follows that the value of yalongA0B0 is 0 or 2p.
This gives the £ow con¢guration shown in Fig. 4.21a in the z0 plane, which
corresponds to the £ow in a semi-in¢nite channel due to a sink located at the
center of the end of the channel. But it was seen in the previous section that
such a con¢guration could be mapped into that of a simple source.Using the
results of the previous section, a simple source £ow will result in the z00 plane
through the mapping

z00 ¼ coshðz0 � ipÞ

i.e.,

z00 ¼ � cosh z0 ð4:27cÞ

Here the rectangle ABCC 0B0A0 has been taken as the equivalent of the half
channel of width l that was considered in the previous section. Then the
quantity l that appeared in the transformation is p in this case, and in order to
bring the cornerB to the origin in the z0 plane, the quantity z0 � ip rather than
z0 is the appropriate variable.

The £ow ¢eld in the z00 plane is shown in Fig. 4.21a. The complex
potential in this plane will be that for a simple sink located at z00 ¼ 0, so that

Fðz00Þ ¼ � m
2p

log z00 þ K ð4:27dÞ

where the constantK has been added to permit the streamline c ¼ 0 and the
equipotential line f ¼ 0 to correspond to a chosen streamline and equipo-
tential line, respectively. Referring to Fig. 4.21b, it will now be speci¢ed that
the streamline c ¼ 0 be the streamline II 0 and that the equipotential line
f ¼ 0 passes through the points B0 and B. Then, using the property of the
stream function that the di¡erence of the values of c between two stream-
lines equals the volume of £uid £owing between these two streamlines, the
value of c along A0B0C 0, which will be denoted by cA0B0C 0, may be identi¢ed.
Considering the £ow between the streamlines II 0 and A0B0C 0, it follows that

0� cA0B0C 0 ¼ CclU

whereCc is the contraction coe⁄cient of the jet.Similarly, ifcABC is the value
ofc along the streamlineABC, it follows by considering the £owbetween the
streamlines ABC and II 0 that
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cABC � 0 ¼ CclU

That is,

cABC ¼ CclU

and

cA0B0C 0 ¼ �CclU

Then, at the point,B0;f ¼ 0andc ¼ �CclU .Hence the value of the complex
potential there is 0� iCclU . Applying this result to Eq. (4.27d) and noting
that z00 ¼ �1 at the point B0 gives

0� iCclU ¼ � m
2p

logð�1Þ þ K

�iCclU ¼ �i
m
2
þ K

Likewise at the pointB the complex potential is 0þ iCclU and the value of z00

is unity; hence

0þ iCclU ¼ � m
2p

log 1þ K

or

iCclU ¼ K

These two equations show that K ¼ iCclU andm ¼ 4CclU , so that the com-
plex potential (4.27d) becomes

Fðz00Þ ¼ � 2CclU
p

log z00 þ iCclU

The corresponding complex potential in the z plane may be obtained by use
of the transformations (4.27a), (4.27b), and (4.27c).This gives

FðzÞ ¼ � 2CclU
p

log cosh log U
dz
dF

� �
� ip

� �� �
þ iCclU ð4:27eÞ

This result is an implicit expression for F(z) rather than an explicit expres-
sion, since dF=dz appears inside the expression for FðzÞ. However, the £ow
problem has, in principle, been solved, and it is possible to obtain useful
information from the result. The quantity that is of prime interest in this
problem is the value of the contraction coe⁄cient Cc , so this value will be
determined below.
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In order to evaluate the contraction coe⁄cient Cc , the equation of the
free streamline B0C 0 will be established. From this result the value of x at the
point C 0 should be numerically equal to the half-jet dimension Ccl.This will
enable the quantity Cc to be evaluated. The equation of the free streamline
B0C 0 is most readily established in terms of a coordinate swhose value is zero
at the pointB0 and whosemagnitude increases alongB0C 0.Then, considering
a small element of a curve, such as the streamline B0C 0, whose slope is posi-
tive, it follows that

dx
ds

¼ cos y

::: x ¼ x0 þ
Z s

0
cos y ds

where the constant x0 has been added to permit the condition x ¼ �l when
s ¼ 0 to be applied.The variation of dswith y is now required and, owing to
the implicit nature of the mapping function (4.27a), this variation must be
obtained by indirect methods as follows: The preceding expression for the
lateral displacement x of the jet surface may be written

x ¼ x0 þ
Z y

2p
cos y

ds
dz00

dz00

dy
dy

where the quantities ds=dz00 and dz00=dy must be expressed in terms of y
before the integration may be performed.The value of dz00=dyonB0C0 will be
obtained from the equations of the mappings,while ds=dz00 will be obtained
from the complex potential Fðz00Þ. Considering ¢rst the value of ds=dz00, it
may be stated that, on the streamline B0C0

1 ¼ zj j ¼ U
W

����
���� ¼ U

dz
dF

����
����

¼ U
dz
dz00

dz00

dF

����
����

But from Eq. (4.27d) withm¼ 4CclU,

dF
dz00

¼ � 2CclU
p

1
z00

::: 1 ¼ U
dz
dz00

p
2CclU

z00
����

����
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On B0C0, z00 < 0, so that

dz
dz00

����
���� ¼ 2Ccl

p
1
z00

Now on the streamline B0C0 the value of dz may be represented by �ds eiy,
where ds is an element of the coordinate s,which was previously introduced.
Also, along B0C0, z00 is increasing so that dz00 > 0.Hence

ds
dz00

¼ � 2Ccl
p

1
z00

The equations of the various mappings may now be used to evaluate z00 in
terms of y.On the streamline B0C0 the value of z is

z ¼ eiy

::: z0 ¼ log z ¼ iy

and

z00 ¼ � cosh z0 ¼ � cos y

:::
dz00

dy
¼ sin y

and

ds
dz00

¼ 2Ccl
p

1
cos hy

Using these last two equations, the expression for the lateral displacement x
of the free streamline becomes

x ¼ x0 þ
Z y

2p
cos y

2Ccl
p cos y

sin y dy

¼ x0 þ 2Ccl
p

Z y

2p
sin y dy

¼ x0 þ 2Ccl
p

ðl � cos yÞ

But when y¼ 2p, that is, at the point B0, x¼�l. Hence x0¼�l, so that

x ¼ �l þ 2Ccl
p

ð1� cos yÞ
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Also, the value of x at the point C0 is�Ccl,while the value of y is 3p=2.Thus

�Ccl ¼ �l þ 2Ccl
p

::: Cc ¼ p
pþ 2

ð4:27f Þ

Equation (4.27f ) predicts that the free jet that emerges from the aperturewill
assume a width that is 0.611 of the width of the slit. This result is well estab-
lished experimentally, and the ¢gure of 0.611 has been con¢rmed for open-
ings under deep liquids.

4.22 FLOW PASTAVERTICAL FLAT PLATE

In Sec. 4.19 the complex potential for the £ow around a £at plate that is
oriented perpendicular to the free stream was obtained. However, it was
pointed out that the result obtained at that time was unrealistic because it
required in¢nite velocity components at the two edges of the plate. It would
therefore appear that the assumption of attached £ow,which was implicitly
made at that time, is not valid.The same problemwill be treated here,but this
time it will be assumed that the £ow separates from the surface of the plate at
the two edges. The resulting free streamlines will be treated in a manner
similar to that in which the free jet was treated in the previous section.

Figure 4.22 shows, in the z plane, the assumed £ow con¢guration for a
uniform rectilinear £ow of magnitude U approaching a vertically oriented
£at plate of height 2l.The stagnation streamline II 0 splits upon reaching the
plate and forms the bounding streamlines ABC and A0B0C 0, where BC and
B0C 0 are the free streamlines. The region downstream of the plate between
the two free streamlines is interpreted as being a cavity that has a uniform
pressure throughout.The point I 0 is on the surface of the plate.

As in the previous section, the free streamlines may be handled by use
of the hodograph plane.Hence a transformation ismade to the zplane,where

z ¼ U
dz
dF

¼ U
W

¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p eiy ð4:28aÞ

The boundaries of the £ow ¢eld in the z plane are shown in Fig. 4.22.The free
streamlines BC and B0C 0 again become part of the unit circle in the z plane.
Since the value of y alongABC lies between p=2 and 0 and the value of y along
A0B0C 0 lies between �p=2 and 0, the appropriate portion of the unit circle is
that which lies in the ¢rst and fourth quadrants. Since the £ow boundary
crosses the positive portion of the real z axis, it is no longer convenient to
consider the range of y to be 0 � y � 2p. If this range were adopted, the
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multivalued functions, which require branch cuts, would divide the £ow
boundary.This di⁄culty may be simply overcome by considering the branch
cut to lie along the negative real z axis so that the principal value of the mul-
tivalued functions will correspond to�p � y � p.

The geometry of radial lines and the circular contour is next converted
to that of a plane ¢gure bymeans of the logarithmic transformation.That is, a
mapping to the z0 plane is made where

z0 ¼ log z ð4:28bÞ

FIGURE4.22 Mapping planes for flow over a flat plate that is oriented perpendicu-
lar to a uniform flow.
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This maps the £ow boundary into that of a rectangular channel, as shown in
Fig. 4.22. Since the range of y is now �p � y � p, the lower wall of this
channel corresponds to the imaginary part of z0 being �p=2, and the upper
wall corresponds toþp=2.That is, the centerline of the channel corresponds
to the real z0 axis. Then the £ow ¢eld may be stretched out using the same
transformation as was used in Sec. 4.20 for a source in a channel. Here the
corner B0 is located at z0 ¼ �ip=2 rather than z0 ¼ 0 and the channel half
width is p instead of l. Hence the required transformation is

z00 ¼ cosh z0 þ i
p
2


 �
ð4:28cÞ

The principal £ow lines in the z00 planemay bemade collinear bymeans of the
mapping

z000 ¼ ðz00Þ2 ð4:28dÞ
This doubles the angles subtended by the principal streamlines, so that the
£ow in the z000 plane is unidirectional along the principal streamlines, as
shown in Fig. 4.22.However, the £ow is still not that of a uniform £ow as the
principal streamlines might suggest. This may be con¢rmed by observing
that, in the z plane, there is a source of £uid at Iwhich £ows toward a sink at
CC 0. But in the z000 planeCC 0 and I are at the same location, so that the £ow in
the z000 plane is probably that of a doublet. Rather than prove this is so, one
¢nal transformation will be made to the z0000 plane where

z0000 ¼ 1
z000

ð4:28eÞ

The e¡ect of this transformation is to map the origin to in¢nity, and vice
versa, as shown in Fig. 4.22. Fluid emanates from I and £ows towardCC 0, as
was the case in the z plane.That is, the £ow in the z0000 plane is that of a uniform
rectinlinear £ow so that the complex potential is

Fðz0000Þ ¼ Kz0000

The value of the constant K, which represents the magnitude of the
uniform £ow, would normally be obtained by relating complex velocities
through Eq. (4.19). However, the implicit nature of the hodograph transfor-
mation prohibits this being done directly, so that indirect methods must be
used, as in the previous section. The hodograph transformation involves
dF=dz, but F is known only as a function of z0000. Hence it is proposed to start
with the hodograph transformation and express the variables in terms of z00.
Also,Fðz0000Þ is known, so thatFðz00Þmaybe calculated, and so an identity will
be established in the z00 plane.The details now follow.
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From Eq. (4.28a) the following identity is established:

U
dz
dF

¼ z

::: U
dz
dz00

dz00

dF
¼ z

Here dF=dz00 may be evaluated from the complex potential Fðz000Þ and the
mapping functions, while z may be evaluated from the mapping functions.
Both quantities will be expressed in terms of z00.

Fðz0000Þ ¼ Kz0000

::: Fðz000Þ ¼ K
z000

and

Fðz00Þ ¼ K

ðz00Þ2

:::
dF
dz00

¼ � 2K

ðz00Þ3

also

z ¼ ez
0

¼ eðcosh
�1 z00�ip=2Þ

¼ �iecosh
�1 z00

But cosh�1 x ¼ logðx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ, so that

z ¼ �iðz00 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz00Þ2 � 1

q
Þ

Substituting the preceding expressions for dF=dz00 and z into the identity
established from the hodograph transformation gives

� U
dz
dz00

ðz00Þ3
2K

¼ �i
�
z00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz00Þ2 � 1

�s
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or

U dz ¼ i2K
z00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz00Þ2 � 1

q
ðz00Þ3 dz00

In order to establish an algebraic identity that will permit the constant K to
be evaluated, the preceding expression must be integrated. It is proposed to
integrate over the region B0 to A0 so that

U
Z 0

�il
dz ¼ i2K

Z 1

1

z00 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz00Þ2 � 1

q
ðz00Þ3 dz00

where the upper limits of integration correspond to the pointA0 and the lower
limits to the pointB0.The integral on the right-hand sidemay be conveniently
evaluated by use of the substitution z00 ¼ 1= sin n.Then

U
Z 0

�il
dz ¼ �i2K

Z 0

p=2
ð1þ cos nÞ cos n dn

::: iUl ¼ i2K 1þ p
4


 �
or

K ¼ 2Ul
pþ 4

Then the complex potential in the z0000 plane becomes

Fðz0000Þ ¼ 2Ul
pþ 4

z0000

The corresponding complex potential in the z plane may be obtained by
using the mapping equations (4.28a), (4.28b), (4.28c), (4.28d), and (4.28e).
Hence, using the fact that cosh ðz0 þ ip=2Þ ¼ i sinh z0, the corresponding
expression for F(z) is

FðzÞ ¼ � 2Ul
pþ 4

1
sinh2flog½U ðdz=dFÞ�g ð4:28f Þ

This result is again an implicit expression for FðzÞ rather than an
explicit expression.However, since the £ow problem has been solved, results
may be deduced from the solution.Here the result of interest is the drag force
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acting on the plate.Thus if X is the drag force acting on the plate in the posi-
tive x direction and P is the pressure in the cavity, it follows that

X ¼ 2
Z 0

�l
ðp� PÞ dy

where the symmetry of the £ow ¢eld about the x axis has been invoked. But
from the Bernoulli equation

p
r
þ 1
2
ðu2 þ v2Þ ¼ P

r
þ 1
2
U 2

where the Bernoulli constant has been evaluated on the free streamlines at a
positionwell downstream of the plate.Thus the expression for the drag force
X becomes

X ¼ 2
Z 0

�l

1
2
r½U 2 � ðu2 þ v2Þ� dy

¼ rU 2
Z 0

�l
dy � r

Z 0

�l
ðu2 þ v2Þ dy

The ¢rst integral may be evaluated explicity,while the integrand of the sec-
ond integral may be wrtten as v2, since u ¼ 0on the surface of the plate.Then
W ¼ dF=dz ¼ �iv on the surface of the plate, so that v 2 ¼ �W 2 there.
That is,

X ¼ rU 2l þ r
Z 0

�l

dF
dz

� �2

dy

Also, x ¼ 0on the surface of the plate, so that z ¼ iy there.That is, dz ¼ idyon
the plate, so that

X ¼ rU 2l � ir
Z 0

�il

dF
dz

� �2

dz

Now since FðzÞ is an implicit expression, it is proposed to evaluate Fðz00Þ and
to perform the indicated integration in the z00 plane rather than the z plane.
This may be done as follows:

X ¼ rU 2l � ir
Z 1

1

dF
dz00

� �2dz00

dz
dz00
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where it has been noted that as z varies from�il to 0, z00 varies from unity to
in¢nity. But expressions for dF=dz00 and dz=dz00 were obtained earlier in
terms of z00 and K . Then using these expressions and the fact that
K ¼ 2Ul=ðpþ 4Þ, the expression for the drag force becomes

X ¼ rU 2l � ir
Z 1

1
� 4Ul
pþ 4

1

ðz00Þ3
" #2 ðpþ 4Þðz00Þ3

i4l½z00 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz00Þ2 � 1

q
�
dz00

¼ rU 2l � 4rU 2l
pþ 4

Z 1

1

dz00

ðz00Þ3½z00 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz00Þ2 � 1

q
�

The integral may now be readily evaluated by means of the substitution
z00 ¼ 1= sin n.This gives

X ¼ rU 2l 1þ 4
pþ 4

Z 0

p=2
ð1� cos nÞ cos n dn

" #

X ¼ 2p
pþ 4

rU 2l

ð4:28gÞ

From the symmetry of the £ow ¢eld about the x axis it may be stated that
there will be no lift force acting on the plate. On the other hand, the lack of
symmetry about the y axis implies the existence of a drag force, and
Eq. (4.28g) gives the magnitude of this drag force. A photograph of a £ow
that is similar to that analyzed here is shown in Plate1 (d).

PROBLEMS

4.1 Write down the complex potential for a source of strengthm located at
z ¼ ih and a source of strengthm located at z ¼ �ih. Show that the real
axis is a streamline in the resulting flow field, and so deduce that the
complex potential for the two sources is also the complex potential for a
flat plate located along y ¼ 0 with a source of strengthm located a dis-
tance h above it.

Obtain the pressure on the upper surface of the plate mentioned
above fromBernoulli’s equation. Integrate the pressure difference over
the entire surface of the plate, and so show that the force acting on the
plate due to the presence of the source is rm2=ð4phÞ.Take the pressure
along the lower surface of the plate to be equal to the stagnation pres-
sure in the fluid.

4.2 Consider a source of strengthm located at z ¼ �b and a sink of strength
m located at z ¼ b: Write down the complex potential for the resulting
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flow field, adding a constant term�im=2 tomake the streamline c ¼ 0
correspond to a certain position. Expand the result for small values of
z=b and hence show that if b ! 1 and m ! 1 in such a way that
m=b ! pU , the resulting complex potential is that of a uniform flow of
magnitudeU.That is, a uniform flowmay be thought of as consisting of
a source located at�1 and a sink of equal strength located atþ1.

4.3 Write down the complex potential for the following quantities:

(a) A source of strengthm located at z ¼ �b
(b) A source of strengthm located at z ¼ �a2=b
(c) A sink of strengthm located at z ¼ b
(d) A sink of strengthm located at z ¼ a2=b
(e) A constant term of magnitude�im=2

Expand the resulting expression for small values of z/b and z2=ðabÞ, and
hence show that if b ! 1 and m ! 1 in such a way that m=b ! pU ,
the resulting complex potential is that of a uniform flow of magnitude
U flowing past a circular cylinder of radius a.

4.4 Consider a system of singularities consisting of the following:

(a) A source of strengthm located at z ¼ �b
(b) A source of strengthm located at z ¼ �a2=b
(c) A sink of strengthm located at z ¼ a2=l
(d) A sink of strengthm located at z ¼ l
(e) A constant term of magnitude�½m=ð2pÞ� log b
Write down the complex potential for this system and let b ! 1. Show
that the result represents the complex potential for flow around a cir-
cular cylinder of radius adue to a sink of strengthm located a distance l
to the right of the center of the cylinder.This may be done by showing
that the circle of radius a is a streamline.
Use the Blasius integral theorem around a contour of integration that
includes the cylinder but excludes the sink, and hence show that the
force acting on the cylinder, due to the presence of the sink, is

X ¼ rm2a2

2plðl2 � a2Þ

4.5 A system of flow singularities consists of the following components:

(a) A source of strengthm located at z ¼ beiðaþpÞ

(b) A source of strengthm located at z ¼ ða2=bÞeiðaþpÞ

(c) A sink of strengthm located at z ¼ ða2=bÞeia
(d) A sink of strengthm located at z ¼ beia
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(e) A constant term of magnitude�im=2

Write down the complex potential for this system and expand it for
small values of z/b and a2=ðbzÞ.Hence show that the complex potential
for a uniform flow of magnitude U approaching a circular cylinder of
radius a at an angle of attack a to the horizontal is

FðzÞ ¼ U ze�ia þ a2

z
eia

� �
ð4:29Þ

4.6 Determine the complex potential for a circular cylinder of radius a in a
flow field produced by a counterclockwise vortex of strength G located
a distance l from the center of the cylinder.Thismay be done by writing
the complex potential for the following system of singularities:

(a) A clockwise vortex of strength G located at z ¼ �b
(b) A counterclockwise vortex of strength G located at z ¼ �a2=b
(c) A clockwise vortex of strength G located at z ¼ a2=l
(d) A counterclockwise vortex of strength G located at z ¼ l
(e) A constant term of magnitude�½iG=ð2pÞ� log b
Then let b ! 1 and show that the circle of radius a is a streamline.
Obtain the value of the force acting on the cylinder due to the vortex at
z ¼ l by applying the Blasius law to a contour that includes the cylinder
but excludes the vortex at z ¼ l.

4.7 The complex potential for a uniform flow of magnitudeU approaching
a circular cylinder of radius a that has a bound vortex of strength G
around it is

FðzÞ ¼ U z þ a2

z

� �
þ iG
2p

log
z
a

Using this result, together with Bernoulli’s equation, obtain an
expression for the pressure pða; yÞ on the surface of the cylinder. Inte-
grate the quantity �pða; yÞa sin y around the surface of the cylinder,
and hence verify the validity of the Kutta-Joukowski law for this par-
ticular flow.

4.8 Figure 4.23a shows the assumed configuration for separated flow of
magnitude U approaching a circular cylinder of radius a. Figure 4.23b
shows a system of flow elements that are proposed to model this parti-
cular flow.The model consists of the following components:

(a) A source of strengthm1 located at z ¼ aeiy1
(b) A source of strengthm1 located at z ¼ ae�iy1
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(c) A sink of strengthm2 located at z ¼ aeiy2
(d) A sink of strengthm2 located at z ¼ ae�iy2

(e) A sink of strengthm3 located at origin, z ¼ 0
(i) Find the strength of the sinkm3 that makes the circle R ¼ a a

streamline.
(ii) Determine themagnitude of the velocity on the surface of the

cylinder, qða; yÞ.
(iii) Determine the parameters m2 and y2 from the following two

conditions:

dq
dy

ða; ysÞ ¼ 0

d2q
dy2

ða; ysÞ ¼ cU R1=2
e

In the above, ys is the polar angle to the location of the separation point,
c is an experimentally determined constant, and Re is the Reynolds
number. Express the results in the following form:

m2 ¼ m2ðm1; ys; y1; y2Þ f ðy2; y1; ys;m1;m2; c;ReÞ ¼ 0

That is,obtain an explicit expression form2, but the result for y2 may be
left as an implicit expression.

4.9 Amapping function is defined by the following equation:

z ¼ zþ cn

ðn� 1Þzn�1

Figure 4.23 (a) Assumed flow configuration and (b) the flow model.
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where

z ¼ x þ iy ¼ Reiy

and

z ¼ xþ iZ ¼ reiv

In the above, c is a real constant and n is an integer. Find the
location of the critical points of this mapping function in the z plane,
and sketch their locations for n ¼ 2; n ¼ 3, and n ¼ 4.

Using the Cartesian representation of z and the polar repre-
sentation of z, find the equation of the mapping in the form:

x ¼ xðr; nÞ and y ¼ yðr; nÞ
From these equations obtain expressions for the polar coordi-

nates R and y of the form:

R ¼ Rðr; nÞ and y ¼ yðr; nÞ

Consider a circle in the z plane whose radius r is large so that

c
r
¼ e � 1

Use the results obtained above for R and y to find the equations
for the mapping of this circle in the z plane, working to the first order
only in the small parameter e.

Using any of the results obtained above, sketch the resulting
object shape in the z plane for e < 1; n ¼ 3.

4.10 The Joukowski transformation is defined as follows:

z ¼ zþ c2

z

Suppose that the figure in the z plane is a circle whose center lies
in the second quadrant. It is required to construct from an accurately
prepared drawing the corresponding figure in the z plane as follows:

Using either (a) or (b) below, depending on the preferred system
of units, draw the circle specified in the z plane. From this drawing,
prepare a table of values of the polar coordinates ðr; nÞ for points on the
circle using 15� increments in the polar angle between adjacent points.
Next, use the Joukowski transformation to calculate the points ðx; yÞ in
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the z plane corresponding to the pointsmeasured in the zplane.Finally,
draw the figure that is produced in the z plane.
(a) SI Units:

Joukowski parameter, c¼ 60:0mm
Center of circle in z plane¼ ð�5:0mm;þ7:5mmÞ
Circle to pass through point¼ ðþ60:0mm; 0:0mmÞ

(b) English Units:
Joukowski parameter, c¼ 2:4 in:
Center of circle in z plane¼ ð�0:2 in:;þ0:3 in:Þ
Circle to pass through point¼ ðþ2:4 in:; 0:0 in:Þ

4.11 Using either (a) or (b) below, depending on the preferred system of
units, determine the lift force generated by a short span of aircraft
wing whose cross section is the same as that of Prob. 4.10.Take the air
properties to be defined by the standard atmosphere at sea level.

(a) SI Units:
Length of wing element¼ 1:0m
Chord of wing element ¼ 3:0m
Flight speed ¼ 250m=s

(b) English Units:
Length of wing element¼ 3:0 ft
Chord of wing element ¼ 9:0 ft
Flight speed ¼ 750 feet/sec

4.12 Find the transformation that maps the interior of the sector
0 � y � p=n in the z plane onto the upper half of the z plane.Thus, by
considering a uniform flow in the z plane, obtain the complex poten-
tial for the flow in the sector 0 � y � p=n in the z plane.

4.13 Use the Schwartz-Christoffel transformation to find themapping that
transforms the interior of the 90� bend shown in the z plane of Fig.4.24
onto the upper half of the z plane as shown.Hence obtain the complex
potential for the flow around a right-angled bend in terms of the
channel width l and the approach velocityU.

4.14 The z plane of Fig. 4.25 shows one-half of a symmetric expansion
device,ordiffuser.It is assumed that theanglef isnot largeand that the
flow remains incontactwith thewall.In the zplane thepoints specified
by lower-case letters correspond to the points indicated by the capita-
lized letters in the z plane.The location of the point c, indicated by the
value a, is undefined at this time.Using the correspondence indicated,
find the differential equation of the mapping function if the angle f is
taken to be the ratio of two integers times 90�; that is:
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f ¼ r
n
p
2

where r and n are integers.Express the result in terms of the parameters
r; n; a, K, where K is the scale parameter in the Schwarz-Christoffel
transformation.

Noting that the strength of the source in the z plane ism ¼ 2UH ,
obtain the complex potential for the flow field in the z plane. From this

FIGURE 4.25 Mapping planes for a diffuser.

FIGURE 4.24 Mapping planes for flow in a channel having a 90� bend in it.
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result obtain an expression for the complex velocity in the z plane,
expressing the result in terms of the variable z and the parameters
U ; a; r; n, and K.

Use the result obtained above to evaluate the parametersK and a,
expressing them in terms of the remaining parameters h;H ; r, and K .

4.15 Figure 4.26 shows a channel with a step in it in the z plane. Show that
the mapping function that maps the interior of this channel onto the
upper half of the z plane is

z ¼ H
p

log
1þ s
1� s

� �
� h
H

log
H=hþ s
H=h� s

� �� �

where

s2 ¼ z� ðH=hÞ2
z� 1

Let the pointsA,B, andC in the z plane correspond to the points 0,
1, and a respectively, in the z plane.The quantity amay not be specified
a priori, but it should be determined from the mapping function after
the points A and B have been located as desired. Note that the stream-
line ABCD may be considered to be the streamline dividing two sym-
metrical regions, so that this mapping function also applies to a
channel of width 2H with an obstacle of width 2ðH � hÞ located along
the centerline of the channel.

FIGURE 4.26 Mapping planes for a channel with a step in it.
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PLATE1 Airfoil in uniform flow at angle of attack (a) �2�, (b) 8�, (c) 20�, and (d)

90�.
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5

Three-Dimensional Potentia l
Flows

Although there are no signi¢cant phenomena associated with three-dimen-
sional £ows that do not exist in two-dimensional £ows, the method of
analyzing £ow problems is completely di¡erent. The method of employing
analytic functions of complex variables cannot be used here in view of the
three-dimensionality of the problems. Then we must resort to solving the
partial di¡erential equations that govern the variables of the £ow ¢eld.These
partial di¡erential equations were reviewed at the beginning of Part II and,
for irrotationalmotion,the equation governing the velocity potential is given
by Eq. (II.5). Having solved the £ow problem for f, the pressure may be
obtained from the Bernoulli equation,which is expressed in Eq. (II.6).

The chapter begins by reviewing the equation that is to be satis¢ed by
the velocity potential in spherical coordinates.Then it is shown that for axi-
symmetric £ows a stream function exists, called the Stokes stream function.
Although the £ow ¢elds may be solved through the velocity potential, the
stream function is useful for interpreting the £ow ¢elds. Fundamental solu-
tions are then established by solving the Laplace equation for f by separa-
tion of variables. These fundamental solutions are then superimposed to
establish the £ow around a few three-dimensional bodies, including the
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sphere and a family of solid bodies known as Rankine solids. A study of the
forces that act on three-dimensional bodies is then made, which leads to
d’Alembert’s paradox. This paradox shows that for any body immersed in a
potential £ow no forces exist on the body, in spite of the fact that forces are
observed to exist experimentally.The chapter endsby introducing the notion
of an apparent mass for a body in a potential £ow. This concept allows the
£uid to be ignored if a certain additional mass is associated with the body
when its dynamics are considered.

Since bodies of interest, such as airship hulls and submarine vehicle
hulls, have an axis of symmetry, this chapter will consider only three-
dimensional bodies that are axisymmetric. In so doing, it will be found con-
venient to work in the spherical coordinates (r, y, o). These coordinates are
shown in Fig. 5.1. Since the axis of symmetry of bodies is invariably in the
streamwise direction and since the approaching £ow is normally taken to be
horizontal, the reference axis of the coordinate system is also taken to be
horizontal.Then, in terms of the spherical coordinates (r, y,o), a point Pmay
be represented by its radius r from the origin, the angle y between the refer-
ence axis and the radius vector r, and the angle o subtended by the perpen-
dicular to the reference axiswhich passes throughP.For axisymmetric £ows,
there will be no variation in the £uid properties aso varies from 0 to 2pwhile
r and y are held constant.

5.1 VELOCITY POTENTIAL

Although the topic of discussion is three-dimensional £ows, these £ow
¢elds are supposed to be potential. That is, the £uid motion is assumed
to be irrotational so that a velocity potential exists, irrespective of the

FIGURE 5.1 Definition sketch of spherical coordinates.
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dimensionality of the £ow ¢eld. Then, the equation to be satis¢ed by the
velocity potential is Laplace’s equation, given by Eq. (II.5). Hence, expand-
ing the Laplacian in spherical coordinates and using the fact that @=@o ¼ 0
for axisymmetric £ows, the equation to be satis¢ed by f is

1
r2

@

@r
r2
@f
@r

� �
þ 1
r2 sin y

@

@y
sin y

@f
@y

� �
¼ 0 ð5:1Þ

The velocity components are related to the velocity potential by Eq. (II.4),
which in spherical coordinates gives

ur ¼ @f
@r

ð5:2aÞ

uy ¼ 1
r
@f
@y

ð5:2bÞ

and the third velocity component uo is zero for axisymmetric £ows.

5.2 STOKES’ STREAM FUNCTION

In the previous chapter a stream function was introduced that, by its de¢ni-
tion, satis¢ed the two-dimensional continuity equation. In three dimensions
it is not possible, in general, to satisfy the continuity equation by a single
scalar function. However, in axisymmetric £ows such a function does exist.
The continuity equation for the incompressible case under consideration is,
for axisymmetric £ows,

1
r2

@

@r
ðr2urÞ þ 1

r sin y
@

@y
ðuy sin yÞ ¼ 0

Now consider the velocity components to be related to a function c in the
following way:

ur ¼ 1
r2 sin y

@c
@y

ð5:3aÞ

uy ¼ � 1
r sin y

@c
@r

ð5:3bÞ

Direct substitution shows that if the velocity components are de¢ned in this
way, the continuity equationwill be identically satis¢ed for all functionsc. It
will now be shown that the quantity 2pc corresponds to the volume of £uid
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crossing the surface of revolution which is formed by rotating the position
vector OP, in Fig. 5.1, around the reference axis. This statement will be
proved in the following way. First, the statement will be assumed to be true
and to constitute the de¢nition of a quantityc.Then it will be shown that as a
result of this de¢nition the velocity components must be related to this
function c by Eqs. (5.3a) and (5.3b).

Let a function c be de¢ned such that if the position vector OP is
rotated around the reference axis, that is, if the coordinate o is varied
through 2p while r and y are held ¢xed, the quantity of £uid that crosses the
surface of revolution formed by the vector OP will be 2pc. Now apply this
de¢nition to two points P and P 0 that are close together, as shown in
Fig. 5.2. Then if the line element PP 0 is rotated about the reference axis, the
resulting surface will have a quantity of £uid 2p dc crossing it per unit
time. But reference to Fig. 5.2 shows that a quantity of £uid urr dy� uy dr
crosses a unit area of this surface so that

2p dc ¼ 2pr sin yðurr dy� uydrÞ
; dc ¼ urr2 sin ydy� uyr sin ydr

But if c is a function of both r and y, it follows from di¡erential calculus that

dc ¼ @c
@y

dyþ @c
@r

dr

Comparing these two expressions for dc shows that

FIGURE5.2 Velocity components and flow areas defined by a reference point P and

neighboring point P0.
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@c
@y

¼ urr2 sin y

@c
@r

¼ �uyr sin y

This con¢rmsEqs. (5.3a) and (5.3b), so that the de¢nition ofc agreeswith the
requirements for satisfying the continuity equation. Then it may be con-
cluded that for the stream function de¢ned by Eqs. (5.3a) and (5.3b), the
volume of £uid crossing an element of surface generated by revolving a line
element about the reference axis is 2p dc.

The stream function de¢ned above is known as the Stokes stream func-
tion. It will be used here in a auxiliary way only, since £ow solutions will be
obtained through solutions for the velocity potential f. The equation that
must be satis¢ed by c is therefore covered in Prob. 5.1 at the end of the
chapter. It should be pointed out, however, that for rotational £ows the velo-
city potential does not exist, and the stream function then o¡ers the only
mechanism for reducing the vector equations of motion to a single scalar
equation.

5.3 SOLUTIONOF THE POTENTIAL EQUATION

The equation to be satis¢ed by the velocity potential f has been established.
Rather than attempt to solve this equation as part of a boundary-value pro-
blem for various physical situations that may arise, it is proposed to obtain
here a general form of solution by separation of variables.The fundamental
solutions so obtained will subsequently be superimposed to produce more
complex solutions in amanner similar to that whichwas used in the previous
chapter.

The velocity potential will be a function of r and y only for axisym-
metric £ows, and so a separable solution will be sought of the form

fðr; yÞ ¼ RðrÞT ðyÞ

Substituting this assumed form of solution into Eq. (5.1) gives

T
r2

d
dr

r2
dR
dr

� �
þ R
r2 sin y

d
dy

sin y
dT
dy

� �
¼ 0

This equation may now be reduced to a separated form by multiplying it by
r2=ðRT Þ.
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1
R

d
dr

r2
dR
dr

� �
¼ � 1

T sin y
d
dy

sin y
dT
dy

� �

The usual argument of separation of variables is now invoked. The left-
hand side of this equation is a function of r only and the right-hand side is a
function of y only. Hence, if either r or y alone is changed, one side of the
equation will change while the other does not. Then the only way the
equation can remain valid is for each side to be equal to a constant, say
lðl þ 1Þ. Then

1
R

d
dr

r2
dR
dr

� �
¼ lðl þ 1Þ

and

� 1
T sin y

d
dy

sin y
dT
dy

� �
¼ lðl þ 1Þ

The signi¢cance of choosing the separation constant as lðl þ 1Þ, rather than
simply b, is that with this choice the resulting ordinary di¡erential equation
for T ðyÞ appears in standard form, and so a subsequent transformation
becomes unnecessary. For the time being there is no implication that the
quantity l need be an integer.The di¡erential equation to be satis¢ed by RðrÞ
is

d
dr

r2
dR
dr

� �
� lðl þ 1ÞR ¼ 0

This is an equidimensional equation, and so its solution will be of the form

RðrÞ ¼ Kra

Substituting this form of solution into the di¡erential equation gives

aðaþ 1ÞKra � lðl þ 1ÞKra ¼ 0

which will be satis¢ed by a ¼ l and a ¼ �ðl þ 1Þ. Then the general solution
for RðrÞwill be a linear combination of these two solutions.That is,

RlðrÞ ¼ Alrl þ Bl

rlþ1

Since this is a valid solution for any choice of l, the arbitrary constants Al

and Bl have been assigned subscripts to indicate which value of l is being
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considered. Likewise, the solution RlðrÞ has been assigned a subscript to
indicate which solution is being considered.

The equation for T ðyÞ is

1
sin y

d
dy

sin y
dT
dy

� �
þ lðl þ 1ÞT ¼ 0

This is Legendre’s equation, and itmay be reduced to its standard formby the
transformation x ¼ cos y,which yields

d
dx

ð1� x2Þ dT
dx

� �
þ lðl þ 1ÞT ¼ 0

The solutions to this equation are Legendre’s function of the ¢rst kind,
denoted by PlðxÞ, and Legendre’s function of the second kind, denoted by
QlðxÞ.Thus the general solution for T ðyÞ is

TlðyÞ ¼ ClPlðcos yÞ þ DlQlðcos yÞ

But the Qlðcos yÞ diverge for cos y ¼ 	1 for all values of l.The coe⁄cient Dl

must then be speci¢ed as being zero, since there should be no singularities in
the £ow ¢eld. Also, Plðcos yÞ diverges for cos y ¼ 	1 unless l is an integer.
Then it must be speci¢ed that the quantity l be an integer, so that the con-
tinuous spectrum of separation constants lðl þ 1Þ now becomes a discrete
spectrum.

Combining the solution for RlðrÞwith that for TlðyÞ gives the following
solution for flðcos yÞ:

flðr; yÞ ¼ Alrl þ Bl

rlþ1

� �
Plðcos yÞ

where the arbitrary constant Cl has been absorbed into the two other arbi-
trary constants Al and Bl .This solution is valid for any integer l.Then, since
the partial di¡erential equation being solved is linear, all such possible solu-
tions may be superimposed to yield a more general type of solution.That is,
fðr; yÞ may be considered to be the sum of all possible solutions flðr; yÞ.
Hence

fðr; yÞ ¼
X1
l¼0

Alrl þ Bl

rlþ1

� �
Plðcos yÞ ð5:4Þ

The Legendre function of the ¢rst kind that appears in Eq. (5.4) is de¢ned by
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PlðxÞ ¼ 1
2l l!

dl

dxl
ðx2 � 1Þl

In view of the nature of this function, it is frequently referred to asLegendre’s
polynomial of order l. The ¢rst three Legendre polynomials are written out
explicitly below for reference purposes.

P0ðxÞ ¼ 1

P1ðxÞ ¼ x

P2ðxÞ ¼ 1
2 ð3x2 � 1Þ

Equation (5.4) contains certain fundamental solutions that are useful
for superimposing to establish additional solutions. These fundamental
solutions will now be studied.

5.4 UNIFORM FLOW

One of the solutions contained in Eq. (5.4) corresponds to a uniform £ow. It
may be obtained by setting

Bl ¼ 0 for all l

Al ¼
0 for l 6¼ 1

U for l ¼ 1

�

Using the fact that P1ðcos yÞ ¼ cos y, the solution given by Eq. (5.4) then
becomes

fðr; yÞ ¼ Ur cos y ð5:5aÞ

The simplest way of con¢rming that the velocity potential given by Eq. (5.5a)
corresponds to a uniform £ow is to note that the cartesian coordinate x is
related to the spherical coordinates r and y by the relation x ¼ r cos y. Thus
Eq. (5.5a) states that f ¼ Ux, which is the velocity potential for a uniform
£ow of magnitudeU.

The stream function for a uniform £owmay be deduced fromEq. (5.5a)
as follows:Using the result (5.5a), it follows from Eq. (5.2a) that

ur ¼ @f
@r

¼ U cos y

Hence from Eq. (5.3a),

168 Chapter 5



1
r2 sin y

@c
@y

¼ U cos y

;c ¼ 1
2Ur2 sin2 yþ f ðrÞ

where f ðrÞ is any function of r. Likewise, the velocity component uy may be
evaluated from f and expressed as a derivative of c, giving

uy ¼ 1
r
@f
@y

¼ �U sin y

;� 1
r sin y

@c
@r

¼ �U sin y

or c ¼ 1
2Ur2 sin2 yþ gðyÞ

where gðyÞ is any function of y.Then, comparing these two expressions forc,
it follows that f ðrÞ ¼ gðyÞ ¼ constant at most. Taking this constant to be
zero,without loss of generality, gives

cðr; yÞ ¼ 1
2Ur2 sin2 y ð5:5bÞ

An alternative way of evaluating cðr; yÞ is simply to invoke its de¢ni-
tion.Then, considering an arbitrary point P in the £uid as shown in Fig. 5.3,
the amount of £uid crossing the surface generated by OP due to the uniform
£ow will be 2pc. But the £ow area perpendicular to the velocity vector is
pðr sin yÞ2.Hence it follows from the de¢nition of c that

2pc ¼ Upðr sin yÞ2

or cðr; yÞ ¼ 1
2Ur2 sin2 y

This agrees with the result obtained by the other method.

FIGURE 5.3 Geometry for evaluating the stream function for a uniform flow.
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Both themethods outlined above for evaluating the stream function are
useful, and eachwill be used in the following sections.The particularmethod
employed will depend upon the complexity of the problem, and it is evident
that the second method can be conveniently employed only for very simple
£ow ¢elds.

5.5 SOURCE AND SINK

The velocity potential corresponding to a three-dimensional source or
sink is obtained from Eq. (5.4) through the term whose coe⁄cient is B0.
Then let

Al ¼ 0 for all l

Bl ¼
0 for l 6¼ 0

B0 6¼ 0 for l ¼ 0

(

Then, from Eq. (5.4), using the fact that P0ðcos yÞ ¼ 1,

fðr; yÞ ¼ B0

r

The velocity components for the resulting £ow ¢eld are

ur ¼ �B0

r2

uy ¼ 0

Hence the velocity is purely radial, its magnitude increases as the origin is
approached, and there is a singularity at the origin. Clearly there is a
source or sink of £uid at r ¼ 0, and the quantity of £uid leaving or enter-
ing this singularity may be evaluated by enclosing it with a spherical
control surface of radius r. Then if Q is the volume of the £uid leaving the
control surface per unit time, it follows that

Q ¼
Z
s
u · n ds

But the velocity vector is radial, and so u · n ¼ juj ¼ þB0=r2 and
ds ¼ r2 sin y dy do. Hence
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Q ¼
Z 2p

0
do
Z p

0

B0

r2

� �
r2 sin y dy

¼ �4pB0

Then, for a source of strength Q, the constant B0 should be set equal to
�Q=ð4pÞ. That is, the velocity potential for a source of strength Q located
at r ¼ 0 is

fðr; yÞ ¼ � Q
4pr

ð5:6aÞ

It should be noted that the minus sign is associated with the source, and so a
positive sign would be associated with a sink.

In order to establish the stream function corresponding to Eq. (5.6a),
the de¢nition of c will be invoked. Referring to Fig. 5.4, a source of strength
Q is shown at the origin. At any arbitrary point P the velocity will be radial
and is indicated by ur.The quantity of £uid that crosses the surface generated
by revolving the line OP about the reference axis will depend upon whether
the source Q is considered to be slightly to the left of the origin or slightly to
the right of it. Here the sourceQwill be considered to be slightly to the right
ofO, so that the quantity of £uid crossing the surface generated byOPwill be
2pcþ Q.Then from Fig. 5.4 it follows that

2pcþ Q ¼
Z y

0
ur cos y 2pr sin y

r dy
cos y

where ur cos y is the component of the velocity vector that is perpendicular to
O0P and r dy=cos y is the element of surface area along O0P. Performing the
integration yields

FIGURE 5.4 Geometry for evaluating the stream function for flow due to a source.
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cðr; yÞ ¼ � Q
4p

ð1þ cos yÞ ð5:6bÞ

It now becomes evident that if the source Q had been considered to be
slightly to the left of the origin, the constant term in Eq. (5.6b) would have
been di¡erent.However, the velocity components would be the same.

5.6 FLOWDUE TOADOUBLET

Aswas the case in two dimensions, the £owdue to a doublet may be obtained
by superimposing a source and sink of equal strength and letting the distance
separating the source and the sink shrink to zero. Figure 5.5 shows a source
of strengthQ located at the origin and a sink of strengthQ located a distance
dx along the positive portion of the reference axis. The distance from the
source to some pointP in the £uidwill be r, and the corresponding distance to
the sink will be r � dr.

From Eq. (5.6a), the velocity potential for the £ow due to this source
and sink will be

FIGURE5.5 Superposition of a source and a sink that become a doublet as dx ! 0.
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fðr; yÞ ¼ � Q
4pr

þ Q
4pðr � drÞ

¼ � Q
4pr

1� 1
1� dr=r

� �

If the source and sink are close together, the quantity dr=r will be small, so
that the expression for the velocity potential may be expanded as follows:

fðr; yÞ ¼ � Q
4pr

1� 1þ dr
r
þ O

dr
r

� �2
" #( )

¼ Q
4pr

dr
r
þ O

dr
r

� �2
" #

The quantity dr may be eliminated in favor of dx by applying the cosine rule
to the triangle de¢ned by the vectors r and r � dr, and the distance dx separa-
ting the source and the sink.Thus

ðr � drÞ2 ¼ r2 þ ðdxÞ2 � 2r dx cos y

Solving this equation for cos y gives

cos y ¼ r2 þ ðdxÞ2 � ðr � drÞ2
2r dx

¼ dr
dx

� dr
2r

dr
dx

þ dx
2r

¼ dr
dx

1þ O
dr
r

� �� �

; dr ¼ dx cos y 1� O
dr
r

� �� �

Using this result, the expression for fðr; yÞ becomes

fðr; yÞ ¼ Q
4pr

dx
r
cos y 1þ O

dr
r

� �� �� �

Now let the distance dx ! 0 and the source strength Q ! 1 such that the
productQ dx ! m.Then

fðr; yÞ ¼ m
4pr2

cos y ð5:7aÞ
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Equation (5.7a) is the velocity potential for a positive doublet of strength m,
that is, a doublet that expels £uid along the negative portion of the reference
axis and absorbs £uid along the positive portion.

The stream function corresponding to Eq. (5.7a) will be obtained by
using the equivalent expressions for the velocity components given by
Eqs. (5.2) and (5.3).Thus

ur ¼ @f
@r

¼ � m
2pr3

cos y ¼ 1
r2 sin y

@c
@y

;
@c
@y

¼ � m
2pr

sin y cos y

and cðr; yÞ ¼ � m
4pr

sin2 yþ f ðrÞ

Likewise, the two expressions for uy give

uy ¼ 1
r
@f
@y

¼ � m
4pr3

sin y ¼ � 1
r sin y

@c
@r

;
@c
@r

¼ m
4pr2

sin2 y

and cðr; yÞ ¼ � m
4pr

sin2 yþ gðyÞ

Comparing these two expressions for cðr; yÞ shows that f ðrÞ ¼ gðyÞ ¼ 0 and

cðr; yÞ ¼ � m
4pr

sin2 y ð5:7bÞ

Equation (5.7b) gives the stream function for a doublet that discharges £uid
along the negative portion of the reference axis and attracts £uid along the
positive part of the reference axis.

5.7 FLOW NEAR A BLUNT NOSE

By superimposing the solutions for a uniform £ow and a source, the solution
corresponding to a long cylinder with a blunt nose is obtained. From
Eqs. (5.5b) and (5.6b), the stream function for a uniform £ow of magnitudeU
and a source of strengthQ located at the origin is

cðr; yÞ ¼ 1
2Ur2 sin2 y� Q

4p
ð1þ cos yÞ
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In order to interpret the £ow ¢eld that this solution represents, considerc to
be constant and solve the preceding equation for r in terms of y:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c
U sin2 y

þ Q
2pU

1þ cos y
sin2 y

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c
U sin2 y

þ Q
4pU sin2ðy=2Þ

s

where the fact that 1þ cos y ¼ 2 cos2ðy=2Þ and the fact that
sinðyÞ ¼ 2 sinðy=2Þ cosðy=2Þ has been used. Then, denoting the value of r
for which c ¼ 0 by r0, the radius to the surface corresponding to c ¼ 0 is

r0 ¼
ffiffiffiffiffiffiffiffiffiffi
Q

4pU

r
1

sinðy=2Þ

Thus the radius r0 corresponding to the principal values of y are as follows:

When y ¼ 0; r0 ¼ 1

When y ¼ p
2
; r0 ¼

ffiffiffiffiffiffiffiffiffiffi
Q

2pU

r

When y ¼ p; r0 ¼
ffiffiffiffiffiffiffiffiffiffi
Q

4pU

r

This de¢nes the stream surface c ¼ 0, as shown in Fig. 5.6.

FIGURE 5.6 Flow around an axisymmetric body created by a source in a uniform
flow.
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Although the polar radius r0 is in¢nite for y ¼ 0, the cylindrical radius
R0 is ¢nite.This may be veri¢ed by noting that R ¼ r sin y, so that

R0 ¼
ffiffiffiffiffiffiffiffiffiffi
Q

4pU

r
sin y

sinðy=2Þ

Then, as y ! 0

sin y
sinðy=2Þ ¼

y� y3=3!þ � � �
y=2� 1=3!ðy=2Þ3 þ � � � ! 2

Hence the cylindrical radius far from the source becomes

R0 ¼
ffiffiffiffiffiffiffi
Q
pU

r

The £uid emanating from the source located at the origin does not mix
with the £uid that constitutes the uniform £ow.Then a shell could be ¢tted to
the shape of the surface corresponding to c ¼ 0 and the source could be
removed without disturbing the outer £ow. That is, the stream function for
the semi-in¢nite body shown in Fig. 5.6 is

cðr; yÞ ¼ 1
2Ur2 sin2 y� Q

4p
ð1þ cos yÞ ð5:8aÞ

The corresponding velocity potential may be obtained from Eqs. (5.5a) and
(5.6a), giving

fðr; yÞ ¼ Ur cos y� Q
4pr

ð5:8bÞ

Equations (5.8) may be used to deduce the velocity and pressure distribution
in the vicinity of the nose of a blunt axisymmetric body such as an aircraft
fuselage or a submarine hull.

5.8 FLOWAROUNDA SPHERE

The stream function for a uniform £ow past a sphere may be obtained by
superimposing the solution for a uniform £ow and that for a doublet. From
Eqs. (5.5b) and (5.7b), the stream function for such a superposition is

cðr; yÞ ¼ 1
2Ur2 sin2 y� m

4pr
sin2 y
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Then the equation de¢ning the surface that corresponds to c ¼ 0 is

0 ¼ 1
2Ur20 sin

2 y� m
4pr0

sin2 y

where r0 is the value of the polar radius r that de¢nes the surface on which
c ¼ 0. Solving this equation for r0 gives

r0 ¼ m
2pU


 �1=3
Since r0 ¼ constant, the surface that corresponds toc ¼ 0 is that of a sphere.
If the doublet strength is chosen to be m ¼ 2pUa3, the radius of this spherical
surface will be r0 ¼ a.Then, by choosing m ¼ 2pUa3, the stream function for
a uniform £ow of magnitudeU approaching a sphere of radius a is

cðr; yÞ ¼ 1
2U r2 � a3

r

� �
sin2 y ð5:9aÞ

The corresponding velocity potential may be obtained from Eqs. (5.5a) and
(5.7a), in which the doublet strength m ¼ 2pUa3 is used.This gives

cðr; yÞ ¼ U r þ 1
2
a3

r2

� �
cos y ð5:9bÞ

5.9 LINE-DISTRIBUTED SOURCE

The stream function and the velocity potential for a source that is distributed
over a ¢nite stripwill be established in this section.The result is useful as one
element in superpositions that lead to additional solutions to £ow problems.

Figure 5.7 shows a source that is uniformly distributed over the section
0 � x � Lof the referenceaxis.Thesourcestrength,which isconstant, isqper
unit length, so that qL is the total volume of £uid that emanates from the
sourceperunit time.Anarbitrary¢eldpointP isshownwhosecoordinatesare
r,y, ando.Oneendof the line source,which is at theorigin, is a distance r from
thispoint and subtends anangley to the xaxis.Theotherendof the line source
is a distance Z from the point P and subtends an angle a to the x axis. Also, an
element of the line source of length dx,which is a distance x from the origin,
subtends an angle n to the x axis.But the strength of this element of the source
is q dx, so that, fromEq. (5.6b), the stream function for the line sourcewill be

c ¼ �
Z L

0

q dx
4p

ð1þ cos nÞ
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where the angle n is a function of x and so will be a variable in the integra-
tion. Rather than express n as a function of x, the variable of integration
will be changed from x to n. Referring to Fig. 5.7, it will be observed that the
cylindrical radius R ¼ r sin y ¼ Z sin a remains constant throughout the
integration. Also, it may be observed that

x � x ¼ R cot n

;� dx ¼ �R csc2 n dn

Hence the expression for cmay be written in the form

cðr; yÞ ¼ � qR
4p

Z a

y
csc2 nð1þ cos nÞ dn

¼ � qR
4p

cot y� cot aþ 1
sin y

� 1
sin a

� �

But from Fig. 5.7 the following relations may be established:

x ¼ R cot y

x � L ¼ R cot a

FIGURE 5.7 Geometry connecting a field point P to a line source of length L distri-
buted uniformly along the reference axis.
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r ¼ R
sin y

Z ¼ R
sin a

Using these relations, the expression for the stream function for a line source
of strength q per unit length and of length L is

c ¼ � q
4p

ðLþ r � ZÞ ð5:10aÞ

The velocity potential corresponding to Eq. (5.10a) may be obtained in
an analogous way. From Eq. (5.6a) it follows that

f ¼ �
Z L

0

q dx
4pðR= sin nÞ

where it has been observed that the distance from the point at x on the line
source to the ¢eld point P is R= sin n. As before it is observed that

x � x ¼ R cot n

and so �dx ¼ �R csc2 n dn

Then the expression for f becomes

f ¼ � q
4p

Z a

y
sin n csc2 n dn

¼ � q
4p

Z a

y

dn
sin n

f ¼ � q
4p

log
tan a=2
tan y=2

� �
ð5:10bÞ

Although the result for the stream function was more compact when
expressed in terms of lengths, the result for the velocity potential is more
compact in terms of angles, so that Eq. (5.10b) will be considered to be the
¢nal result.

5.10 SPHERE IN THE FLOW FIELDOFA SOURCE

In Prob. 4.4 it was established that the solution for a circular cylinder in a
sink £owcould be obtained from the solutions for two sources and two sinks,
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all of which have the same strength. It will be shown here that the solution for
a sphere in a source £ow may be obtained in an analogous manner, although
the singularities that must be imposed are two sources, of unequal strength,
and a line sink.

Figure 5.8 shows the connection between a ¢eld point P and certain
singularities.The singularities are a source of strength Q,which is located at
the pointQ,which is a distance l along the reference axis, a source of strength
Q�, which is located at the point Q�, which is at the image point a2=l of the
point Q in the sphere of radius a, and a uniformly distributed line sink of
strength q per unit length along the section OQ� of the reference axis. It will
be shown that for an appropriate choice of source and sink strengths the
sphere r ¼ a corresponds to c ¼ 0.

If the spherical surface r ¼ a is to be a stream surface, the total sink
strength inside this region must equal the total source strength there.That is,
qa2=l ¼ Q�, which establishes the sink strength q in terms of the source
strength Q�. Then, using Eqs. (5.6b) and (5.10a), the stream function for the
singularities shown in Fig. 5.8 will be

cðr; yÞ ¼ � Q
4p

ð1þ cos bÞ � Q�

4p
ð1þ cos aÞ þ Q�

4p
l
a2

a2

l
þ r � Z

� �

where a, b, and Z are functions of r and y.Then for points on the surface of the
sphere r ¼ a the value of cwill be

cða; yÞ ¼ � Q
4p

ð1þ cos bÞ � Q�

4p
ð1þ cos aÞ þ Q�

4p
1þ 1

a
� lZ
a2

� �

FIGURE 5.8 Superposition of a line sink of strength q per unit length, a source of

strength Q�, and a source of strength Q near a sphere of a radius a.
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Now if the point P lies on the spherical surface r ¼ a, a relationship will exist
among the parameters Z, a, b, a, and y. To establish this relationship, it will
be noted that

a2=l
a

¼ a
l

But the numerator and denominator of each side of this equation represent
the lengths of one of the vectors shown in Fig. 5.8.Thus it follows that

OQ�

OP
¼ OP

OQ

But these lengths represent corresponding sides of the triangles OPQ� and
OQP. Then, since the angle y is common to both these triangles, it follows
that the two triangles are similar. Then the angle OP̂Q� must equal the
angle OQ̂P, which, in turn, equals p�b. Hence the length Z may be written
as

Z ¼ a2

l
cosðp� aÞ þ a cosðp� bÞ

¼ � a2

l
cos a� a cos b

Substituting this result into the expression for cða; yÞ gives

cða; yÞ ¼ � Q
4p

ð1þ cosbÞ � Q�

4p
ð1þ cos aÞ

þ Q�

4p
1þ l

a
þ cos aþ l

a
cos b

� �

¼ ð1þ cos bÞ � Q
4p

þ Q�

4p
l
a

� �

Thus by choosing the source strengthQ� to be equal to aQ=l, the surface r¼a
will correspond to the stream surface c ¼ 0.Then the stream function for a
sphere of radius awhose center is at the origin and that is exposed to a point
source of strengthQ located a distance l along the positive reference axis is

cðr; yÞ ¼ � Q
4p

ð1þ cos bÞ � Q
4p

a
l
ð1þ cos aÞ þ Q

4p
a
l
þ r
a
� Z
a


 �
ð5:11aÞ

The velocity potential corresponding to Eq. (5.11a) may be obtained
from Eqs. (5.6a) and (5.10b).This gives
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fðr; yÞ ¼ � Q
4pz

� Q�

4pZ
þ q
4p

log
tan a=2
tan y=2

� �
ð5:11bÞ

Using the fact that Q� ¼ aQ=l and q ¼ lQ�=a2 ¼ Q=a, the expression for the
velocity potential for a sphere of radius a in the presence of a source of
strengthQ becomes

fðr; yÞ ¼ � Q
4pz

� Qa
4pZl

þ Q
4pa

log
tan a=2
tan y=2

� �
ð5:11cÞ

The quantity z is the distance from the ¢eld point P to the source Q as shown
in Fig. 5.8.

5.11 RANKINE SOLIDS

The solution for the £ow around a family of bodies, which are known as
Rankine solids, is obtained by superimposing a source and a sink of equal
strength in a uniform £ow ¢eld. Let the magnitude of the uniform £ow be U
and the strength of the source and the sink beQ.Consider the source and the
sink to be located equal distances l from the origin as shown in Fig. 5.9a.

From Eqs. (5.5b) and (5.6b), the stream function for the con¢guration
shown in this ¢gure is

cðr; yÞ ¼ 1
2Ur2 sin2 y� Q

4p
ðcos y1 � cos y2Þ ð5:12aÞ

FIGURE 5.9 (a) Superposition of uniform flow, source and sink, and (b) uniform

flow approaching a Rankine solid.
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Then if r0 is the radius to the surface onwhichc¼ 0, the radius r0must satisfy
the equation

0 ¼ 1
2Ur20 sin

2 y� Q
4p

ðcos y1 � cos y2Þ

Working with the cylindrical radiusR¼ r sin y rather than the polar radius r ,
it follows that the cylindrical radius R0, which corresponds to the surface
c¼ 0,will be

R2
0 ¼ Q

2pU
ðcos y1 � cos y2Þ

Thenwhen y1¼ y2¼ 0, and when y1¼ y2¼ p, the value of R0 is zero. Also, the
maximum value of R0 occurs when cos y1¼�cos y2 , which corresponds to
y¼ p=2 or y¼ 3p=2. Thus the stream surface that corresponds to c¼ 0
de¢nes a body as shown in Fig. 5.9b. The principal dimensions of this body
are the half width L and the half height h. Both these parameters depend
upon the free-stream velocity U, the source and sink strength Q, and the dis-
tance l.

The value of L may be obtained from the equation resulting from the
observation that the velocity at the downstream stagnation point is zero. But
the velocity at that point is the superposition of a uniform £ow of magnitude
U, a source of strength Q a distance L þ l away, and a sink of strength Q a
distance L� l away.Hence

U þ Q

4pðLþ lÞ2 �
Q

4pðL� lÞ2 ¼ 0

Rearranging this equation gives the following equation to be satis¢ed byL in
terms of the parametersU, Q, and l:

ðL2 � l2Þ2 � Ql
pU

L ¼ 0 ð5:12bÞ

An analogous expression for the half height hmay be obtained by noting that
the value of the cylindrical radius R0 is h when cos y1¼ �cos y2, where
tan y1¼ h=l.Hence

h2 ¼ Q
2pU

lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ l2

p þ lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ l2

p
� �
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Rearranging this expression shows that h must satisfy the following
equation:

h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ l2

p
� Ql
pU

¼ 0 ð5:12cÞ

For various values of the parameters U, Q, and l, Eqs. (5.12b) and (5.12c)
de¢ne a family of bodies of revolution for which the stream function is
given by Eq. (5.12a).The corresponding velocity potential is

fðr; yÞ ¼ Ur cos y� Q
4pr1

þ Q
4pr2

ð5:12dÞ

5.12 D’ALEMBERT’S PARADOX

It will be shown in this section that if an arbitrary three-dimensional body is
immersed in a uniform £ow, the equations of hydrodynamics predict that
there will be no force exerted on the body by the £uid. Experimentally it is
known that a drag force exists on a body that is in a £uid £ow, so this theo-
retical result is known as d’Alembert’s paradox.

Figure 5.10 shows a body of arbitrary shape whose center of gravity is
located at the origin of a coordinate system. The surface of the body is
denoted by S, and the unit outward normal to S, locally, is denoted by n.The
hydrodynamic force, which may act on the body, is denoted by the force
vectorF. A spherical control surface S0 is set up around the body under con-
sideration, and n0 is the unit outward normal to S0.That is, n0¼ er ,where er is
the unit radial vector.

The equation of force equilibrium will now be written for the body of
£uid contained between the surfaces S and S0. The £uid force acting on the
body through the surface S is F; hence the force acting on the £uid through
that surface is �F. There is no transfer of momentum across the surface S,
since that surface is a stream surface. Around the surface S0 there will be a
force due to the pressure distribution. The magnitude of this force will be
^pn0 per unit of surface area, so that the total pressure force will be the
surface integral of this quantity. Across the surface S0 there will be
a momentum £ux corresponding to the mass £ux ru · n0 per unit area.Then
the momentum £ux will be ru(u · n0) per unit area, so that the inertia force
per unit surface area will be �ru(u · n0). Thus the equation of force equili-
brium for the £uid that is bounded by the surfaces S and S0 is

0 ¼ �F�
Z
S0
½ pn0 þ ruðu · n0Þ� dS
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The pressure may be eliminated from this equation through use of the
Bernoulli equation, which, for the case of steady irrotational motion under
consideration, may be written in the form

pþ 1
2ru · u ¼ B

whereB is the Bernoulli constant.Then the forceF acting on the body will be
given by the following integral:

F ¼ r
Z
S0
½ 12 ðu·uÞn0 � uðu · n0Þ� dS

Here it has been observed that the surface integral of Bn0 is zero for any
closed surface.

It is now proposed to write the velocity vector u as the sum of the
free-stream velocity vector U¼Ue and a perturbation u0. The perturbation

FIGURE 5.10 Spherical control surface S0 enclosing an arbitrarily shaped body of
surface area S. The force acting on the body is F and the unit normal to the body
surface is n.
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velocity u0 will be large near the body, but it will tend to zero far from the
body.Then,writing

u ¼ Uþ u0

the expression for the force F becomes

F ¼ r
Z
S0

1
2U

2 þU · u0 þ 1
2 u

0 · u0
� �

n0 � ðUþ u0Þ½ðUþ u0Þ · n0�
� �

dS

Expand the integrand now and note that
R
S0
U 2n0 ds ¼ 0 since U 2 is a con-

stant.
R
S0
U · n0 ds ¼ 0, sinceU is a constant vector and

R
S0
u0 · n0 ds ¼ 0 from

the continuity equation.Hence

F ¼ r
Z
S0

U · u0 þ 1
2 u

0 · u0
� �

n0 � ½u0ðU · n0Þ þ u0ðu0 · n0Þ�
� �

ds

The ¢rst and third terms in the integrand may be replaced by �U� (u� n0)
in view of the vector identity

U� ðu0 � n0Þ ¼ u0ðU · n0Þ � n0ðU · u0Þ

Hence the expression for the hydrodynamic force F may be written in the
form

F ¼ r
Z
S0

�U� ðu0 � n0Þ þ 1
2 ðu0 · u0Þn0 � u0ðu0 · n0Þ

� 
ds

It will now be shown that each of these terms is zero.
Let f0 be the velocity potential corresponding to the perturbation

velocity u0.Then, from Eq. (5.4), f0 must be of the form

f0 ¼
X1
l¼0

Al
Plðcos yÞ

rlþ1

¼ � Q
4pr

þ m cos y
4pr2

þ O
1
r3

� �

where the ¢rst two terms,which correspond to a source and a doublet, have
been written out explicitly and any remaining terms must vary as 1=r3 or
some greater power of1=r.Then, since u0 ¼ =f0, it follows that
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ju0j ¼ O
1
r2

� �

That is, the perturbation velocity varies, at most, as1=r2. Also

u0 � n0 ¼ =
Q
4pr

� m cos y
4pr2

þ O
1
r3

� �� �
� er

¼ � Q
4pr2

er þ O
1
r3

� �� �
� er

That is, since n0¼ er and since er� er¼ 0, it follows that

ju0 � n0j ¼ O
1
r3

� �

Finally, since an element of surface area dS equals r2 sinydydo, it is evident
that

dS ¼ Oðr2Þ

Using the foregoing results, it is possible to establish the order of magnitude
of each of the integrals that appears in the expression for F. ThusZ

S0
U� ðu0 � n0Þ dS ¼ O

1
r

� �
Z
S0
ðu0 · u0Þn0 dS ¼ O

1
r2

� �
Z
S0
u0ðu0 · n0Þ dS ¼ O

1
r2

� �

That is, if the radius of the spherical surface S0 is taken to be very large, each
of these integrals will be vanishingly small.Thus in the limit,

F ¼ 0 ð5:13Þ

Since it is known that any body that is immersed in a £ow ¢eld experi-
ences a drag force, Eq. (5.13) poses a paradox known as d’Alembert’s para-
dox. The resolution of this paradox lies in the fact that viscous e¡ects have
been omitted from the equations that led to Eq. (5.13). It will be seen in Part
III that there is a thin £uid layer around such a body in which viscous e¡ects
cannot be neglected.This £uid layer, or boundary layer, exerts a shear stress

Three-Dimensional Potential Flows 187



on the body that gives rise to a drag force. In addition, the boundary layer
may separate from the surface of the body, creating a low-pressure wake.
This, in turn,will induce an additional drag,called the formdrag,owing to the
pressure di¡erential around the surface of the body. However, for stream-
lined bodies Eq. (5.13) is approached because of the absence of form drag,
although the viscous-shear drag will still exist.

5.13 FORCES INDUCEDBYSINGULARITIES

It was established in the previous section that, according to the equations of
hydrodynamics, no force exists on a body that is in a uniform £ow ¢eld.This
agrees with the results of the last chapter, since the Kutta-Joukowski law
shows that in the absence of circulation around a body there are no forces
acting on two-dimensional bodies. In view of the fact that= ·v¼ 0, it is very
di⁄cult to establish an appreciable circulation around short bodies�that is,
around three-dimensional bodies. However, it was established in the pro-
blems at the end of Chap. 4 that a force will exist on a cylinder that is exposed
to a singularity in the £ow such as a source, a sink, or a vortex. Likewise, it
will be shown here that a force exists on a three-dimensional body if it is
exposed to a point singularity in the £uid.

Figure 5.11a shows an arbitrary body whose center of gravity coincides
with the origin of a coordinate system.The surface of the body is denoted by
S, and n is the outward unit normal to S. A singularity is assumed to exist at
the point x¼ xi, since the polar axis may be made to pass through the singu-
larity without loss of generality.A small spherical control surface denoted by
Si and of radius e is established around the singularity. The unit outward
normal to the surface Si is denoted by ni. A large spherical surface, denoted
by S0, is drawn around both the body and the singularity.The unit normal to
this surface is denoted by n0. The hydrodynamic force that acts on the body
and whose magnitude is sought is denoted by F.

For equilibrium of the forces that act on the body of £uid that is inside
S0 but outside S and Si, the sum of the forces must be zero.Hence

0 ¼ �F ¼
Z
S0
½pn0 þ ruðu · n0Þ� dS þ

Z
Si
½pni þ ruðu · niÞ� dS

The ¢rst two terms on the right-hand side of this equation are identical with
those that appeared in the previous section, and the third term represents the
pressure and momentum integral for the new surface Si. But it was shown in
the previous section that the integral around S0 that appears above is zero.
Then
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F ¼
Z
Si
½pni þ ruðu · niÞ� dS

Since the integral that appears in this equation represents the force acting on
the surface Si,whose radius is arbitrarily small, it follows that if a forceF acts
on the body S, the reaction of this force must act on the singularity. From the
Bernoulli equation, p¼B� r(u · u)=2, so that

F ¼ r
Z
Si

� 1
2 ðu · uÞni þ uðu · niÞ

� 
dS ð5:14aÞ

In order to further reduce the integral in Eq. (5.14a), it is necessary to specify
the nature of the singularity located inside the surface Si. The case of a
source, or sink, and that of a doublet will be examined.

FIGURE 5.11 (a) Control surfaces for a body located at the origin and a point sin-
gularity at x ¼ xi, and (b) a source and a sink close together near the body.
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Consider, ¢rst, the singularity at x¼ xi to be a source of strength Q.
Then, from Eq. (5.6a), the velocity on the surface Siwill be

u ¼ Q
4pe2

ee þ ui

where ee is the unit vector radial from the point x¼ xi and ui is the
velocity induced by all means other than the source under consideration.
Then

u · u ¼ Q2

16p2e4
þ Q
2pe2

ee · ui þ ui · ui

and u · ni ¼ u · ee

¼ Q
4pe2

þ ui · ee

Hence from Eq. (5.14a),

F ¼ r
Z
Si

� 1
2

Q2

16p2e4
þ Q
2pe2

ee · ui þ ui · ui

� �
ee

�

þ Q
4pe2

ee þ ui

� �
Q

4pe2
þ ui · ee

� ��
dS

¼ r
Z
Si

Q2

32p2e4
ee � 1

2
ðui · uiÞee þ Q

4pe2
ui þ ðui · eeÞui

� �
dS

Of these four integrals, the ¢rst is zero, since it involves a constant times ee
integrated around a closed surface. Since the radius e is arbitrarily small,
the quantity ui · ui may be considered to be constant over the surface Si, and
so the second integral will likewise be zero in the limit as e! 0. The last
term in the integrand will likewise involve a quantity ui, which will be
constant, and a quantity ee,which will change direction around Si. Thus the
product ui · ee will have equal positive and negative regions over the surface
Si, so that the integral of (ui · ee)ui over Si will be zero. Then the expression
for F becomes

F ¼ r
Z
Si

Q
4pe2

ui dS

where, again uimay be considered to be constant throughout the integration
for vanishingly small value of e. Hence
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F ¼ rQ
4p

ui
Z 2p

0
do
Z p

0
sin ydy

F ¼ rQui

ð5:14bÞ

That is, the force on the body, and on the source, is proportional to the source
strength and to themagnitude of the velocity ui induced at the location of the
source by all mechanisms other than the source itself. The direction of the
force coincides with that of the velocity vector ui. For a sink,Q should be
replaced by�Q in Eq. (5.14b).

Consider now the case when the singularity is a doublet. It was shown
in Sec. 5.6 that a doublet may be obtained by superimposing a source and a
sink of equal strength.Hence, consider a source of strengthQ to be located at
x¼ xi and a sinkof strengthQ tobe located at x¼ xiþ d, as shown inFig. 5.11b,
where d is a vanishingly small distance.Then if ui is the £uid velocity at x¼ xi
due to all components of the £ow except the source and the sink under con-
sideration, the velocity at x¼ xi, less that due to the source itself,will be

Q
4pd2

ex þ ui

where ex is the unit vector in the x direction.
The velocity at x¼ xiþ d, less that due to the sink,will be

Q
4pd2

ex þ ui þ d
@ui
@x

þ � � �

Then, from Eq. (5.14b) the force acting on the body due to the source will be

rQ
Q

4pd2
ex þ ui

� �

and the force acting on the body due to the sink will be

� rQ
Q

4pd2
ex þ ui þ d

@ui
@x

þ � � �
� �

where theminus sign results from the fact that a sink is being considered.The
net force that will act on the body due to the combined source and sink will
then be

� rQd
@ui
@x
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Now if d is allowed to shrink to zero andQ is allowed to become in¢nite such
that Qd! m, the force acting on the doublet of strength m that will result at
x¼ xiwill be

� rm
@ui
@x

Hence the force acting on the body due to a doublet of strength mwill be

F ¼ �rm
@ui
@x

ð5:14cÞ

As an example of an application of the foregoing results, consider a
sphere in the presence of a source,which was discussed in Sec. 5.10.The £ow
¢eld was found to consist of the source of strength Q which was located at
x¼ l, an image source of strength Qa=l located at x¼ a2=l, and a line sink of
strength Q=a extending over the region x¼ 0 to x¼ a2=l.Then the velocity ui
at the point x¼ l due to all causes except the source of strengthQwill be

ui ¼ Qa=l
4p

1

ðl � a2=lÞ2 ex �
Z a2=l

0

Q=a
4p

ex
ðl � xÞ2 dx

¼ Qa=l
4p

1

ðl � a2=lÞ2 ex �
Q=a
4p

1
ðl � a2=lÞ �

1
l

� �
ex

¼ Qa3

4plðl2 � a2Þ2 ex

Then, from Eq. (5.14b), the force F acting on the sphere due to the source
will be

F ¼ rQ2a3

4plðl2 � a2Þ2 ex ð5:14dÞ

That is, the sphere is attracted to the source with a force that is proportional
toQ2.

5.14 KINETIC ENERGYOFA MOVING FLUID

It is sometimes of interest to calculate the kinetic energy associated with a
£uid disturbance. An example of the utility of this quantity in the context of
£ow around immersed bodies will be given in the next section, and an appli-
cation to free-surface £ows will be made in the next chapter.
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The kinetic energy associated with the £uid in the uniform £ow around
a stationary body will be in¢nite if the £ow ¢eld is in¢nite inextent.However,
thekineticenergy inducedinaquiescent£uidby thepassageofabody through
it will be ¢nite, even if the £ow ¢eld is in¢nite in extent. For this reason,
discussionsofkinetic-energyconsiderationsarebasedonaframeof reference
inwhich the£uid far fromthebody is at rest and thebody ismoving.

Referring to Fig. 5.12,we consider an arbitrary body of surface area S
that is moving with velocity U through a stationary £uid. An arbitrarily
shaped control surface S0 is constructed around the body.The unit outward
normals to the surfaces S and S0,denoted by n and n0, are indicated. IfV is the
volumeof £uid contained between the surfaces S and S0, the kinetic energy of
Tof this volume of £uid will be

T ¼
Z
V

1
2rðu · uÞdV

¼ 1
2 r
Z
V
=f ·=f dV

FIGURE 5.12 Control surface for an arbitrary body moving through a quiescent
fluid.
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where f is the velocity potential corresponding to the motion induced in the
£uid by themoving body.This volume integral may be converted to a surface
integral by use of Green’s theorem in the form given in Appendix A. Thus,
since=2f¼ 0, it follows fromGreen’s theorem that

T ¼ 1
2 r
Z
S
f
@f
@n

dS

whereS is the surface that enclosesVand so consists of the surfaces S and S0.
But on the surface S the unit normal points away from the surface and into
the volumeV.Using the fact, the surface integral above may be expanded to
give

T ¼ 1
2r
Z
S0
f
@f
@n

dS � 1
2r
Z
S
f
@f
@n

dS

The ¢rst integral that appears in this expression is zero, which will now be
shown.

From the continuity equation, if follows that

Z
V
= · u dV ¼ 0

This volume integral may be converted into two surface integrals by use of
Gauss’ theorem to yield the following:Z

S0
u·n dS �

Z
S
u·n dS ¼ 0

But u · n¼ @f=@n on the surface S, and u¼VwhereV is a constant.HenceZ
S0

@f
@n

dS �
Z
S
V·n dS ¼ 0

The second integral in this identity is zero, sinceV is a constant vector, so
that for any constant C it follows thatZ

S0
C
@f
@n

dS ¼ 0

Subtracting this quantity from the right-hand side of the expression for T
gives
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T ¼ 1
2r
Z
S0
ðf� CÞ @f

@n
dS � 1

2r
Z
S
f
@f
@n

dS

Now since the £uid velocity far from the body is zero, the value off there can
at most be a constant. Thus by considering the surface S0 to be large and by
choosing C to be the value of f far from the body, the ¢rst integral may be
made to vanish.That is, the kinetic energy induced in the £uid by the move-
ment of the body is

T ¼ � 1
2r
Z
S
f
@f
@n

dS ð5:15Þ

where, it should be recalled, the velocity potential corresponds to the body
moving through a stationary £uid.

5.15 APPARENTMASS

When a body moves through a quiescent £uid, a certain mass of the £uid is
induced tomove to some greater or lesser extent.Aquestion thatmay then be
asked is,what equivalent mass of £uid, if it moved with the same velocity as
the body,would exhibit the samekinetic energy as the actual case? If the £uid
may be considered as being ideal, the mass of £uid referred to above is found
to depend upon the body shape only, and this mass of £uid is called the
apparent mass.

Wede¢ne the apparentmass of a £uidM0 as thatmass of £uidwhich, if it
were moving with the same velocity as the body,would have the same kinetic
energy as the entire £uid.That is,

1
2M

0U 2 ¼ �1
2r
Z
S
f
@f
@n

dS

M 0 ¼ � r
U 2

Z
S
f
@f
@n

dS
ð5:16Þ

For arbitrarily shaped bodies the velocity potential will depend upon the
direction of the £ow. That is, the apparent mass of £uid associated with a
given body will be a property of the shape of that body, and as for inertia,
there will in general be three principal axes of the apparent mass. For axi-
symmetric bodies there will be two principal values of M0, while for the
sphere there will be only one.

As an example of an application of Eq. (5.16), the apparent mass for
the sphere will be worked out here.The velocity potential (5.9b) corresponds
to a stationary sphere of radius a with a uniform £ow of magnitude U
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approaching it. Then the required velocity potential may be obtained from
Eq. (5.9b) by adding the velocity potential for a uniform £ow of magnitudeU
in the negative x direction.This gives

fðr; yÞ ¼ U r þ 1
2
a3

r2

� �
cos y� Ur cos y

¼ 1
2U

a3

r2
cos y

;
@f
@n

ðr; yÞ ¼ @f
@r

ðr; yÞ ¼ �U
a3

r3
cos y

Hence on the surface Swhere r¼a

f
@f
@n

¼ � 1
2U

2a cos2 y

Then, from Eq. (5.16), the apparent mass for the sphere is

M 0 ¼ � r
U2

Z 2p

0
do
Z p

0
� 1

2U
2a cos2 y

� �
a2 sin ydy

M 0 ¼ 2
3 pa

3r

ð5:17Þ

That is, the apparent mass for a sphere is one-half of the mass of the same
volume of £uid. This apparent mass may be added to the actual mass of the
sphere, and the total mass may be used in the dynamic equations of the
sphere.That is, the existence of the £uidmay be ignored if the apparent mass
of £uid is added to the actual mass of the body.

PROBLEMS

5.1 Use the definition of the Stokes stream function and the o component
of the condition of irrotationality to show that the equation to be satis-
fied by the stream function c(r, y) for axisymmetric flows is as follows:

r2
@2c
@r2

þ sin y
@

@y
1

sin y
@c
@y

� �
¼ 0 ð5:18Þ

5.2 Show by direct substitution that the stream functions obtained for a
uniform flow, a source, and a doublet, as given by Eqs. (5.5b), (5.6b) and
(5.7b), respectively, satisfy Eq. (5.18).
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cðr; yÞ ¼ 1
2Ur2 sin2 y ð5:5bÞ

cðr; yÞ ¼ � Q
4p

ð1þ cos yÞ ð5:6bÞ

cðr; yÞ ¼ � m
4pr

sin2 y ð5:7bÞ

5.3 Look for a separation of variables solution to Eq. (5.18) of the following
form

cðr; yÞ ¼ RðrÞT ðyÞ
Hence show that the finite solutions for R(r) are of the following form:

RnðrÞ ¼ Anr�n

and that the equation to be satisfied by T ðyÞ is the following:

ð1� Z2Þ d
2T
dZ2

þ nðnþ 1ÞT ¼ 0

where Z ¼ cos y. Show that the substitution T ¼ ð1� Z2Þ1=2t trans-
forms this equation to the following form:

ð1� Z2Þ d
2t

dZ2
� 2Z

dt
dZ

þ nðn� 1Þ � 1
1� Z2

� �
t ¼ 0

This is the associated Legendry equation. Show that the nonsingular
solutions to this equation are the following:

tnðZÞ ¼ ð1� Z2Þ1=2 d PnðZÞ
d Z

In the above, Pn(Z) is Legendre’s polynomial of order n. Thus deduce
that the general solution to Eq. (5.18) is the following:

cðr; yÞ ¼
X1
n¼1

An
sin y
rn

d
dy

½Pnðcos yÞ� ð5:19Þ

5.4 Show that setting An ¼ 0 for n 6¼ 1 in Eq. (5.19) yields the solution for a
doublet.

5.5 Figure 5.13 shows a doublet of strength m� located at x¼ l and a doublet
of strength m* located at x ¼ a2=l. Show that the surface r¼a corre-
sponds toc¼ 0 if m*¼ �a3m=l3.Hence deduce that the stream function
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for a doublet of strength m located a distance l from the center of a
sphere of radius a is given by the following equation:

cðr; yÞ ¼ � m
4pz

sin2 bþ ma3

4pl3Z
sin2 a ð5:20aÞ

Also deduce that the corresponding velocity potential is given by the
following equation:

fðr; yÞ ¼ þ m

4pz2
cosb� ma3

4pl3Z2
cos a ð5:20bÞ

5.6 Show that the force that acts on a sphere of radius a due to a doublet of
strength m located a distance l from the center of the sphere along the x
axis is given by the expression:

F ¼ 3rm2a3l

2pðl2 � a2Þ4 ex

5.7 Aspherical gas bubble of radiusR(t) exists in a liquid; that is, the radius
of the bubble is changing with time.The liquid is quiescent, except for
any motion that is caused by the bubble itself. It is assumed that the
fluidmotion does not involve any viscous or compressible effects, and it
may therefore be represented by a time-dependent velocity potential
that satisfies the following conditions:

FIGURE 5.13 Superposition of a doublet of strength m and a doublet of strength m*
leading to a doublet of strength m* outside a sphere of radius a.
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H2f ¼ 1
r2

@

@r
r2
@f
@r

� �
¼ 0

@f
@r

ðr ! 1; tÞ ¼ 0

@f
@r

ðr ¼ R; tÞ ¼ _R

In the above, _R is the derivative of R with respect to time. Obtain an
expression for the radial velocity at the surface of the bubble and for the
velocity potential f(r, t), both of these expressions being in terms of R,
_R, and r. Also obtain an expression for the pressure at the surface of the
bubble p (R, t), taking the pressure far from the bubble to be p0,which is
a constant.

Suppose that at time t¼ 0 the pressure at the surface of the
bubble is p0, the radius of the bubble is R0, and its initial velocity
is � _R; that is, the radius of the bubble is decreasing as time increa-
ses. Find the time required for the radius of the bubble to shrink
to zero.

FIGURE 5.14 Coordinate systems for a sphere moving through a stationary fluid.
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5.8 Asphere of radius amoves along the x axiswith velocityU(t) that varies
with time. A fixed-origin coordinate system is defined by the location
of the sphere at time t¼ 0, so that its location at any subsequent time
will be defined by the relation:

x0ðtÞ ¼
Z t

0
U ðtÞ dt

This situation is depicted in Fig. 5.14. If P is any fixed-field point, its
coordinates (r, t) relative to the spherewill changewith time.Obtain the
velocity potential for the sphere in a stationary fluid, first in terms of r
and y, then in terms of x, R, and x0. If the undisturbed pressure is p1,
find the pressure at the field point P in terms of r and y. Hence, by inte-
grating the pressure around the surface of the sphere, find the force
acting on it.Compare the result so obtainedwith that obtained by using
the apparent mass concept in conjunctionwithNewton’s second law of
motion.
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6

SurfaceWaves

The e¡ect of gravity on liquid surfaces is treated in this chapter. The £ows
associated with surface waves will be assumed to be potential, which is a
valid approximation for many free-surface phenomena. Most of the £ows
treated here will be two-dimensional. However, the treatment of surface
waves has been separated from the other two-dimensional potential £ows
because of the di¡erent nature of the problems and the di¡erent approaches
to their solutions.

The formulation of surface-wave problems is discussed ¢rst.The line-
arized version of this formulation is then presented, and this version is used
throughout most of the remainder of the chapter. The propagation speed of
small-amplitude waves is established, and the e¡ect of surface tension on
this result is investigated.Waves on shallow liquids are discussed next, and
the manner in which waves of arbitrary form and amplitude propagate is
established.

The complex potential for traveling waves is calculated, and this result
is used to establish the pathlines for £uid particles in a body of liquid on the
surface of which surface waves are propagating.A superposition of traveling
waves is then used to introduce the topic of standing waves. The particle
paths for this type of wave are also established.The topic of standing waves
leads, quite naturally, to the question of what type of waves may exist on the
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free surface of liquids that are contained in vessels of ¢nite dimensions. In
particular, rectangular and cylindrical vessels are discussed. The response
of the free surface to arbitrary motions of such vessels is obtained. Finally,
the behavior of waves at the interface of the two di¡erent £uid streams is
investigated.This leads to the topics ofHelmholtz orRayleigh instability and
Taylor instability.

6.1 THEGENERAL SURFACE-WAVE PROBLEM

When a quiescent body of liquid experiences gravity waves on its free sur-
face, the motion induced by the surface waves may be considered to be irro-
tational in most instances.Then the velocity vector may be expressed as the
gradient of a velocity potential, which in turn, must satisfy Laplace’s equa-
tion. That is, the governing equation is the same as that for each of the two
previous chapters, so that surface-wave theory introduces no newdi⁄culties
with respect to the governing equation. The boundary conditions to be
satis¢ed will now be established.

Figure 6.1 shows a body of liquid on a £at surface in which waves exist
on the free surface of the liquid.The x axis of a coordinate system is located
at the mean level of the free surface, which is de¢ned by the equation
y ¼ Zðx; z; tÞ and the mean depth of the liquid is h.Two boundary conditions
must be imposed on the free surface y ¼ Z. The ¢rst of these conditions is
called the kinematic condition, and it states that a particle of £uid that is at

FIGURE 6.1 Coordinate system for surface-wave problems.
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some time on the free surface will always remain on the free surface. Then,
since the equation of the free surface is y � Z ¼ 0, it follows that

D
Dt

ð y � ZÞ ¼ 0

In terms of eulerian coordinates this boundary condition becomes

@

@t
ðy � ZÞ þ u �=ðy � ZÞ ¼ 0

But in the eulerian frame of reference the coordinates x, y, z, and t are inde-
pendent. Also, the function Z depends on x, z, and t only.Hence the equation
above may be expanded to give

� @Z
@t

� u
@Z
@x

þ v� w
@Z
@z

¼ 0

where it has been noted that @xi=@xj ¼ dij . Finally, expressing the velocity
components in terms of the velocity potential f, the kinematic surface con-
dition becomes

@Z
@t

þ @f
@x

@Z
@x

þ @f
@z

@Z
@z

¼ @f
@y

The other boundary condition that must be imposed on the free sur-
face is a dynamic one. Typically, the statement amounts to specifying that
the pressure is constant, but in general it may be stated that p ¼ Pðx; z; tÞ
on y ¼ Z. This condition is implemented through the Bernoulli equation.
The appropriate form of the Bernoulli equation is that for unsteady, irro-
tational motion. Since gravitational forces are intrinsically important in
free-surface waves, gravity must be included in the body-force term. Thus,
from Eq. (II.6) with G ¼ �gy, the boundary condition p ¼ P on y ¼ Z
becomes

@f
@t

þ P
r
þ 1

2=f �=fþ gZ ¼ FðtÞ

Finally, the boundary condition at the bed must be imposed. For the
case of an inviscid £uid which is under consideration, this amounts to spe-
cifying that the velocity component normal to theboundary be zero.For a £at
bed as shown in Fig. 6.1, this simply amounts to specifying that @f=@y ¼ 0on
y ¼ �h.
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To summarize, in terms of the velocity potentialf, the conditions to be
satis¢ed for surface-wave motions are the following:

H2f ¼ 0 ð6:1aÞ

@Z
@t

þ @f
@x

@Z
@x

þ @f
@z

@Z
@z

¼ @f
@y

on y ¼ Z ð6:1bÞ

@f
@t

þ P
r
þ 1

2=f �=fþ gZ ¼ FðtÞ on y ¼ Z ð6:1cÞ

@f
@y

¼ 0 on y ¼ �h ð6:1dÞ

The di⁄culty in solving surface-wave problems may be seen to be in the
boundary conditions rather than the di¡erential equation. Equation (6.1c) is
nonlinear, and both it andEq. (6.1b) are tobe imposed on the surface y ¼ Z. In
many real situations this surfacemay not beknown a priori andmay be one of
the quantities that comes out of the solution itself. However, many interest-
ing features of surface-wave £ows do not depend upon these complex fea-
tures of the problem. That is, by linearizing the problem, the di⁄culties
discussed above may be avoided while the basic features of the £ow are not
destroyed. Such a linearization will be carried out in the next section.

6.2 SMALL-AMPLITUDE PLANEWAVES

For simplicity we consider plane waves, that is, two-dimensional £ow ¢elds
with waves on the surface. Then, without any further approximation, the
di¡erential equation to be satis¢ed by the velocity potential in the xy plane,
is,

@2f
@x2

þ @2f
@y2

¼ 0 ð6:2aÞ

In order to make the surface boundary conditions more tractable,
small-amplitude waves will be considered.That is, only waves for which the
amplitude is small compared with the other characteristic length scales will
be considered. The other characteristic length scales are the liquid depth h
and the wavelength of the waves. But if Z is small compared with the wave-
length, the quantity @Z=@x,which is the slope of the free surface,will be small.
Furthermore, the quantity @f=@x, which is a velocity component, will be
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small, since surface waves do not involve high frequencies and since the
amplitude of the motion has been assumed to be small. Then the product
of @f=@x and @Z=@x,which appears in Eq. (6.1b),will be quadratically small
and hencemay be neglected to ¢rst order.Thekinematic boundary condition
on the free surface then becomes

@Z
@t

ðx; tÞ ¼ @f
@y

ðx; Z; tÞ

Although this equation is free from quadratic terms, it still contains the dif-
¢culty that it must be imposed on y ¼ Z. However, in our present approx-
imation Z is small, so that aTaylor expansion may be written for the quantity
@f=@y at y ¼ Z about the line y ¼ 0.Thus

@f
@y

ðx; Z; tÞ ¼ @f
@y

ðx; 0; tÞ þ Z
@2f
@y2

ðx; 0; tÞ þ OðZ2Þ

The second term in this expansion is quadratically small and so, to the ¢rst
order, may be neglected. That is, to the ¢rst order in small quantities, the
boundary condition (6.1b) may be written in the form

@f
@y

ðx; 0; tÞ ¼ @Z
@t

ðx; tÞ ð6:2bÞ

The dynamic boundary condition on the free surface may be treated in
the same way. Since the £uid is essentially quiescent and any £uid motion is
induced by the waves, the nonlinear term u � u ¼ =f �=f may be neglected
as being quadratically small.Thus Eq. (6.1c) becomes

@f
@t

ðx; Z; tÞ þ Pðx; tÞ
r

þ gZðx; tÞ ¼ FðtÞ

The quantity @f=@t may be expanded in aTaylor series about the line y ¼ 0,
and only the ¢rst term in this expansion need be retained.This gives

@f
@t

ðx; 0; tÞ þ Pðx; tÞ
r

þ gZðx; tÞ ¼ FðtÞ

The quantity FðtÞ may be absorbed into the velocity potential fðx; y; tÞ by
considering fðx; y; tÞ to be replaced by

fðx; y; tÞ þ
Z

FðtÞ dt
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Thus the linearized version of Eq. (6.1c) may be written in the form

@f
@t

ðx; 0; tÞ þ Pðx; tÞ
r

þ gZðx; tÞ ¼ 0

If the time derivative of this equation is formed, the term @Z=@t may be
eliminated in favor of @f=@y from Eq. (6.2b).Thus the preferred form of the
dynamic boundary condition on the free surface is

@2f
@t2

ðx; 0; tÞ þ 1
r
@Pðx; tÞ

@t
þ g

@f
@y

ðx; 0; tÞ ¼ 0 ð6:2cÞ

The boundary condition on the bed is una¡ected by the linearization and
requires

@f
@y

ðx; �h; tÞ ¼ 0 ð6:2dÞ

Equations (6.2) represent a much more tractable set than the general
equations presented in the previous section. However, as was mentioned
earlier, they correctly predictedmany of the features of surface waves, and so
they will form the basis of most of the remaining sections of this chapter.

6.3 PROPAGATIONOF SURFACEWAVES

Consider a quiescent body of water or other liquid of depth h, as shown in
Fig. 6.2. A small-amplitude plane wave is traveling along the surface of this
liquid with velocity c.The form of the wave is taken to be sinusoidal,with the
amplitude of the wave e and its wavelength l. Thus the equation of the free
surface will be y ¼ Zðx; tÞ,where

Zðx; tÞ ¼ e sin
2p
l
ðx � ctÞ

This corresponds to the wave traveling in the positive x direction with velo-
city c.

The question we ask is the following: Given the wave amplitude e and
wavelength l and given the depth h, what will be the propagation speed c?
The answer to this question may presumably be obtained by solving the £ow
problem for the velocity potential.For the timebeing, surface-tension e¡ects
will be neglected; so the pressure on the surface of the liquid will be constant
and equal to, say, atmospheric pressure. That is, Pðx; tÞ ¼ constant in this
instance.Then, from Eqs. (6.2), the problem to be solved for fðx; y; tÞ is
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@2f
@x2

þ @2f
@y2

¼ 0

@f
@y

ðx; 0; tÞ ¼ �e
2pc
l

cos
2p
l
ðx � ctÞ

@2f
@t2

ðx; 0; tÞ þ g
@f
@y

ðx; 0; tÞ ¼ 0

@f
@y

ðx; �h; tÞ ¼ 0

Here the equation for Zðx; tÞ has been used in the kinematic condition on the
free surface.The appropriate solution to the Laplace equation by separation
of variables will be trigonometric in x, and hence it will be exponential or
hyperbolic in y.This deduction follows from the nature of the value of @f=@y,
which is prescribed on y ¼ 0 by the kinematic boundary condition. In fact,
inspection of this boundary condition yields even stronger information.
Since @f=@ymust vary as cos 2pðx � ctÞ=l, then somustf.That is, the nature
of the time dependence is brought in through this boundary condition, as is
the nature of the x dependence. Furthermore, since the separation constant
in the x direction must be 2p=l, the separation constant in the y direction
must also be 2p=l. Hence the appropriate form of solution to the Laplace
equation is

fðx; y; tÞ ¼ cos
2p
l
ðx � ctÞ C1 sinh

2py
l

þ C2 cosh
2py
l

� �

FIGURE 6.2 Parameters for a pure sinusoidal wave.
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Here, the hyperbolic form of solution in y has been used in preference to the
exponential form, since the region in y is ¢nite rather than in¢nite. This
facilitates application of the boundary conditions. Having used the form of
the ¢rst boundary condition, the third boundary condition will now be
imposed.Thus the condition that @f=@ymust vanish on y ¼ �h gives

cos
2p
l
ðx � ctÞ 2p

l
C1 cosh

2ph
l

� 2p
l
C2 sinh

2ph
l

� �
¼ 0

Since this condition is to be satis¢ed for all values of x and t, the quantity
inside the second parentheses must be zero.This gives

C1 ¼ C2 tanh
2ph
l

Hence the solution for fðx; y; tÞ becomes

fðx; y; tÞ ¼ C2 cos
2p
l
ðx � ctÞ tanh

2ph
l

sinh
2py
l

þ cosh
2py
l

� �

Finally, the second boundary condition, corresponding to the dynamic con-
dition on the free surface,will be imposed.This gives

C2 cos
2p
l
ðx � ctÞ � 2pc

l

� �2

þ g
2p
l
tanh

2ph
l

" #
¼ 0

Again this equation is to be satis¢ed for all values of x and t, so that the
quantity inside the brackets must vanish. But the only unknown quantity
inside the brackets is the wave speed c.That is, imposing this ¢nal boundary
condition determines the speed c with which the wave train is traveling. In
nondimensional form the result is

c2

gh
¼ l

2ph
tanh

2ph
l

ð6:3aÞ

Equation (6.3a) was obtained using a small-amplitude approximation,which
means that it is valid provided e � l and e � h.

As a special case, we consider deep liquids, that is, liquids for which
h � l. Then the parameter 2ph=l will be large, so that tanh ð2ph=lÞ will be
approximately unity.Then, for deep liquids Eq. (6.3a) may be approximated
by

c2

gh
¼ l

2ph
ð6:3bÞ
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Equation (6.3b) will be valid for e � l � h.
The other obvious limit is that of shallow liquids, that is, liquids for

which h � l. In this case the parameter 2ph=lwill be small so that

tanh
2ph
l


 2ph
l

Then Eq. (6.3a) becomes

c2

gh
¼ 1 ð6:3cÞ

which will be valid for e � h � l.
The foregoing results are presented schematically in Fig. 6.3, in which

the general solution [Eq. (6.3a)] is shown by a solid line and the two asymp-
totic limits are shown dotted.

An arbitrarily shaped wave train may be considered to be a super-
position of sinusoidal waves of the type just treated. That is, waves of
arbitrary form may be Fourier-analyzed and so decomposed into a number
of pure sinusoidal waves. Thus the foregoing results show that such waves
will not, in general, propagate in an undisturbed way. That is because the

FIGURE 6.3 Propagation speed c for small-amplitude surface waves of sinusoidal

form.
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propagation speed c, or celerity, as it is sometimes called, depends upon the
wavelength l of its sinusoidal components. Only with shallow liquids [Eq.
(6.3c)] is the propagation speed independent of the wavelength. That is,
unless the shallow-liquid conditions apply, the di¡erent Fourier components
of an arbitrarily shaped wave will all travel at di¡erent speeds so that the
waveform will continuously change. This process is usually referred to as
dispersion.

6.4 EFFECTOF SURFACE TENSION

In the previous section it was assumed that the pressure along the topmost
layer of the liquid was constant corresponding to atmospheric pressure.
However, if surface-tension e¡ects are included, the pressure along the edge
of the liquid will be di¡erent from the pressure outside the liquid unless the
surface is £at.To establish the e¡ect of this pressure di¡erential, an element
of the surface is isolated in Fig. 6.4 and the forces due to surface tension are
indicated.

At the reference position x the value of the surface tension is s, and
the slope of the surface there is @Z=@x. Then, a short distance Dx farther
from the origin the value of the surface tension will be sþ ð@s=@xÞDx, and
the slope of the surface will be @Z=@x þ ð@2Z=@x2ÞDx. Only the ¢rst-order
corrections have been written down here, since the unwritten terms in the
Taylor series will contain terms of order ðDxÞ2 or smaller. Then, if p0 is the
pressure above the liquid and if Pðx; tÞ is the pressure at the edge of the liquid,

FIGURE 6.4 Element of liquid surface showing forces due to surface tension.
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vertical equilibrium of the element of surface shown in Fig. 6.4 requires that
the following equation be satis¢ed:

ðP � p0ÞDx þ sþ @s
@x

Dx
� �

@Z
@x

þ @2Z
@x2

Dx
� �

� s
@Z
@x

¼ 0

Expanding the terms in this equation and neglecting terms that are quadratic
in the length Dx gives

ðP � p0Þ þ s
@2Z
@x2

þ @s
@x

@Z
@x

¼ 0

The length Dx may now be permitted to shrink to zero, so that the neglected
terms become identically zero and the preceding equation becomes exact.
The last term in this equation will be zero if s is constant and will be quad-
ratically small if s is almost constant. Thus to the ¢rst order in small quan-
tities the pressure Pðx; tÞ at the edge of the liquid becomes

Pðx; tÞ ¼ p0 � s
@2Z
@x2

In the dynamic boundary condition on the free surface [Eq. (6.2c)] the pres-
sure enters through the term @P=@t. But, if the pressure p0 outside the liquid
is constant, the expression for @P=@t is

@P
@t

¼ �s
@2

@x2
@Z
@t

� �

¼ �s
@3f
@x2@y

ðx; 0; tÞ

where the order of di¡erentiation has been interchanged in the ¢rst equation
and @Z=@t hasbeeneliminated in favor of derivatives offusing thekinematic
boundary conditions (6.2b).Using the preceding result, the dynamic bound-
ary condition on the free surface [Eq. (6.2c)] becomes

@2f
@t2

ðx; 0; tÞ � s
r

@3f
@x2@y

ðx; 0; tÞ þ g
@f
@y

ðx; 0; tÞ ¼ 0 ð6:4Þ

This revised form of the dynamic boundary condition will be used to recal-
culate the propagation speed of a sinusoidal wave.

The existence of surface tension does not a¡ect the governing partial
di¡erential equation, the kinematic surface condition, or the bed boundary
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condition. Hence, from the previous section, the velocity potential that
satis¢es these unchanged equations is

fðx; y; tÞ ¼ C2 cos
2p
l
ðx � ctÞ tanh

2ph
l

sinh
2py
l

þ cosh
2py
l

� �

Application of the boundary condition (6.4) to this velocity potential results
in the requirement

C2 cos
2p
l
ðx � ctÞ � 2pc

l

� �2

þ s
r

2p
l

� �3

tanh
2ph
l

þ g
2p
l
tanh

2ph
l

" #
¼ 0

The general solution to this equation requires that the quantity inside the
brackets vanish,which gives, in nondimensional form,

c2

gh
¼ l

2ph
1þ s

rg
2p
l

� �2
" #

tanh
2ph
l

ð6:5aÞ

If s is negligibly small, Eq. (6.3a) is recovered. This result shows that the
e¡ect of surface tension is to increase the propagation speed of the wave.

For deep liquids, the parameter 2ph=l is large, so that Eq. (6.5a)
becomes

c2

gh
¼ l

2ph
1þ s

rg
2p
l

� �2
" #

If, in addition, the parameter inside the brackets is su⁄ciently large that

s
rg

2p
l

� �2

� 1

then the expression for the propagation speed will reduce to the following:

c2

gh
¼ 2ps

rglh
ð6:5bÞ

Waves that satisfy the foregoing conditions and so travel at the speed de¢ned
by Eq. (6.5b) are called capillary waves. It will be noted that the propagation
speed of capillary waves depends upon the wavelength l, so that an arbi-
trarily shapedwavewill disperse because of the di¡erent propagation speeds
of its Fourier components.
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The propagation speed of sinusoidal waves, as predicted by Eq. (6.5a),
is shown in Fig. 6.5 as a function of the parameter l=ð2phÞ. It is seen that the
e¡ect of surface tension modi¢es our previous result only in the deep-liquid
end of the spectrum.This is because the condition

s
rg

2p
l

� �2

� 1

is realized only for small values of l, which in turn, corresponds to deep-
liquid waves.

6.5 SHALLOW-LIQUIDWAVESOFARBITRARY
FORM

It was deduced from the results of the previous two sections that waves of
arbitrary formwill disperse unless the liquid is shallow.That is, owing to the
di¡erent propagation speeds of its Fourier components, an arbitrarily
shaped wave will decompose unless the liquid depth h is small compared
with the shortest wavelength l of the various Fourier components that

FIGURE 6.5 Propagation speed for sinusoidal waves including the effects of surface
tension.
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constitute the wave. The deduction that shallow-liquid waves of small
amplitude will not decompose may be veri¢ed by carrying out a detailed
study of such waves.

The starting point of such a study is the equations governing the
dependent variables. These equations may be obtained from the continuity
and Euler equations by integrating across the £uid depth and employing a
one-dimensional approximation. However, it is no more di⁄cult and con-
siderably more instructive to derive the equations from ¢rst principles using
a one-dimensional approach.The latter procedure will be followed here.

Figure 6.6a shows a portion of a liquid layer in which a surface wave of
arbitrary form exists.The waveform is assumed to be such that the smallest
wavelength of its various Fourier components is large compared with the
mean depth h. Then a one-dimensional approximation may be employed.
That is, the xcomponent of the velocity vector will be assumed tobe constant
over the £uid depth, and the y component of the velocity vector will be
neglected as being small.

Figure 6.6b shows an element of lengthDx of the £uid that extends from
the bottom to the free surface.The mass-£ow rates into the element and out
of it are also indicated inFig.6.6b.Themass-£ow rate per unit depth entering
the element through the surface at x is ruðhþ ZÞ.Then the mass £ow leaving
the element at x þ Dx is indicated by the ¢rst two terms of a Taylor series
about the station at x, the remaining terms, not indicated, then being of order
ðDxÞ2 or smaller. A mass £ux is shown leaving the control volume at the top.
This is due to the fact that Z depends on both x and t and the quantity @Z=@t
represents the vertical velocity of the free surface. Then, multiplying this
velocity by the density and the length Dx gives a mass e¥ux per unit time per
unit depth.Using the expressions for these various components of mass-£ow
rate, the equation of mass conservation becomes

ruðhþ ZÞ þ @

@x
½ruðhþ ZÞ�Dx

� �
þ r

@Z
@t

Dx � ruðhþ ZÞ ¼ 0

The ¢rst and last terms cancel each other, and the remaining terms may be
divided by rDx to give

@Z
@t

þ @

@x
½uðhþ ZÞ� ¼ 0

The limit Dx ! 0may now be taken so that the terms that were not included
in theTaylor expansion now become identically zero. In the resulting equa-
tion, the product uZ will be of second order and so may be neglected. Hence
the linearized form of the continuity equation is
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@Z
@t

þ h
@u
@x

¼ 0 ð6:6aÞ

Figure 6.6c shows the same element of £uid considered above but on
which the components of the x momentum and the external forces are indi-
cated.The components of the x momentum are obtained by multiplying the
mass-£ow components obtained above by the x component of the velocity
vector u. In so doing it should be noted that the mass-£ow component that
leaves the control volume by way of the free surface will, in general, have an

FIGURE 6.6 (a) Arbitrary waveform on a shallow liquid layer, (b) mass-flow-rate
balance for an element, and (c) momentum and force balance in the x direction.
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x component of velocity, so that an e¥ux of x momentum will be involved
although the mass £ow is essentially vertical. The forces that act on the
£uid element in the x direction are due to the pressure in the £uid. This
pressure, in turn,will be hydrostatic in our linear approximation.Then at the
reference station at x the pressure will vary from atmospheric at the free
surface to atmospheric plus rgðhþ ZÞ at the bottom.This linear variation in
pressure gives rise to a force in the positive x direction of rgðhþ ZÞ2=2, in
which gauge pressures have been used since absolute values have no con-
sequence here. At the location x þ Dx the ¢rst two terms in aTaylor series of
this quantity are indicated in Fig. 6.6c.Then, from Newton’s second law, the
rate of increase in the x momentum of the £uid as it passes through the
control volume is equal to the net external force acting in the x direction on
the £uid.Thus

@

@t
½ruðhþ ZÞ Dx� þ @

@x
½ru2ðhþ ZÞ�Dx þ ru

@n
@t

Dx

¼ � @

@x
1
2
rgðhþ ZÞ2

� �
Dx

The ¢rst term in this equation represents the time rate of increase of the
momentum of the element of £uid,while the second and third terms repre-
sent the net convective increase associated with the various mass-£ow com-
ponents. The term on the right-hand side of the equation represents the net
external force that comes from the hydrostatic pressures.

Dividing this equation by rDx gives the following form of the equation
of momentum conservation:

@

@t
½uðhþ ZÞ� þ @

@x
½u2ðhþ ZÞ� þ u

@n
@t

¼ �gðhþ ZÞ @Z
@x

Here the di¡erentiation on the right-hand side has been carried out, and Dx
may now be permitted to tend to zero, so that the unwritten terms in the
Taylor expansion vanish. This equation will now be linearized in the small
quantities u and Z.Thus, in the ¢rst term the product uZ is of secondorder and
hencemay be neglected.The entire second term is of second order or smaller
owing to the presence of u2.Likewise, the third term is quadratically small in
u and Z. In the term on the right-hand side the product Z @Z=@x is quad-
ratically small and so may be neglected. Thus the linearized form of the
equation of momentum conservation is

@u
@t

þ g
@Z
@x

¼ 0 ð6:6bÞ
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Equations (6.6a) and (6.6b) are, respectively, the equations of mass and
momentum conservation. They represent two equations in the two
unknowns u and Z. By forming the cross derivatives @2u=@x@t and @2Z=@x@t,
¢rst Z and then u may be eliminated between Eqs. (6.6a) and (6.6b). This
shows that the equations to be satis¢ed by u and Z are

@2u
@t2

� gh
@2u
@x2

¼ 0

@2Z
@t2

� gh
@2Z
@x2

¼ 0

That is, both u and Zmust satisfy the one-dimensional wave equation.Hence
u and Zmust be of the general form

uðx; tÞ ¼ f1ðx �
ffiffiffiffiffi
gh

p
tÞ þ g1ðx þ

ffiffiffiffiffi
gh

p
tÞ ð6:6cÞ

Zðx; tÞ ¼ f2ðx �
ffiffiffiffiffi
gh

p
tÞ þ g2ðx þ

ffiffiffiffiffi
gh

p
tÞ ð6:6dÞ

where f1, g1 and f2, g2 are any di¡erentiable functions. The ¢rst solution
in each of these equations represents a wave traveling in the positive x direc-
tion with velocity

ffiffiffiffiffi
gh

p
. The second solution in both cases represents a wave

traveling in the negative x direction with velocity
ffiffiffiffiffi
gh

p
.That is, if an arbitrary

wave is traveling along the surface of a shallow-liquid layer, it will continue
to travel with velocity

ffiffiffiffiffi
gh

p
. This con¢rms the propagation speed derived

earlier for a sinusoidal wave [Eq. (6.3c)] and shows that the shape of the wave
does not change as it moves along the surface.Thus if the shape of the wave
is known as a function of x at some time, it will be known for all values of
x and t.

6.6 COMPLEX POTENTIAL FOR TRAVELING
WAVES

Consider, again, the case of a small-amplitude surface wave in a £uid of
arbitrary depth. For a sinusoidal wave of the form

Zðx; tÞ ¼ e sin
2p
l
ðx � ctÞ

it was shown in Sec. 6.3 that the velocity potential was

fðx; y; tÞ ¼ C2cos
2p
l
ðx � ctÞ tanh

2ph
l

sinh
2py
l

þ cosh
2py
l

� �
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The constant C2 may be evaluated by completely imposing the kinematic
boundary condition on the free surface. This boundary condition was used
only to establish the functional form of the solution, but it was not strictly
imposed. Then, as required by Eq. (6.2b), the condition @f=@yðx; 0; tÞ ¼
@Z=@tðx; tÞ gives

C2
2p
l
cos

2p
l
ðx � ctÞtanh 2ph

l
¼ �e

2pc
l

cos
2p
l
ðx � ctÞ

which is satis¢ed by setting

C2 ¼ � ce
tanhð2ph=lÞ

Then the velocity potential for a traveling sinusoidal wave is

fðx; y; tÞ ¼ �ce cos
2p
l
ðx � ctÞ sinh

2py
l

þ coth
2ph
l

cosh
2py
l

� �
ð6:7aÞ

where the propagation speed c must satisfy Eq. (6.3a). From Eq. (6.7a) the
stream function for a traveling wave may be deduced, and so the corre-
sponding complex potential may be obtained. This, in turn, will be used to
establish the particle paths for traveling waves.

Since u ¼ @c=@y ¼ @f=@x, it follows from Eq. (6.7a) that

@c
@y

¼ 2pc
l

e sin
2p
l
ðx � ctÞ sinh

2py
l

þ coth
2ph
l

cosh
2py
l

� �

Integrating this expression shows that cðx; y; tÞ is of the form

cðx; y; tÞ ¼ ce sin
2p
l
ðx � ctÞ cosh

2py
l

þ coth
2ph
l

sinh
2py
l

� �
þ FðxÞ

where FðxÞ is any function of x that may be added through the integration. In
principle a function of time could also be added, but it is known that, for a
traveling wave, the time dependence above is correct. Another expression
for cðx; y; tÞmay be obtained from the fact that v ¼ �@c=@x ¼ @f=@y. This
gives

@c
@x

¼ 2pc
l

e cos
2p
l
ðx � ctÞ cosh

2py
l

þ coth
2ph
l

sinh
2py
l

� �
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so that

cðx; y; tÞ ¼ ce sin
2p
l
ðx � ctÞ cosh

2py
l

þ coth
2ph
l

sinh
2py
l

� �
þ GðyÞ

where GðyÞ is any function of y. Comparing this result with the previous
expression for cðx; y; tÞ shows that FðxÞ ¼ GðyÞ ¼ 0, so that

cðx; y; tÞ ¼ ce sin
2p
l
ðx � ctÞ cosh

2py
l

þ coth
2ph
l

sinh
2py
l

� �
ð6:7bÞ

Equations (6.7a) and (6.7b) de¢ne, respectively, the velocity potential
fðx; y; tÞ and the stream function cðx; y; tÞ for a traveling sinusoidal wave.
Then the corresponding complex potentialF ¼ fþ icmay be established as
follows:

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ

� cos
2p
l
ðx � ctÞ sinh

2ph
l

sinh
2py
l

þ cosh
2ph
l

cosh
2py
l

� ��

�i sin
2p
l
ðx � ctÞ sinh

2ph
l

cosh
2py
l

�

þ cosh
2ph
l

sinh
2py
l

��

¼� ce
sinhð2ph=lÞ

� cosh
2ph
l

cos
2p
l
ðx � ctÞ cosh 2py

l

��

�i sin
2p
l
ðx � ctÞ sinh 2py

l

�

þ sinh
2ph
l

cos
2p
l
ðx � ctÞ sinh 2py

l

�

�i sin
2p
l
ðx � ctÞ cosh 2py

l

��

The hyperbolic functions that are inside the brackets will now be trans-
formed into trigonometric functions having imaginary arguments using the
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identities sin ia ¼ i sinh a and cos ia ¼ cosh a. Thus the complex potential
may be written in the form

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ

� cosh
2ph
l

cos
2p
l
ðx � ctÞ cos i

2py
l

� ���

� sin
2p
l
ðx � ctÞ sin i

2py
l

� ��

þ sinh
2ph
l

�i cos
2p
l
ðx � ctÞ sin i

2py
l

� ��

�i sin
2p
l
ðx � ctÞ cos i

2py
l

� ���

¼� ce
sinhð2ph=lÞ cosh

2ph
l

cos
2p
l
ðz � ctÞ

�

� i sinh
2ph
l

sin
2p
l
ðz � ctÞ

�

Here the quantities inside the brackets have been observed to be the expan-
sions of single trigonometric functions involving x � ct þ iy ¼ z � ct. Again
converting the hyperbolic functions inside the brackets to trigonometric
functions gives

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ

� cos i
2ph
l

� �
cos

2p
l
ðz � ctÞ � sin i

2ph
l

� �
sin

2p
l
ðz � ctÞ

� �

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ cos

2p
l
ðz � ct þ ihÞ ð6:7cÞ

where it hasbeen observed that thebrackets contain the expansionof a single
trigonometric function. Equation (6.7c) gives the complex potential for the
traveling sinusoidal wave Zðx; tÞ ¼ e sin 2pðx � ctÞ=l.

6.7 PARTICLE PATHS FOR TRAVELINGWAVES

As a wave train travels across the surface of an otherwise quiescent liquid,
the individual particles of the liquid undergo small cyclical motions.
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The precise trajectory followed by the £uid particlesmay be establishedwith
the aid of the results of the previous section.

Consider a speci¢c particle of £uid such as the one indicated by the
point P in Fig. 6.7a.The instantaneous position of this particle of £uid will be
indicated by a ¢xed-position vector z0 and an additional vector z1 that varies
with time.That is, the length and orientation of z0 remain ¢xedwhile both the
length and inclination of z1 vary with time. Then, considering the complex

FIGURE6.7 (a) Coordinate system for establishing particle paths, (b) particle trajec-
tories due to a sinusoidal wave, and (c) the trajectories in deep liquids.
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conjugate of the variable-position vector, that is, considering �zz1 ¼ x1 � iy1, it
follows that

d�zz1
dt

¼ dx1
dt

� i
dy1
dt

¼ u� iv

¼ W

¼ dF
dz

Then, using Eq. (6.7c),

d�zz1
dt

¼ ð2p=lÞce
sinhð2ph=lÞ sin

2p
l
ðz � ct þ ihÞ

Integrating this equation with respect to time gives

�zz1 ¼ e
sinhð2ph=lÞ cos

2p
l
ðz � ct þ ihÞ

Here the constant of integration has been taken to be zero without loss of
generality.Such a constant would not a¡ect the time dependence of z1, and so
it would not a¡ect the trajectory of the £uid particle. Rather, it would only
change the length of the z1 position vector, which is equivalent to adjusting
the choice of the constant z0 position vector.

Comparing the foregoing expression for �zz1 with Eq. (6.7c) shows that

�zz1 ¼ �Fðz; tÞ
c

Then it follows that x1 ¼ �fðx; y; tÞ=c and y1 ¼ cðx; y; tÞ=c.Hence, fromEqs.
(6.7a) and (6.7b), the coordinates x1 and y1 of the trajectory of our reference
£uid particle will be given by

x1 ¼ e cos
2p
l
ðx � ctÞ sinh

2py
l

þ coth
2ph
l

cosh
2py
l

� �

y1 ¼ e sin
2p
l
ðx � ctÞ cosh

2py
l

þ coth
2ph
l

sinh
2py
l

� �

That is, the instantaneous coordinates of the trajectory of a £uid particle
depend on both the x and y coordinates of the £uid particle and on the time.
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The time t may be eliminated between these two equations to yield the tra-
jectory of the £uid particle in the following way:

sin2
2p
l
ðx � ctÞ þ cos2

2p
l
ðx � ctÞ ¼ 1

Substituting from the preceding equations for x1 and y1 into this identity
gives

x21
e2½sinhð2py=lÞ þ cothð2ph=lÞ coshð2py=lÞ�2

þ y21
e2½coshð2py=lÞ þ cothð2ph=lÞ sinhð2py=lÞ�2 ¼ 1

ð6:8Þ

Equation (6.8) shows that the trajectory of a £uid particle depends only
on its depth of submergence. Eliminating the time also eliminated the x
coordinate. This might have been expected, since each particle of £uid
experiences the samewaves passing above it, irrespective of its x coordinate.
Thus the motion experienced by two particles that are separated in the x
direction only will be the same, but the phasing will be di¡erent. Since
Eq. (6.8) is that of an ellipse, the trajectories of the £uid particles will be
ellipses whose dimensions are determined by the value of y for the various
particles. For particles that lie on the free surface, y ¼ 0, so that Eq. (6.8)
becomes

x21
½e cothð2ph=lÞ�2 þ

y21
e2

¼ 1

This shows that the trajectory of particles on the free surface is that of an
ellipse whose semiaxes are e in the y direction and e cothð2ph=lÞ in the x
direction.This result is shown in Fig. 6.7b. For particles that are on the bot-
tom, y ¼ �h, the semiaxis in the y direction becomes zero, and the semiaxis
in the x direction becomes e=sinhð2ph=lÞ. That is, the ellipse degenerates
to the line �e=sinhð2ph=lÞ � x1 � e=sinhð2ph=lÞ. For values of y that are
intermediate to y ¼ 0 and y ¼ �h, the particle trajectories will be ellipses as
described by Eq. (6.8) and as shown in Fig. 6.7b.

For shallow liquids the ellipses shown in Fig. 6.7b merely become
elongated in the x direction. However, for deep liquids the ellipses become
circles.This may be shown by observing that for deep liquids the parameter
2ph=l will be very large, so that cothð2ph=lÞ will be unity. Then Eq. (6.8)
becomes
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x21
e2½sinhð2py=lÞ þ coshð2py=lÞ�2

þ y21
e2½sinhð2py=lÞ þ coshð2py=lÞ�2 ¼ 1

This is the equation of a circle of radius ej sinhð2py=lÞ þ coshð2py=lÞj.That
is,the radius is eat the free surface anddecreases as ybecomesmore andmore
negative.The particle trajectories for deep liquids are shown in Fig. 6.7c.

6.8 STANDINGWAVES

Up to this point we have been dealing with traveling waves, that is, waves
move along the surface of the liquid.We now consider standing waves,which
are waves that remain stationary�the surface moves vertically only. An
interesting way of obtaining the equation of a standing wave is to super-
impose two identical traveling waves which are moving in opposite direc-
tions.Thus consider two traveling waves Z1 and Z2 as follows:

Z1ðx; tÞ ¼ 1
2e sin

2p
l
ðx � ctÞ

Z2ðx; tÞ ¼ 1
2e sin

2p
l
ðx þ ctÞ

Let Zðx; tÞ represent the free-surface pro¢le that results from superimposing
these two traveling waves.Then

Zðx; tÞ ¼ 1
2e sin

2p
l
ðx � ctÞ þ sin

2p
l
ðx þ ctÞ

� �

¼ 1
2e sin

2px
l

cos
2pct
l

� cos
2px
l

sin
2pct
l

�

þ sin
2px
l

cos
2pct
l

þ cos
2px
l

sin
2pct
l

�

¼ e sin
2px
l

cos
2pct
l

That is, the superposition of two identical traveling waves results in a wave
that, at any time, is a sine function in x and that, for any value of x, oscillates
vertically in time. Such a wave, in which the entire surface oscillates in time,
is called a standing wave.
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The complex potential for a sinusoidal-shaped standing wave may be
obtained by superimposing the complex potentials for two traveling waves
moving in opposition to each other.Thus, Eq. (6.7c) will be used to obtain the
complex potential for two waves, each of amplitude e=2 and wavelength l,
one of which is traveling in the positive x direction with velocity c and the
other of which is traveling in the opposite direction with the same velocity.
Hence

Fðz; tÞ ¼ ce=2
sinhð2ph=lÞ � cos

2p
l
ðz � ct þ ihÞ þ cos

2p
l
ðz þ ct þ ihÞ

� �

The cosine functionswill now be expanded, taking z þ ih as one element and
ct as the other.This gives

Fðz; tÞ ¼ ce=2
sinhð2ph=lÞ
� � cos

2p
l
ðz þ ihÞ cos 2pct

l
� sin

2p
l
ðz þ ihÞ sin 2pct

l

�

þ cos
2p
l
ðz þ ihÞ cos 2pct

l
� sin

2p
l
ðz þ ihÞ sin 2pct

l

�

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ sin

2p
l
ðz þ ihÞ sin 2pct

l
ð6:9Þ

Equation (6.9) gives the complex potential for a standing sinusoidal wave of
wavelength lwhich is oscillating in time with frequency 2pc=l .

6.9 PARTICLE PATHS FOR STANDINGWAVES

Following the procedure employed in Sec. 6.7 for traveling waves, the parti-
cle paths for standing waves may be established from the complex potential.
Using the same coordinate system as was used in Sec. 6.7, it follows as before
that

d�zz1
dt

¼ dF
dz

Then, using Eq. (6.9),

d�zz1
dt

¼ � ð2p=lÞce
sinhð2ph=lÞ cos

2p
l
ðz þ ihÞ sin 2pct

l

Integrating with respect to time and neglecting the constant of integration as
before gives the following expression for �zz1 :
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�zz1 ¼ e
sinhð2ph=lÞ cos

2p
l
ðz þ ihÞ cos 2pct

l

Writing z þ ih ¼ x þ iðy þ hÞ and expanding the trigonometric function of
this argument gives

�zz1 ¼ e
sinhð2ph=lÞ

� cos
2pct
l

cos
2px
l

cosh
2p
l
ðy þ hÞ � i sin

2px
l

sinh
2p
l
ðy þ hÞ

� �

in which the trigonometric terms having imaginary arguments have been
converted to hyperbolic terms. The quantity �zz1 is complex and so may be
written in the polar form

�zz1 ¼ r1e�iy1

where r1 and y1 are de¢ned by

r1 ¼ e
sinhð2ph=lÞ

� cos
2pct
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

2px
l

cosh2
2p
l
ðy þ hÞ þ sin2

2px
l

sinh2
2p
l
ðy þ hÞ

r

ð6:10aÞ

y1 ¼ tan�1 tan
2px
l

tanh
2p
l
ðy þ hÞ

� �
ð6:10bÞ

Equations (6.10a) and (6.10b) show that, for given values of x and y, the
polar angle y1 of the particle trajectory is constant whereas the radius r1
oscillates in time. Thus the particle trajectories will be straight lines whose
inclination will depend upon the location of the particle under considera-
tion. In particular,when x ¼ nl=2, Eqs. (6.10a) and (6.10b) reduce to

r1 ¼ e cos
2pct
l

coshð2p=lÞðy þ hÞ
sinhð2ph=lÞ

y1 ¼ 0 or p

This describes a family of horizontal lineswhose length r1 decreaseswith the
depthof submergence.The location x ¼ nl=2corresponds to the nodes of the
free surface, that is, the points of the free surface that have no verticalmotion.
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The horizontal motion of these points, which is shown in Fig. 6.8, is neces-
sary to satisfy the continuity equation as the maximum amplitude of the
wave shifts from one side of the node to the other as the surface oscillations
take place.

Midway between the nodes, that is, at x ¼ ð2nþ 1Þl=4,Eqs. (6.10a) and
(6.10b) show that

r1 ¼ e cos
2pct
l

sinhð2p=lÞðy þ hÞ
sinhð2ph=lÞ

y1 ¼ p
2

or
3p
2

This de¢nes a family of vertical lines whose length r1 decreases as the depth
of submergence increases and reaches zero on the bottom, y ¼ �h. This
motion is also shown in Fig. 6.8. As the boundary condition requires, the
vertical motion vanishes on y ¼ �h.

FIGURE 6.8 Particle trajectories induced by a sinusoidal standing wave of ampli-
tude e and wavelength l.
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6.10 WAVES IN RECTANGULAR VESSELS

The fact that standing wavesmay exist on the surface of an in¢nite expanse of
liquid raises the question of whether standing wavesmay exist on the surface
of a liquid that is contained in a vessel of ¢nite extent. In this section rectan-
gular vessels will be considered, and it will be shown, as might be expected,
that only standing waves whose wavelengths coincide with a discrete spec-
trum of values may exist on such liquid surfaces.

Figure 6.9a shows a two-dimensional rectangular container of width 2l
that contains a liquid of average depth h. For this con¢guration,we ask the
following question:What type of steady-state or pseudo-steady-state waves,
if any, may exist on the surface of the liquid? Any waves that may exist will
have to satisfy the following partial di¡erential equation and boundary con-
ditions:

@2f
@x2

þ @2f
@y2

¼ 0 ð6:11aÞ

@2f
@t2

ðx; h; tÞ þ g
@f
@y

ðx; h; tÞ ¼ 0 ð6:11bÞ

@f
@y

ðx; 0; tÞ ¼ 0 ð6:11cÞ

@f
@x

ð	l; y; tÞ ¼ 0 ð6:11dÞ

The ¢rst boundary condition is the pressure condition at the free surface in
which the kinematic condition has been employed, and the other boundary
conditions prevent normal velocity components on the bottom and side sur-
faces of the container. Since the free-surface pro¢le is not being speci¢ed a
priori here, the kinematic condition at the free surface should not be imposed
separately.

Since a steady-state wave solution is being sought, the velocity poten-
tial should have a trigonometric time dependence. It may be observed that
the existence of the sidewalls at x ¼ 	l eliminates the possibility of traveling
waves, since the particle paths for traveling waves are ellipses, so that the
wall boundary conditions could not be satis¢ed. The time variation will
therefore be of the standing-wave type and will be chosen to be sinð2pct=lÞ.
There is no loss in generality with this choice, since any phase change
merely corresponds to a shifting of the time origin, which is of no con-
sequence here.Thus the appropriate separable solution to Eq. (6.11a) will be
of the form
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fðx; y; tÞ ¼ A1 sin
2px
l

þ A2 cos
2px
l

� �

� B1 sinh
2py
l

þ B2 cosh
2py
l

� �
sin

2pct
l

FIGURE 6.9 (a) Geometry for liquid in a rectangular container and (b) the first four

fundamental modes of surface oscillation.
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The x dependence has been chosen to be trigonometric in view of the homo-
geneous boundary conditions at x ¼ 	l. Then, in order to satisfy Laplace’s
equation, the y dependencemust be exponential or hyperbolic. In view of the
¢nite extent of the domain and the homogeneous boundary condition at
y ¼ 0, the hyperbolic form has been employed. The boundary condition
(6.11c) requires thatB1 ¼ 0, so that the velocity potential becomesof the form

fðx; y; tÞ ¼ D1 sin
2px
l

þ D2 cos
2px
l

� �
cosh

2py
l

sin
2pct
l

The pressure condition on the free surface [Eq. (6.11b)] then requires that

� 2pc
l

� �2

cosh
2ph
l

þ g
2p
l
sinh

2ph
l

" #

� D1 sin
2px
l

þ D2 cos
2px
l

� �
sin

2pct
l

¼ 0

Since this equation is to be satis¢ed for all values of x and all values of t, it
follows that the quantity inside the brackets must be zero.This gives

c2

gh
¼ l

2ph
tanh

2ph
l

That is, the pressure condition on the free surface establishes the frequencies
of the wave motion. It will be seen that this result agrees with Eq. (6.3a) and
that each Fourier component of the waveform has a di¡erent frequency of
motion.

The ¢nal boundary condition to be satis¢ed is that of no horizontal
velocity component at the vertical walls of the container. Thus Eq. (6.11d)
requires that

2p
l

D1 cos
2pl
l

 D2 sin
2pl
l

� �
cosh

2py
l

sin
2pct
l

¼ 0

which will be satis¢ed for all values of y and t if

D1 cos
2pl
l

¼ 	D2 sin
2pl
l

This condition may be satis¢ed by setting D1 ¼ D2 ¼ 0, but then f ¼ 0,
which is the trivial solution. For a nontrivial solution eitherD1 orD2 at least,
must be di¡erent from zero.
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Suppose, ¢rst, thatD1 is di¡erent from zero andD2 ¼ 0.Then

cos
2pl
ln

¼ 0

; ln ¼ 4l
2nþ 1

where the subscript n has been associated with the quantity l in anticipation
of the fact that the foregoing transcendental equation may be satis¢ed in an
in¢nite number of ways. That is, one way of satisfying the side boundary
conditions is to choose the preceding values of ln so that the corresponding
velocity potentials will be of the form

fnðx; y; tÞ ¼ D1n sin
ð2nþ 1Þpx

2l
cosh

ð2nþ 1Þpy
2l

sin
ð2nþ 1Þpcnt

2l

where cn is related to ln through the identity that resulted from imposing the
pressure condition on the free surface.

Next, supposeD1 ¼ 0 andD2 is di¡erent from zero.Then

sin
2pl
lm

¼ 0

; lm ¼ 2l
m

Thus another way of satisfying the side boundary conditions is to adopt the
value above for lm so that the corresponding velocity potentials will be

fmðx; y; tÞ ¼ D2m cos
mpx
l

cosh
mpy
l

sin
mpcmt

l
where cm is related to lm. The ¢rst two surface modes corresponding to fn
and fm are shown in Fig. 6.9b.

It will be seen that, out of the continuous spectrum of wavelengths that
may exist, only those waves whose particle paths are vertical at x ¼ 	l are
permissible solutions. This gives rise to an even spectrum of modes (corre-
sponding to D1 ¼ 0), and an odd spectrum of modes (corresponding to
D2 ¼ 0). That is, there is a discrete spectrum of wavelengths whose particle
paths are vertical at x ¼ 	l and that may therefore satisfy the boundary
conditions at the sidewalls.

The individual solutions given by fn and fm may be superimposed to
describe more general waveforms. Thus a more general solution will be
obtained by superimposing all the fn solutions and all thefm solutions.This
gives
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fðx; y; tÞ ¼
X1
n¼0

D1n sin
ð2nþ 1Þpx

2l
cosh

ð2nþ 1Þpy
2l

sin
ð2nþ 1Þpcnt

2l

þ
X1
m¼0

D2m cos
mpx
l

cosh
mpy
l

sin
mpcmt

l
ð6:12aÞ

where

c2n
gh

¼ 2l
ð2nþ 1Þph tanh

ð2nþ 1Þph
2l

ð6:12bÞ

and

c2m
gh

¼ l
mph

tanh
mph
l

ð6:12cÞ

The coe⁄cients of D1n and D2m that appear in Eq. (6.12a) are unde-
termined at this point. If the initial shape and velocity of the free surface are
speci¢ed, these constants may be evaluated. An example of how this may be
utilized is to establish the response of a body of water to an earthquake.The
body of water may be an arti¢cial reservoir or a lake whose shape may be
approximated by a rectangular container. Seismographic records for the
area would indicate the magnitude and frequency of the expected accelera-
tions. These data may be Fourier-analyzed and used to establish a surface
waveform and oscillation frequency at the end of the earthquake, which
would be the beginning of the standing-wave oscillations.The constants D1n
and D2m may be used to ¢t these data, and then Eq. (6.12a) will describe the
subsequent motion.

6.11 WAVES IN CYLINDRICALVESSELS

An analysis similar to that presented in the previous section may be carried
out for cylindrical containers. Figure 6.10a shows a cylindrical container of
radius a that contains a liquid whose average depth is h.Then, in terms of the
cylindrical coordinatesR, y, and z and the time t, the problem to be solved for
the velocity potential fðR; y; z; tÞ is

1
R

@

@R
R
@f
@R

� �
þ 1
R2

@2f

@y2
þ @2f

@z2
¼ 0 ð6:13aÞ

@2f
@t2

ðR; y; h; tÞ þ g
@f
@z

ðR; y; h; tÞ ¼ 0 ð6:13bÞ
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@f
@z

ðR; y; 0; tÞ ¼ 0 ð6:13cÞ
@f
@R

ða; y; z; tÞ ¼ 0 ð6:13dÞ

The solutions to this problemwill describe the possible waveforms that may
exist on the surface of the liquid in the container.

The solution to the foregoing problem may be obtained by the method
of separation of variables.Thus a solution is sought in the form

fðR; y; z; tÞ ¼ rðRÞT ðyÞZðzÞ sin ot

FIGURE 6.10 (a) Geometry for liquid in a cylindrical container and (b) Bessel func-

tions of the first and second kind.
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Here the time dependence has again been taken to be sinusoidal, corre-
sponding to standing waves. Substituting this expression for f into Eq.
(6.13a) and multiplying by R2=f gives

R
r

d
dR

R
dr
dR

� �
þ 1
T
d2T
dy2

þ R2

Z
d2Z
dz2

¼ 0

Following the usual argument of separation of variables, it is observed that
the second term in this equation contains all the ydependence and that it is a
function of y only. Then this term must equal a constant. This constant will
be chosen to be�m2,wherem is an integer.The signi¢cance of theminus sign
is that trigonometric rather than exponential y dependence will result and
the signi¢cance of m’s being an integer is that fðyÞ ¼ fðyþ 2pÞ will be
satis¢ed, as is required.The solution for T ðyÞ is then

T ðyÞ ¼ A1 sinmyþ A2 cosmy

The remaining di¡erential equation is, after dividing by R2,

1
Rr

d
dR

R
dr
dR

� �
�m2

R2 þ
1
Z
d2Z
dz2

¼ 0

The separation-of-variables argument now requires that the last term be
equal to a constant. Since trigonometric z dependence does not ¢t the phy-
sical circumstances, this constant will be chosen as k2.Then the solution for
ZðzÞwill be

ZðzÞ ¼ B1 sinh kz þ B2 cosh kz

Here the hyperbolic form has been used in preference to the exponential
form in view of the ¢nite extent of the z domain.

The remaining di¡erential equation, after multiplying by R2r,
becomes

R
d
dR

R
dr
dR

� �
þ ðk2R2 �m2Þr ¼ 0

But this is Bessel’s equation of ordermwhose solution is

rðRÞ ¼ D1mJmðkRÞ þ D2mYmðkRÞ

where Jm is Bessel’s function of the ¢rst kind andYm is Bessel’s function of the
second kind.The ¢rst two Bessel functions of each kind are shown schema-
tically in Fig. 6.10b.
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Since the Bessel functions of the second kind, YmðxÞ, diverge for x ¼ 0
for all values of m, the coe⁄cients D2m must be zero.Thus the radial depen-
dence of the velocity potential will be proportional to JmðkRÞ.Then, for any
integerm, the solution by separation of variables is

fmðR; y; z; tÞ ¼ ðA1m sinmyþ A2m cosmyÞ
� ðB1m sinh kz þ B2m cosh kzÞJmðkRÞ sin ot

The boundary condition (6.13c) requires that B1m be zero,while the pressure
condition at the free surface [Eq. (6.13b)] determines the oscillation fre-
quency to be

o2 ¼ gk tanh kh

Thus the velocity potential will be of the form

fmðR; y; z; tÞ ¼ ðK1m sinmyþ K2m cosmyÞ cosh kzJmðkRÞ sinot

The remaining boundary condition [Eq. (6.13d)] then requires, for a non-
trivial solution,

J 0
mðkaÞ ¼ 0

where the prime denotes di¡erentiation. This transcendental equation may
be satis¢ed by any of an in¢nite number of discrete values of k.These values
will be distinguished by employing a double subscript on k. Thus kmn will
denote the nth root of the Jm Bessel function in the equation

J 0
mðkmnaÞ ¼ 0

Values of kmna that satisfy this equation may be found in tables of functions.
For example, the ¢rst few roots of J 0

0ðk0naÞ ¼ 0 are given below.

n 0 1 2 3
k0na 3:832 7:016 10:174 13:324

From the foregoing analysis, one solution to the problem posed for the
velocity potential is

fmnðR; y; z; tÞ ¼ ðK1mn sinmyþ K2mn cosmyÞ cosh kmnzJmðkmnRÞ sinomnt

Here a double subscript hasbeen associatedwith the oscillation frequencyo,
since this quantity is related to the separation constant k. The foregoing
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expression for fmn represents a valid solution to our problem for any integer
m and any integer n. Then a more general solution may be obtained by
superimposing all such solutions to give

fðR; y; z; tÞ ¼
X1
m¼0

X1
n¼0

ðK1mn sinmyþ K2mn cosmyÞ

� cosh kmnzJmðkmnRÞ sinomnt ð6:14aÞ

where

o2
mn ¼ gkmn tanhðkmnhÞ ð6:14bÞ

and

J 0
mðkmnaÞ ¼ 0 ð6:14cÞ

As was the case in the previous section, the remaining arbitrary constants
may be de¢ned by specifying the nature of the free surface at some value of
the time.

A simple illustration of the validity of the result above may be obtained
by use of a cup of co¡ee or someother liquid. If such a cup is jarred by striking
it squarely on a £at surface, it may be induced to vibrate in a purely radial
mode.That is, the fundamental mode in which the surface R ¼ a vibrates in
andoutmay be induced.Thismotion causes surfacewaves that will alsohave
no y dependence.Then, putting m ¼ 0 in Eq. (6.14a) shows that the velocity
potential will be proportional to J0ðk0nRÞ. Thus the surface will adopt the
shape of the J0 Bessel function,which is shown in Fig. 6.10b.This shape may
be actually observed, and under certain conditions the peak at the axis of the
vessel may become very pronounced. Of course, the analysis is no longer
valid under these conditions, since large amplitudes lead to large slopes,
which violates the assumptions that were made in the linearization.

6.12 PROPAGATIONOFWAVESATAN INTERFACE

As a ¢nal example of surface waves, the behavior of propagating waves at the
separation of two dissimilar £uids will be investigated. Figure 6.11 shows a
wavy surface y ¼ Zðx; tÞ below which a £uid of density r1 £ows with mean
velocity U1 in the x direction. Above the interface is a £uid of density r2
whose mean velocity isU2 in the x direction.

For the foregoing con¢gurationwe specify a sinusoidalwaveformat the
interface and ask what is the propagation speed of the wave? That is, we
specify the equation of the interface to be
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Zðx; tÞ ¼ eeið2p=lÞðx�stÞ

This represents a sinusoidal wave of amplitude e and wavelength l. If s is
real, the wave is traveling in the x direction with velocity s, whereas if s is
imaginary, the wave is decaying (if s=i is negative) or is growing (if s=i
is positive).The last situation represents an unstable interface.

Since the two £uids now have nonzero mean velocities, the lineariza-
tion of the boundary conditions must be reexamined here. Letting the
subscript i be1or 2 for the lower and upper £uids, respectively, the velocity ui
may be written as follows:

ui ¼ Uiex þ =fi

where fi is the velocity potential for the perturbation to the uniform £ow
caused by the waves at the interface.Then the material derivative becomes

D
Dt

¼ @

@t
þ ui �=

¼ @

@t
þ Ui

@

@x
þ =fi �=

FIGURE 6.11 Wave-shaped interface separating two different fluids traveling at dif-

ferent average speeds.

SurfaceWaves 237



The second term on the right of this identity is new and is of ¢rst order in this
case.The third term on the right involves velocity components derived from
the perturbation velocity potential, and hence these velocity components
will be small.

Using this result for thematerial derivative, the kinematic condition on
the free surface,Dðy � ZÞ=Dt ¼ 0, becomes

� @Z
@t

� Ui
@Z
@x

þ @fi

@y
� =fi �=Z ¼ 0

The last term on the left-hand side of this equation is quadratically small, for
small-amplitude waves, and somay be neglected.Thus the revised kinematic
boundary condition on the free surface is

@fi

@y
ðx; 0; tÞ ¼ @Z

@t
ðx; tÞ þ Ui

@Z
@x

ðx; tÞ ð6:15aÞ

Comparison of this result with Eq. (6.2b) shows that the last term in the
preceding equation is new and that this term vanishes forUi ¼ 0.

From Eq. (6.1c) the Bernoulli equation for a constant-pressure surface
in which FðtÞ is absorbed into the velocity potential, as before, is

ri
@fi

@t
þ 1
2
riui�ui þ rigZ ¼ constant

Substituting our expansion for ui into this equation and neglecting quadratic
terms in the perturbation velocity gives

ri
@fi

@t
ðx; 0; tÞ þ riUi

@fi

@x
ðx; 0; tÞ þ rigZðx; tÞ ¼ constant ð6:15bÞ

Here the term riU
2
i =2 has been absorbed into the constant on the right-hand

side of this equation
Using Eqs. (6.15a) and (6.15b), we may now de¢ne the problem to be

satis¢ed by the velocity potentialsf1 andf2. In the region y < 0, the velocity
potential f1 must satisfy

@2f1

@x2
þ @2f1

@y2
¼ 0 ð6:16aÞ

where the velocities derived from f1 should be ¢nite.That is,

j=f1j ¼ finite ð6:16bÞ
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Similarly, in the region y > 0,we have

@2f2

@x2
þ @2f2

@y2
¼ 0 ð6:16cÞ

j=f2j ¼ finite ð6:16dÞ

At the interface, which is linearized to y ¼ 0, the kinematic condition must
be satis¢ed by f1 and by f2 separately.Thus from Eq. (6.15a),

@f1

@y
ðx; 0; tÞ ¼ @Z

@t
ðx; tÞ þ U1

@Z
@x

ðx; tÞ ð6:16eÞ

@f2

@y
ðx; 0; tÞ ¼ @Z

@t
ðx; tÞ þ U2

@Z
@x

ðx; tÞ ð6:16f Þ

Finally, the pressure condition at the interface must be satis¢ed,which in the
present case, amounts to equating the pressure in the two £uids at the inter-
face.Thus, from Eq. (6.15b), since the Bernoulli constant will be the same for
i ¼ 1 and i ¼ 2, the pressure condition becomes

r1
@f1

@t
ðx; 0; tÞ þ r1U1

@f1

@x
ðx; 0; tÞ þ r1gZðx; tÞ

¼ r2
@f2

@t
ðx; 0; tÞ þ r2U2

@f2

@x
ðx; 0; tÞ þ r2gZðx; tÞ ð6:16gÞ

Equations (6.16a) to (6.16g) represent the problem to be satis¢ed by any per-
turbation to the uniform £ows. In particular,we decided to study the e¡ect of
a sinusoidal wave at the interface, and so the equation of the interface was
chosen to be

Zðx; tÞ ¼ eeið2p=lÞðx�stÞ ð6:16hÞ

The solution to Eqs. (6.16a) and (6.16c) may be obtained by separation
of variables. In viewof the shape of the interface, as de¢ned byEq. (6.16h), the
solutions should be trigonometric in x.Then the y dependence will be expo-
nential. In view of the conditions (6.16b) and (6.16d), the negative exponen-
tial should be rejected for f1 and the positive exponential should be rejected
forf2.Thus the solutions to (6.16a) and (6.16c) that satisfy (6.16b) and (6.16d)
are

f1ðx; y; tÞ ¼ A1eð2p=lÞyeið2p=lÞðx�stÞ

f2ðx; y; tÞ ¼ A2e�ð2p=lÞyeið2p=lÞðx�stÞ
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Imposing the kinematic surface conditions (6.16e) and (6.16f ) on these
solutions shows that

A1 ¼ ieð�sþ U1Þ
A2 ¼ �ieð�sþ U2Þ

Thus the velocity potentials in the lower and upper regions are, respectively,

f1ðx; y; tÞ ¼ �ieðs� U1Þeð2p=lÞyeið2p=lÞðx�stÞ

f2ðx; y; tÞ ¼ ieðs� U2Þe�ð2p=lÞyeið2p=lÞðx�stÞ

These solutions satisfy all the required conditions except the pressure con-
dition at the interface.Thus Eq. (6.16g) requires

r1iðs� U1Þ i
2p
l
s

� �
� r1U1iðs� U1Þ i

2p
l

� �
þ r1g

¼ r2iðs� U2Þ �i
2p
l
s

� �
þ r2U2iðs� U2Þ �i

2p
l

� �
þ r2g

The quantity Z, as de¢ned by Eq. (6.16h), has been canceled throughout this
equation as a nonzero common factor.Combining the ¢rst and second terms
on each side of this equation reduces it to the form

� r1
2p
l
ðs� U1Þ2 þ r1g ¼ r2

2p
l
ðs� U2Þ2 þ r2g

Everything in this algebraic equation is known a priori except the quantity s.
Then, the equation above should be looked upon as a quadratic equation for
s. Solving this quadratic equation gives

s ¼ r2U2 þ r1U1

r2 þ r1
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2U2 þ r1U1

r2 þ r1

� �2

� r2U 2
2 þ r1U 2

1

r2 þ r1

� �
� r2 � r1

r2 þ r1

� �
gl
2p

s

The ¢rst two quantities inside the square root may be combined to give the
following simpli¢ed expression for s:

s ¼ r2U2 þ r1U1

r2 þ r1
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r2
r1 þ r2

� �
gl
2p

� r1r2
ðr2 þ r1Þ2

ðU2 � U1Þ2
s

ð6:17aÞ

Equation (6.17a) shows that smay be real, imaginary,or complex,depending
upon the nature of the free parameters. Several special cases will be investi-
gated.
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Consider, ¢rst, the special case where U1 ¼ U2 ¼ 0 and r2 ¼ 0. This
would correspond to two stationary £uids in which the density of the upper
£uid is very small compared with that of the lower £uid. Such a condition
would closely approximate a stationary liquid over which a stationary gas
exists, for example, air over water.Then Eq. (6.17a) shows that swill be real,
having the values

s ¼ 	
ffiffiffiffiffiffi
gl
2p

r
ð6:17bÞ

This agrees with Eq. (6.3b), which gives the propagation speed for surface
waves in deep liquids. The minus sign in Eq. (6.17b) corresponds to a wave
traveling in the negative x direction. Since it turned out that s is real, the
waves at the interface will propagate, so that the surface of separation will
remain intact.That is, the interface is stable.

Next, consider the case where r2 ¼ 0 and the other parameters are
nonzero. Physically, this would approximate the case of a gas blowing over a
liquid surface.Under these conditions Eq. (6.17a) reduces to

s ¼ U1 	
ffiffiffiffiffiffi
gl
2p

r
ð6:17cÞ

But this is just Eq. (6.17b), in which a galilean transformation of magni-
tude U1 has been applied. That is, the waves move along the surface of the
liquid at the speed of the liquid plus or minus the speed of the waves on a
quiescent body of the liquid. Again the interface will remain intact and so is
stable.

Consider now the case in which r2 ¼ r1. Physically, the situation is a
discontinuity in the velocity (i.e., a shear layer) in a homogeneous £uid.Then
Eq. (6.17a) becomes

s ¼ U2 þ U1

2
	 i

U2 � U1

2
ð6:17dÞ

This result shows that unlessU2 ¼ U1 (in which case there is no shear layer),
the quantity s will have an imaginary part that will result in the interfacial
wave growing exponentially with time. That is, the interface at the shear
layer is unstable.This form of instability is known asHelmholtz instability or
Rayleigh instability.

Finally,consider both £uids tobequiescent so thatU1 ¼ U2 ¼ 0,but let
their densities di¡er.Then Eq. (6.17a) reduces to
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s ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gl
2p

r1 � r2
r1 þ r2

� �s
ð6:17eÞ

For r1 > r2, that is, for the heavier £uid on the bottom, s will be real, so that
the interface will be stable.However, for r2 > r1, that is, for the heavier £uid
on top, swill be imaginary, so that the interfacewill be unstable.This formof
instability is known asTaylor instability.

PROBLEMS

6.1 The complex potential for a traveling wave on a quiescent liquid sur-
face is

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ cos

2p
l
ðz � ct þ ihÞ

Use this result to deduce that the complex potential for a stationary
wave on the surface of a moving liquid layer whose mean velocity is c
in the negative x direction is

FðzÞ ¼ �cz � ce
sinhð2ph=lÞ cos

2p
l
ðz þ ihÞ

Show that, in very deep liquids, the result above becomes:

FðzÞ ¼ �cz � cee�ð2p=lÞz ð6:18aÞ
Use this last result to determine the stream function cðx; yÞ for a sta-
tionary wave on the surface of a deep-liquid layer whose mean velo-
city is c.Hence show that the streamlinecðx; ZÞ ¼ 0gives the equation
of the free surface as

Z ¼ eeð2p=lÞZ sin
2px
l

ð6:18bÞ

6.2 The Bernoulli equation for the situation depicted in Prob. 6.1 is

p
r
þ 1
2
u � uþ gy ¼ P

r
þ 1
2
c2 1þ e2

2p
l

� �2
" #

where P is the pressure at the free surface.Use this equation, together
with the relation W �WW ¼ u2 þ v2 and Eq. (6.18a) to show that setting
p ¼ P when y ¼ Z requires that the quantity c, the velocity difference
between the mean velocity and the wave-train velocity, must satisfy
the following equation:
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c2 ¼ 2gZ

e2ð2p=lÞ2 þ ð4p=lÞZ� e2ð2p=lÞ2eð4p=lÞZ

Linearize this expression for small values of e=l and hence confirm
the following relation for deep liquids:

c2

gh
¼ l

2ph

Further show that by neglecting only those terms that are of fourth
order or smaller, the general expression for c becomes:

c2 ¼ gl=ð2pÞ
1� ð2p=lÞ2e2

This shows that the effect of finite wave amplitude is to increase the
wave speed on the surface of the liquid.

6.3 The complex potential for a traveling wave on an otherwise quiescent
liquid is

Fðz; tÞ ¼ � ce
sinhð2ph=lÞ cos

2p
l
ðz � ct þ ihÞ

Apply a galilean transformation to the coordinate system that was
used in arriving at this expression and hence show that the stream
function for the stationary wave shown in Fig. 6.12 is

FIGURE 6.12 Stationary sinusoidal wave on the surface of a liquid layer that is

moving with uniform velocity.
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cðx; yÞ ¼ �Uy þ U e
sinhð2pH=lÞ sin

2px
l

sinh
2p
l
ðy þHÞ ð6:19aÞ

where

U 2

gH
¼ l

2pH
tanh

2pH
l

ð6:19bÞ

Here,H is the mean depth of the liquid while e and l are, respectively,
the amplitude and the wavelength of the stationary wave on the sur-
face of the liquid.

6.4 The result of Prob. 6.3 may be used to obtain the solution to the pro-
blemof steady flowover awave-shaped surface.The configuration for
which the solution is sought is shown in Fig. 6.13. To obtain the
required solution from the results of Prob. 6.3, observe that the solu-
tion obtained in Prob. 6.3 will, at some depth h < H , have a wave-
shaped streamline of amplitude e0 and wavelength l. This streamline
may be considered to be a surface, so that if the liquid surface is taken
to be c ¼ 0, the boundary defined by c ¼ Uh will correspond to
y ¼ �hþ Z0 where Z0 ¼ e0 sinð2px=lÞ. In this way, show from linear
theory that the ratio of the wave amplitude to the wall amplitude is

e
e0

¼ 1
coshð2ph=lÞ � ðgl=2pU 2Þ sinhð2ph=lÞ

FIGURE 6.13 Steady, uniform flow over a sinusoidal-shaped surface producing a
stationary wave train on the surface.
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The various parameters in this result are defined in Fig. 6.13.
6.5 Consider two traveling waves that are defined by the following equa-

tions:

Z1ðx; tÞ ¼
1
2
e sin

2p
l1

ðx � c1tÞ

Z2ðx; tÞ ¼
1
2
e sin

2p
l2

ðx � c2tÞ

Show that the equation of the free surface that results from super-
imposing these two waves will be defined by

Z1ðx; tÞ ¼ e cos p
1
l1

� 1
l2

� �
x � c1

l1
� c2
l2

� �
t

� �

� sin p
1
l1

þ 1
l2

� �
x � c1

l1
þ c2
l2

� �
t

� �

Hence show that if l1 and l2 differ by only a small amount and that if c1
and c2 differ by only a small amount, the resulting surface profile may
be considered to be of the following form:

Zðx; tÞ ¼ Aðx; tÞ sin p 1
l1

þ 1
l2

� �
x � c1

l1
þ c2
l2

� �
t

� �

which represents a traveling wavewhose amplitude is changing slowly
with time compared with the frequency of oscillations.This situation
is shown in Fig. 6.14 (y versus t for given x location).The phenomenon
is referred to as beating, and it occurs in situations where two similar
waves or signals are superimposed.

6.6 (a) The potential energy per wavelength of a wave train is given by the
expression:

V ¼
Z l

0

1
2
rgZ2dx

FIGURE 6.14 Beating phenomenon that results from superimposing two waves of
almost equal frequencies.
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Use this expression to show that the potential energy per wavelength
of the wave Z ¼ e sin 2pðx � ctÞ=l is

V ¼ 1
4
rge2l

(b) The kinetic energy per wavelength of awave train is given by

T ¼ 1
2
r
Z l

0
f
@f
@y

����
y¼0

dx

Use this expression and the velocity potential for a traveling sinusoi-
dal wave:

fðx; y; tÞ ¼ �ce cos
2p
l
ðx � ctÞ � sinh

2ph
l

þ coth
2ph
l

cosh
2py
l

� �
ð6:7aÞ

to show that the kinetic energy per wavelength of the same sinusoidal
wave is

T ¼ 1
4
rge2l

6.7 Thework done on a vertical plane due towaves on a liquid of depth h is
given by

WD ¼
Z 0

�h
p
@f
@x

dy

Use the linearized form of the Bernoulli equation and Eq. (6.7a),
which is defined in Prob. 6.5(b), to show that the work done on a ver-
tical plane by a traveling wave defined by Z ¼ e sin 2pðx � ctÞ=l is

WD ¼ 1
2
rgce2 sin2

2p
l
ðx � ctÞ 1þ 2ph=l

sinhð2ph=lÞ coshð2ph=lÞ
� �

Hence show that for deep liquids the time average of the work done is
one-half of the sum of the kinetic energy per wavelength and the
potential energy per wavelength.That is, show that

ðWDÞave ¼
1
2
ðT þ V Þ

6.8 The distribution of vorticity in a lake is assumed to be represented by
the following expression:

Oðx; y; tÞ ¼ oðx; y; tÞ þ by
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In this equationO is the total vorticity,o is the intrinsic vorticity, and
b is a constant. x and y are coordinates that lie on the surface of the
lake and the stream function for the liquid motion is taken to be

cðx; y; tÞ ¼ AeiðkxþlyþstÞ

Here, A is a constant, k and l represent the wavelengths in the x and y
directions, respectively, and s represents the speed at which the wave
is traveling. Use the definition of vorticity and the definition of the
stream function to show thato is proportional to c, and find the con-
stant of proportionality.

Using linear theory, show that the material derivative of the total
vorticityO is proportional to the stream function c, and find the con-
stant of proportionality. Also find the value of the speed s that makes
the material derivative ofO zero.

6.9 One very simple wave of representing a boundary layer is to consider
it tobe a layer of zero fluid velocity.Figure 6.15 shows such amodel of a
boundary layer for uniform flow over a flat plate. For this configura-
tion, carry out a stability analysis of the interface by imposing a wave
on the depicted flow of the following form at the interface:

Zðx; tÞ ¼ eeið2p=lÞðx�stÞ

Determine whether or not the interface is unstable to this wave, and if

FIGURE 6.15 Stagnant layer of fluid of thickness d below a uniform stream of
velocity U.
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it is unstable, determine the fastest growing wavelength of the
instability.

6.10 A fluid of density r1 occupies the space �h < y < 0,while a different
fluid of density r2 occupies the space 0 < y < h.Solid boundaries exist
at both y ¼ �h and y ¼ þh, and both fluids are originally at rest. A
small-amplitude traveling wave of wavelength l is introduced along
the interface separating the two fluids.Using linear theory, determine
the speed at which the wave will travel along the interface and discuss
the conditions under which the amplitude of the wave will decay with
time or grow with time.

FURTHER READING�PART II

The topic of ideal-£uid £ow is probably the most studied branch of £uid
mechanics, and it is well represented in the literature. Most texts on £uid
mechanics have at least one chapter on the subject, and some books are
entirely devoted to it.The following books, collectively, cover the subject in
some depth.The book by Sir Horace Lamb was ¢rst published in1879, and it
does not utilize vector analysis or tensor analysis. However, this book has
been a standard reference for many years, and it continues to be a valuable
source of information.

Lamb, Sir Horace:Hydrodynamics, 6th ed., Dover Publications, NewYork,1932.
Lighthill, James:Waves in Fluids,Cambridge University Press, London,1978.
Milne-Thompson, L. M.: Theoretical Hydrodynamics, 4th ed., The Macmillan

Company, NewYork,1962.
Panton, Ronald L.: Incompressible Flow, JohnWiley & Sons, NewYork,1984.
Robertson, James M.: Hydrodynamics in Theory and Application, Prentice-Hall,

Englewood Cliffs, N.J., 1965.
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III

VISCOUSFLOWSOF
INCOMPRESSIBLE FLUIDS

In this section problemswill be solved and phenomena will be established in
which the viscosity of the £uid is intrinsically important. The treatment is
divided into four chapters. Chapter 7 covers the exact solutions to the
Navier-Stokes equations. Although these solutions are relatively few in
number, they are cherished. They are used as the basis for perturbation
schemes to solve problems that are close to the exact solution con¢gurations,
they are used to test the accuracy of numerical techniques, and they are used
to calibrate instruments.

Chapter 8 deals with approximate solutions to the Navier-Stokes
equations that are valid for small Reynolds numbers. This is achieved by
reducing the Navier-Stokes equations through the so-called Stokes approx-
imation and by studying the solutions to the resulting equations. Such solu-
tions are valuable in their own right, and they have physical counterparts. In
addition, they form the basis of approximate solutions to other problems.

Chapter 9 deals with large-Reynolds-number £ows. Speci¢cally, the
Prandtl boundary-layer approximation to the Navier-Stokes equations is
examined.Some exact solutions to these equations are ¢rst obtained through
similarity methods. The Ka¤ rma¤ n-Pohlhausen method is then covered as an
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example of an approximate solution to the boundary-layer equations. The
stability of boundary layers is also introduced.

The ¢nal chapter in this part of the book deals with buoyancy-driven
£ows. The Boussinesq approximation to the Navier-Stokes and thermal
energy equations is introduced in Chapter 10. Solutions to the resulting
equations are presented for vertical isothermal surfaces, a line source of
heat, and a point source of heat.The stability of horizontal £uid layers is also
discussed with a view to establishing the condition for the onset of thermal
convection.

The governing equations for this part of the book are the continuity
equation and the Navier-Stokes equations. Thus from Eqs. (1.3c) and (1.9b)
the vector form of the governing equations is

= � u ¼ 0 ðIII:1Þ
@u
@t

þ ðu �=Þu ¼ � 1
r
=pþ nH2uþ f ðIII:2Þ

As was the case in the previous parts of the book, these equations form a
complete set for the unknown quantities p and u. This is due to the assump-
tion of incompressibility, which has the mathematical consequence of
uncoupling the equations of dynamics from those of thermodynamics.

Theboundary condition that is to be imposed on the velocity vector u is
the no-slip boundary condition,which is given by Eq. (1.14). This boundary
condition is

u ¼ U on solid boundaries ðIII:3Þ

where u is the £uid velocity and U is the velocity of the solid that forms the
boundary with the £uid. This condition states that the £uid adjacent to a
solid boundary adheres to that boundary and does not slip. This boundary
condition is much stronger than that which was used in the study of ideal
£uids. The essential di¡erence is that the inclusion of the viscous terms in
Eq. (III.2) has raised the order of the governing partial di¡erential equation
by one.Thus the true physical boundary condition may be accommodated in
this part,whereas it could not be satis¢ed completely in the previous part of
the book.

It was observed in Chapter 3 that the equations of momentum con-
servation, the Navier-Stokes equations in this instance, may be alternatively
phrased in terms of the vorticityv. Althoughwewill not solve problems here
from the vorticity formulation, it is sometimes of interest to examine solu-
tions from the point of view of the distribution of vorticity. For such cases
Eq. (3.4a) shows that the vorticity equation is
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@v

@t
þ ðu �=Þv ¼ ðv�=Þuþ nH2vþ =� f ðIII:4Þ

inwhich the possibility of nonconservative body forces hasbeen included for
generality.

The solutions to the foregoing equations of viscous £ow that will be
established in this part of the book will all correspond to laminar £ow. Vis-
cous £ows may be divided into two principal categories, laminar £ows and
turbulent £ows. The phenomena and treatment of turbulent £ows is some-
what di¡erent from the other fundamental aspects of £uid £ow, and it is
usually treated separately in specialized books. This procedure will be
adopted here, so that only laminar £ows will be considered.
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7

Exact Solutions

In this chapter some exact solutions to the equations governing themotion of
an incompressible,viscous liquidwill be established. It is perhaps because so
few exact solutions have been found that they are so important. The basic
di⁄culty in obtaining exact solutions to viscous-£ow problems lies in the
existence of the nonlinear convection terms in Eq. (III.2). Furthermore,
these nonlinear terms cannot be circumvented in this instance in themanner
used in the study of ideal £uids.This, in turn, is due to the inapplicability of
Kelvin’s theorem due to viscosity, so that viscous £ows are not potential. In
additional, the Bernoulli equations do not apply.

The exact solutionsmay be divided into two broad categories. In one of
these categories, the nonlinear term ðu�=Þu is identically zero owing to the
simple nature of the £ow ¢eld. Examples of this situation that are covered in
this chapter are Couette £ow, Poiseuille £ow, the £ow between rotating
cylinders, Stokes’ problems, and pulsating £ow between parallel surfaces.

The second broad category of exact solutions is that for which the
nonlinear convective terms are not identically zero. Examples presented
here include stagnation-point £ow, the £ow in convergent and divergent
channels, and the £ow over a porous wall.
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7.1 COUETTE FLOW

One of the simplest viscous-£ow ¢elds is that for £ow between two parallel
sufaces. Figure 7.1a shows two parallel surfaces whose size in the z direction
is supposed to be very large compared with their separation distance h. The
£ow between these plates is taken to be in the x direction, and since there is
no £ow in the y direction, the pressure will be a function of x only. That is,
since there are no inertia, viscous, or external forces in the y direction, there
can be no pressure gradient in that direction.Using the fact that u¼ u(y) only

FIGURE 7.1 (a) Flow between parallel surfaces, (b) plane Couette flow, and (c) gen-

eral Couette flow.
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and v¼w¼ 0 together with the fact that p¼ p(x) only, Eq. (III.2) becomes,
for a force-free £uid ¢eld

0 ¼ � dp
dx

þ m
d2u
dy2

Here, the continuity equation is identically satis¢ed and the nonlinear con-
vection terms are identically zero by virtue of the simplicity of the £ow ¢eld.
The Navier-Stokes equations reduce to the preceding ordinary di¡erential
equation,which states that there is a balance between the pressure force in
the £uid and the viscous-shear force at all points in the £uid. Since dp=dx is a
function of x only, this equation may be integrated twice with respect to
y to give

uð yÞ ¼ 1
m
dp
dx

y2

2
þ Ay þ B

� �

whereA andB are constants of integration.Theboundary condition uð0Þ ¼ 0
requires that B ¼ 0, while the condition uðhÞ ¼ 0 requires that A ¼ �h=2.
Thus the velocity pro¢le will be given by the equation

uð yÞ ¼ � 1
2m

dp
dx

yðh� yÞ

It is usual to introduce a dimensionless pressure parameter, which is de¢ned
as follows:

P ¼ � h2

2mU
dp
dx

HereU is any characteristic velocity such as themean-£ow velocity. In terms
of this pressure parameter the expression for the velocity pro¢le between the
parallel plates becomes

uð yÞ
U

¼ P
y
h

1� y
h


 �
ð7:1aÞ

Equation (7.1a) shows that the £uid £ows in the direction of the negative
pressure gradient and that the velocity pro¢le across the £ow ¢eld is para-
bolic.The maximum velocity therefore occurs at the centerline between the
two plates (that is, at y ¼ h=2), and themagnitude of themaximumvelocity is
PU=4. For this type of £ow the pressure gradient is the driving mechanism,
so if there is no external pressure gradient there will be no £ow.
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Another way of inducing a £ow between two parallel surfaces, apart
from applying a pressure gradient, is to move one of the two surfaces.
Figure 7.1b depicts such a situation,which is referred to as plane Couette £ow.
The surface y¼ 0 is held ¢xed while the surface y¼h is moved in the
x direction with constant velocity U. As before, the only nonzero velocity
component will be u, and it will be a function of y only. Also, there will be no
pressure gradient in the y direction, as before, and here it is assumed that
there is no external pressure gradient in the x direction.Then the governing
equations reduce to the same equation as before but without the pressure
term.That is, the velocity must satisfy the equation

0 ¼ m
d2u
dy2

Integrating this equation gives

uð yÞ ¼ Ay þ B

whereA andB are constants of integration.Theboundary condition uð0Þ ¼ 0
requires that B ¼ 0, while the condition uðhÞ ¼ U requires that A ¼ U=h.
Thus the velocity pro¢le for plane Couette £ow is

uð yÞ
U

¼ y
h

ð7:1bÞ

This result shows that the velocity pro¢le induced in a £uid by moving one of
the boundaries at constant velocity is linear across the gap between the two
boundaries.

A more general situation is one in which either of the two surfaces is
moving at constant velocity and there is also an external pressure gradient.
Such a situation is referred to as general Couette £ow.The velocity pro¢le for
general Couette £ow may be obtained by superimposing Eqs. (7. 1a) and
(7.1b), since the governing equations that led to these results are linear.Thus
it follows that

uð yÞ
U

¼ y
h
þ P

y
h

1� y
h


 �
ð7:1cÞ

The velocity pro¢les corresponding to this equation are shown in Fig. 7.1c.
It will be seen from Fig. 7.1 that for P ¼ 0 plane Couette £ow is recovered,
while for P 6¼ 0 the pressure gradient will either assist or resist the vis-
cous shear motion. For P > 0 (that is, for dp=dx < 0) the pressure gradient
will assist the viscously induced motion to overcome the shear force at
the lower surface. For P < 0 (that is, for dp=dx > 0) the pressure gradient
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will resist the motion induced by the motion of the upper surface. In this
case a region of reverse £ow may occur near the lower surface, as shown
in Fig. 7.1c.

7.2 POISEUILLE FLOW

The steady £ow of a viscous £uid in a conduit of arbitrary but constant
cross section is referred to as Poiseuille £ow. Figure 7.2a shows an arbitrary
cross section in the yz plane with a steady £ow in the x direction. Here
again, the transverse velocity components v and w will be zero, while

FIGURE 7.2 Viscous flow along conduits of various cross sections: (a) arbitrary,
(b) circular, (c) elliptic.
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u will be function of y and z only.The pressure cannot vary in the transverse
directions, since there is nomotion or forces in these directions; hence pwill
be a function of x only.With these conditions the governing equations (III.1)
and (III.2) reduce to

0 ¼ � dp
dx

þ m
@2u
@y2

þ @2u
@z2

� �

Again, owing to the simple geometry of the £ow ¢eld, the nonlinear
term ðu�=Þu is identically zero and the continuity equation is identically
satis¢ed for any velocity distribution uðy; zÞ. The remaining equation that
has to be satis¢ed is a Poisson type of equation. In standard form this equa-
tion is

@2u
@y2

þ @2u
@z2

¼ 1
m
dp
dx

ð7:2aÞ

where the nonhomogeneous term must be a constant at most. There is no
general solution to Eq. (7.2a) for arbitrary cross sections, but solutions for a
few speci¢c cross sections do exist.

Consider, ¢rst, the special case in which the cross section in the
yz plane is circular with radius a, as shown in Fig. 7.2b. With this geo-
metry the preferred coordinate system is cylindrical coordinates. Then,
let the cross section of the conduit be represented by the cylindrical
coordinates R and y rather than the cartesian coordinates y and z, so that
the independent coordinates are now R, y, and x. In this coordinate sys-
tem the axial velocity u will be independent of y and x, so that Eq. (7.2a)
will become

1
R

d
dR

R
du
dR

� �
¼ 1

m
dp
dx

Since the pressure gradient is independent of R, this equation may be inte-
grated twice with respect to R to give

uðRÞ ¼ 1
m
dp
dx

R2

4
þ A logR þ B

where A and B are constants of integration. The condition u(0) ¼ ¢nite
requires that A ¼ 0, while the condition u(a) ¼ 0 requires that
B ¼ �ðdp=dxÞa2=ð4mÞ. Thus the velocity pro¢le in the conduit will be of the
form
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uðRÞ ¼ � 1
4m

dp
dx

ða2 � R2Þ ð7:2bÞ

This result is similar to that for the £ow between two parallel surfaces. The
£ow depends upon the external pressure for its existence, and the resultant
velocity pro¢le is parabolic.

For elliptic cross sections, as shown in Fig. 7.2c, a proper procedure
would be to express the laplacian that appears in Eq. (7.2a) in elliptic coor-
dinates and proceed as above with the circular cross section. However,
a simpler and more direct method of solution exists and will be followed
here.The basis of thismethod is the observation that, for the ellipse shown in
Fig. 7.2c, the quantity y2=a2 þ z2=b2 � 1 is zero on the boundary. This
motivates us to look for a solution that is proportional to this quantity, so a
solution to Eq. (7.2a) is sought in the form

uð y; zÞ ¼ a
y2

a2
þ z2

b2
� 1

� �

Direct substitution shows that this is indeed a solution to Eq. (7.2a) provided
the value of a is

a ¼ 1
2m

dp
dx

a2b2

a2 þ b2

Thus the velocity pro¢le for an elliptic conduit is

uð y; zÞ ¼ 1
2m

dp
dx

a2b2

a2 þ b2
y2

a2
þ z2

b2
� 1

� �
ð7:2cÞ

7.3 FLOW BETWEEN ROTATING CYLINDERS

An exact solution to the Navier-Stokes equations exists for the case of a
£uid contained between two concentric circular cylinders either or both of
which is rotating at constant speed about its axis.The cylinders are assumed
to be long compared with their diameter, so that the £ow ¢eld will be two-
dimensional. Figure 7.3 shows the geometry under consideration.The outer
cylinder has a radius R0 and it is rotating in the clockwise direction with
angular,velocityo0,while the radius of the inner cylinder isRi and its angular
velocity isoi.

Cylindrical coordinates are preferred for the geometry shown, and the
only nonzero velocity component in this coordinate system will be the tan-
gential velocity uy. Furthermore, this velocity component will depend upon
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R only. For this type of velocity ¢eld and in the absence of any external body
forces, the pressure can depend upon R only. Using these observations the
governing equations [Eqs. (III.1) and (III.2)] become

� u2y
R

¼� 1
r
dp
dR

0 ¼ d2uy
dR2 þ d

dR
uy
R


 �

Because of the simple geometry of the £ow ¢eld the continuity equation is
identically satis¢ed. The ¢rst of the equations above shows that there
is a balance between the centrifugal force that acts on an element of £uid and

FIGURE 7.3 Geometry for flow between concentric rotating circular cylinders.
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a force that is produced by the induced pressure ¢eld. The second equation
above states that there is a balance between the viscous stresses in the £uid.

The foregoing equations may be readily integrated by establishing uy
from the second equation and then determining the pressure p from the ¢rst
equation. Integrating the second equation twice with respect to R gives

uyðRÞ ¼ A
R
2
þ B
R

where A and B are constants of integration. The boundary conditions
uyðR0Þ ¼ o0R0 and uyðRiÞ ¼ oiRi give

A ¼ 2ðo0R2
0 � oiR2

i Þ
R2
0 � R2

i

B ¼ �R2
i R

2
0
o0 � oi

R2
0 � R2

i

Thus the velocity distribution in the £uid between the two cylinders will be

uyðRÞ ¼ 1
R2
0 � R2

i
ðo0R2

0 � oiR2
i ÞR � ðo0 � oiÞR

2
i R

2
0

R

� �
ð7:3aÞ

Using Eq. (7.3a) and the remaining equation that is to be satis¢ed, it follows
that the pressure pmust satisfy the equation

dp
dR

¼ r

ðR2
0 � R2

i Þ2

ðo0R2
0 � oiR2

i Þ2R � 2ðo0 � oiÞðo0R2
0 � oiR2

i Þ
R2
i R

2
0

R
þ ðo0 � oiÞ2 R

4
i R

4
0

R3

� �

Integrating this equation shows that the pressure distribution will be

pðRÞ ¼ r

ðR2
0 � R2

i Þ2
ðo0R2

0 � oiR2
i Þ2

R2

2
� 2ðo0 � oiÞ

�

�ðo0R2
0 � oiR2

i ÞR2
i R

2
0 logR � ðo0 � oiÞ2 R

4
i R

4
0

2R2

�
þ C

ð7:3bÞ

where C is a constant of integration that may be evaluated in any particular
problem by specifying the value of the pressure on R ¼ R0 or on R ¼ Ri.
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As special cases Eqs. (7.3) describe the £ow ¢eld due to a single cylinder
rotating in a £uid of in¢nite extent and a cylinder ¢lled with £uid that is
rotating. Some aspects of these special cases will be investigated in the
problems at the end of the chapter.

7.4 STOKES’ FIRST PROBLEM

The £uid-mechanics problem referred to as Stokes’ ¢rst problem has
counterparts in many branches of engineering and physics. In the £uid-
mechanics context the situation that is being considered is shown in
Fig. 7.4a. The x axis coincides with an in¢nitely long £at plate above which
a £uid exists. Initially, both the plate and the £uid are at rest. Suddenly, the
plate is jerked into motion in its own plane with a constant velocity. Under
these conditions,what will be the response of the £uid to this motion on the
boundary?

To answer this question, we appropriately reduce the equations of
motion and obtain a solution to them. Since the motion of the boundary is

FIGURE 7.4 (a) Definition sketch for Stokes’ first problem, and (b) the solution

curves in terms of the similarity variable and in terms of the dimensional variables.
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in the x direction, it may be reasonably assumed that the motion of the
£uid will also be in that direction. Thus the only nonzero velocity com-
ponent will be u, and this velocity component will be a function of y and
t only. Then the pressure will be independent of y, and since u is inde-
pendent of x, so will p be independent of x. That is, the pressure will be
constant everywhere in the £uid. Using these properties of the £ow ¢eld,
the governing equations reduce to the following linear partial di¡erential
equation:

@u
@t

¼ n
@2u
@y2

The boundary conditions are

uð0; tÞ ¼
0 for t � 0

U for t > 0

(

uð y; tÞ ¼ finite

This problem lends itself to solution by Laplace transforms and by similarity
methods. Since similarity solutions are the only ones that exist for some
nonlinear problems arising in boundary-layer theory and other situations,
this method of solution will be employed here to establish a base for future
considerations.

Similarity solutions are a special class of solutions that exist for
problems governed by parabolic partial di¡erential equations in two
independent variables where there is no geometric length scale in the
problem. Stokes’ ¢rst problem meets these requirements. It may be
observed that had there been a second plate at some plane y ¼ h, the geo-
metric length scale h would exist, and so the conditions for a similarity
solution would no longer exist. In the absence of such a length scale,
however, it may be anticipated that the £uid velocity u will reach some
speci¢ed value, say 0.4U, at di¡erent values of y, which will depend upon
the value of the time t. That is, anticipating the results to be of the form
indicated in Fig. 7.4b, it may be observed that at some time t1 the velocity
will have a value of 0.4U at some distance y1 from the plate. At some later
time t2 the same velocity magnitude of 0.4U will exist at some di¡erent
distance y2, and so on. This suggests that there will be some combination
of y and t, such as y=tn, such that when this quantity is constant, the
velocity will be constant. That is, it is expected that a solution will exist in
the form
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uðy; tÞ
U

¼ f ðZÞ

where

Z ¼ a
y
tn

Here Zðy; tÞ is called the similarity variable and a is a constant of proportion-
ality that will be de¢ned later to render Z dimensionless.This assumed form
of solution has the property that when Z is constant (which corresponds to
y� tnÞ; u ¼ constant. If indeed a similarity solution exists to our problem,
substitution of our assumed form of solution into the governing partial dif-
ferential equation will result in an ordinary di¡erential equation with f as
the dependent variable and Z as the independent variable. That is, it will be
possible to eliminate y and t in terms of Z only.

From the assumed form of solution the following expressions for the
derivatives are obtained:

@u
@t

¼ �Un
ay
tnþ1 f

0 ¼ �Un
Z
t
f 0

@u
@y

¼ U
a
tn
f 0

@2u
@y2

¼ U
a2

t2n
f 00

Here the primes denote di¡erentiation of f with respect to Z. Substitution of
these expressions into the governing equation yields the identity

� Un
Z
t
f 0 ¼ nU

a2

t2n
f 00

This is not an ordinary di¡erential equation for arbitrary values of n, but for
n ¼ 1

2 the explicit time dependence will be eliminated, yielding an ordinary
di¡erential equation.That is, for n ¼ 1

2 a similarity solution is obtained. For
this value of n the di¡erential equation for f and the de¢nition of the simi-
larity variable are as follows:

f 00 þ Z
2na2

f 0 ¼ 0

Z ¼ a
y

t1=2

The quantity amay now be determined in terms of the parameter n (and U if
necessary) to render Z dimensionless. The dimensions of y=t1=2 are a length
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divided by the square root of time. Since the dimensions of n are a length
squared divided by time, it is su⁄cient to take a equal to 1=

ffiffiffi
n

p
. For con-

venience in the solution of the di¡erential equation a factor of 2 is also
included, so that the similarity variable becomes

Z ¼ y
2
ffiffiffiffi
nt

p

and the di¡erential equation to be solved becomes

f 00 þ 2Z f 0 ¼ 0

This equation may be integrated successively by rewriting it as follows:

d
dZ

ðlog f 0Þ ¼ �2Z

hence

log f 0 ¼ �Z2 þ log A

where the constant of integration has been chosen as logA.Then, combining
the two logarithmic quantities and taking exponentials of both sides of the
resulting equation gives

f 0 ¼ Ae�Z2

; f ðZÞ ¼ A
Z Z

0
e�x2dxþ B

where B is another constant of integration and x is a dummy variable of
integration. The boundary condition uð0; tÞ ¼ U for t > 0 requires that
f ð0Þ ¼ 1. This, in turn, requires that B ¼ 1. The initial condition
uðy; 0Þ ¼ 0 for y � 0 requires that f ðZÞ ! 0 when Z ! 1.This gives

0 ¼ U A
Z 1

0
e�x2dxþ 1

� �
¼ U A

ffiffiffi
p

p
2

þ 1
� �

so that the value of the constantA is�2=
ffiffiffi
p

p
.Then,using the de¢nition of the

similarity variable, the expression for the velocity becomes

uðy; tÞ
U

¼ 1� 2ffiffiffi
p

p
Z y=2

ffiffiffi
nt

p

0
e�x2dx

Exact Solutions 265



But the second term on the right-hand side of this equation is the error
function whose argument is the upper limit of integration.Thus the solution
to Stokes’ ¢rst problemmay be written as

uðy; tÞ
U

¼ 1� erf
y

2
ffiffiffiffi
nt

p
� �

ð7:4Þ

Values of the error function are presented in many tables of functions.Figure
7.4b shows the functional form of the error function and the dimensional
velocity pro¢les generated by this single similarity curve.

As one might expect intuitively, the disturbance caused by the
impulsive motion of the boundary di¡uses into the £uid as the time from
the initiation of the motion progresses. An estimate of the depth of £uid
a¡ected by the movement of the boundary may be obtained by observing
from detailed plots of the error function that u=U is reduced to about 0.04
when Z ¼ 3=2. That is, for values of Z greater than 3=2 the motion of the
£uid is small, and the £uid may be considered to be una¡ected by the
moving boundary. Then, denoting the value of y by d at which u=U is 0.04
shows that

Z ¼ 3=2 ¼ d
2
ffiffiffiffi
nt

p

; d ¼ 3
ffiffiffiffi
nt

p

That is, the thickness of the £uid layer a¡ected by themotion of the boundary
is proportional to the square root of the time and to the square root of the
kinematic viscosity of the £uid. This result shows the role played by the
kinematic viscosity in the di¡usion of momentum through £uids.

7.5 STOKES’ SECONDPROBLEM

Another problem to which an exact solution exists is geometrically iden-
tical to the one treated in the previous section, but the principal boundary
condition is di¡erent. Stokes’ second problem di¡ers from Stokes’ ¢rst
problem only in the condition that the boundary y ¼ 0 is oscillating in
time rather than impulsively starting into motion. The geometry of the
£ow and the nature of the boundary condition are indicated in Fig. 7.5a.
Since the geometry is the same as that of the previous section and since
the motion is again in the plane of the boundary itself, the di¡erential
equation to be satis¢ed by uðy; tÞ will be the same.That is, the problem to be
solved becomes
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@u
@t

¼ n
@2u
@y2

uð0; tÞ ¼ U cos nt

uðy; tÞ ¼ finite

Since the boundary y ¼ 0 is oscillating in time, it is to be expected that the
£uid will also oscillate in the x direction in time with the same frequency.
However, it is to be expected that the amplitude of the motion and the phase
shift relative to the motion of the boundary will depend upon y. Thus a
steady-state solution is sought of the form

uðy; tÞ ¼ Re ½wðyÞeint�

where the symbol Re signi¢es the real part of the quantity that is inside the
brackets. Substituting this assumed form of solution into the partial di¡er-
ential equation for uðy; tÞ gives

FIGURE 7.5 (a) Definition sketch for Stokes’ second problem, and (b) typical velo-
city profiles.
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Re ½inwðyÞeint� ¼ nRe
d2w
dy2

eint
� �

;
d2w
dy2

� i
n
n
w ¼ 0

Noting that
ffiffi
i

p ¼ 	ð1þ iÞ= ffiffiffi
2

p
, the solution to this di¡erential equation is

wðyÞ ¼ A exp �ð1þ iÞ
ffiffiffiffiffi
n
2n

r
y

� �
þ B exp �ð1þ iÞ

ffiffiffiffiffi
n
2n

r
y

� �

The condition that the velocity be ¢nite requires that the constant B should
be zero.Thus the quantity wðyÞ will be of the form

wðyÞ ¼ A exp �
ffiffiffiffiffi
n
2n

r
y

� �
exp �i

ffiffiffiffiffi
n
2n

r
y

� �

The expression for the velocity then becomes

uðy; tÞ ¼ Re A exp �
ffiffiffiffiffi
n
2n

r
y

� �
exp i nt �

ffiffiffiffiffi
n
2n

r
y

� �� �

¼ A exp �
ffiffiffiffiffi
n
2n

r
y

� �
cos nt �

ffiffiffiffiffi
n
2n

r
y

� �

The constant A may be evaluated by imposing the boundary condition
uð0; tÞ ¼ U cos nt, which requires A ¼ U . Thus the velocity distribution in
Stokes’second problemwill be given by

uðy; tÞ
U

¼ exp �
ffiffiffiffiffi
n
2n

r
y

� �
cos nt �

ffiffiffiffiffi
n
2n

r
y

� �
ð7:5Þ

Equation (7.5) describes a velocity that is oscillating in time with the same
frequency as the boundary y ¼ 0. The amplitude has its maximum value at
y ¼ 0 and decreases exponentially as y increases. Also, Eq. (7.5) shows that
there is a phase shift in the motion of the £uid and that this phase shift is
proportional to y and to the square root of n.The type of velocity pro¢le that
Eq. (7.5) represents is illustrated in Fig.7.5b.

A measure of the distance away from the moving boundary within
which the £uid is in£uenced by the motion of the boundary may be
obtained as follows. The amplitude of the motion at any plane y¼ constant
may be obtained by letting the trignometric term in Eq. (7.5) assume its

268 Chapter 7



maximum value of unity. Then, if the value of y at which the amplitude of
the motion is 1=e2 of its maximum value U is denoted by d, it follows from
Eq. (7.5) that

1
e2

¼ exp �
ffiffiffiffiffi
n
2n

r
d

� �

hence

d ¼ 2

ffiffiffiffiffi
2n
n

r

The quantity d is a distance such that for y > d the £uidmay be considered to
be essentially una¡ected by the motion of the boundary. Again it is seen that
viscous e¡ects extend over a distance that is proportional to

ffiffiffi
n

p
. It is also

observed that d varies inversely as the square root of the frequency of the
motion. That is, the faster the motion the smaller will be the distance over
which the adjacent £uid will be in£uenced.

7.6 PULSATING FLOW BETWEEN PARALLEL
SURFACES

Another type of unsteady-£ow situation for which an exact solution exists is
that of an oscillating pressure in a £uid layer that is bounded by two parallel
planes.We consider the two parallel surfaces to be located at y ¼ 	a and
consider the pressure gradient in the xdirection to oscillate in time.Then the
velocity will be in the x direction only and will also oscillate in time.That is,
the only nonzero velocity component will be uðy; tÞ. Using these features of
the £ow, the governing equations reduce to the following single equation:

@u
@t

¼ � 1
r
@p
@x

þ n
@2u
@y2

where uða; tÞ ¼ uð�a; tÞ ¼ 0.The pressure gradient is assumed to oscillate in
time so that @p=@x will be taken to be of the form

@p
@x

¼ Px cos nt

where Px is a constant that represents the magnitude of the pressure-gra-
dient oscillations.

This problemmay be treated in the samemanner as that of the previous
section.That is, by virtue of the oscillatory nature of the pressure gradient it
may be expected that the velocity of the £uid will also oscillate in time, and
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with the same frequency, but possibly with a phase lag relative to the oscill-
ations in the pressure. Thus the pressure gradient and the velocity may be
represented as follows:

@p
@x

¼ Re ðPxeintÞ

uðy; tÞ ¼ Re ½wðyÞeint�

Substituting these expressions into the governing equation gives

Re ðinweintÞ ¼ � 1
r

Re ðPxeintÞ þ nRe
d2w
dy2

eint
� �

Thus the quantitywðyÞmust satisfy the following nonhomogeneous ordinary
di¡erential equation:

d2w
dy2

� in
n
w ¼ Px

rn

The general solution to this di¡erential equation consists of a constant par-
ticular integral plus the general solution to the homogeneous equation.This
gives

wðyÞ ¼ i
Px

rn
þ A cosh ð1þ iÞ

ffiffiffiffiffi
n
2n

r
y

� �
þ B sinh ð1þ iÞ

ffiffiffiffiffi
n
2n

r
y

� �

where the quantity ð1þ iÞ= ffiffiffi
2

p
has been used for

ffiffi
i

p
and the hyperbolic form

of solution has been chosen rather than the exponential formdue to the ¢nite
extent of the £ow ¢eld in the y direction.The boundary conditions uða; tÞ ¼ 0
and uð�a; tÞ ¼ 0 give, respectively.

0 ¼ i
Px

rn
þ A cosh ð1þ iÞ

ffiffiffiffiffi
n
2n

r
a

� �
þ B sinh ð1þ iÞ

ffiffiffiffiffi
n
2n

r
a

� �

0 ¼ i
Px

rn
þ A cosh ð1þ iÞ

ffiffiffiffiffi
n
2n

r
a

� �
� B sinh ð1þ iÞ

ffiffiffiffiffi
n
2n

r
a

� �

The solution to this pair of algebraic equations for the undetermined con-
stants A and B is

A ¼ iPx

rn cosh ½ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn=2nÞp
a�

B ¼ 0
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Thus the solution for wðyÞ is

wðyÞ ¼ i
Px

rn
1� cosh ½ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn=2nÞp

y�
cosh½ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn=2nÞp

a�

( )

Then the expression for the velocity in the £uid becomes

uðy; tÞ ¼ Re i
Px

rn
1� cosh½ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn=2nÞp

y�
cosh½ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn=2nÞp

a�

( )
eint

 !
ð7:6Þ

This expression may be decomposed to yield the real part explicitly.
Although the concepts are straightforward, the details are cumbersome;
hence the compact form of Eq. (7.6) will be considered to be the ¢nal
expression. It is evident from the result that the velocity oscillates with the
same frequency as the pressure gradient but that a phase lag,which depends
upon y, exists.Thus the motion of the £uid that is adjacent to the boundaries
will have a timewise phase shift relative to the motion near the centerline
of the boundaries. The amplitude of the motion near the boundaries will
also be di¡erent from that near the centerline, and in order to satisfy the
boundary conditions, this amplitude will approach zero as the boundaries
are approached.

7.7 STAGNATION-POINT FLOW

In all the foregoing £owsituations the geometry of the £ow ¢eldwas such that
the nonlinear inertia terms ðu�=Þuwere identically zero.The £ow in the vici-
nity of a plane stagnation point is an example of a £ow ¢eld in which these
inertia terms are not zero yet one for which an exact solution exists.

Figure 7.6a shows the situation under consideration. A £uid stream
whose velocity vector coincideswith the y axis impinges on a plane boundary
that coincideswith the x axis.The boundary may be considered to be curved,
such as the surface of a circular cylinder, provided the region under con-
sideration is small in extent compared with the radius of curvature of the
surface. This problem was investigated by Hiemenz, and the £ow ¢eld is
frequently referred to as Hiemenz £ow. The basis of the solution is to
modify the potential-£ow solution in such a way that the Navier-Stokes
equations are still satis¢ed and such that the no-slipboundary conditionmay
be satis¢ed.

The potential-£ow solution for the situation under consideration was
established in Chap. 4, and the complex potential for the £ow in a sector of
angle p=n is given by Eq. (4.10). Using this result and the value n ¼ 2, the
velocity components for the potential £ow are
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u ¼ 2Ux

v ¼ �2Uy

Then, from the Bernoulli equation, the pressure distribution will be

p ¼ p0 � 2rU 2ðx2 þ y2Þ

where p0 is the Bernoulli constant that corresponds to the pressure at the
stagnation point.Note thatU is not a velocity here.

The foregoing velocity and pressure distributions satisfy the potential-
£ow problem exactly, and like all potential £ows, they also satisfy the equa-
tions of motion for a viscous, incompressible £uid exactly. This may be
readily shown by observing that the di¡erence between the potential-£ow
equations and the equations governing the £ow of a viscous, incompressible
£uid is the presence of the viscous term nH2u in the latter. But for potential
£ows u ¼ =f, so that

H2u ¼ H2ð=fÞ ¼ =ðH2fÞ ¼ 0

That is, the viscous-shear terms in the Navier-Stokes equations are identi-
cally zero for potential-£ow ¢elds.

Although potential-£ow ¢elds satisfy the equations of motion for a
viscous, incompressible £uid, they do not satisfy the no-slip boundary con-
dition. Thus, for the case of stagnation-point £ow, Hiemenz attempted to

FIGURE 7.6 (a) Flow configuration for a plane stagnation point, and (b) the func-
tional form of the solution.
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modify the potential-£ow ¢eld in such a way that meeting this boundary
condition would be possible.Thus the x component of velocity is taken to be

u ¼ 2Uxf 0ðyÞ

where the prime denotes di¡erentiation with respect to y. Then, the con-
tinuity equation requires that

@v

@y
¼ � @u

@x
¼ �2Uf 0ðyÞ

so that the vertical component of the velocity will be of the form

v ¼ �2Uf ð yÞ

De¢ning the velocity ¢eld in this way satis¢es the continuity equation for all
functions f ðyÞ, and if we stipulate that f ðyÞ ! y as y ! 1, the potential-£ow
solution will be recovered far from the boundary.

The equations of motion have yet to be satis¢ed, and this will impose
further restrictions on the function f .The equations to be satis¢ed are

u
@u
@x

þ v
@u
@y

¼ � 1
r
@p
@x

þ n
@2u
@x2

þ @2u
@y2

� �

u
@v

@x
þ v

@v

@y
¼ � 1

r
@p
@y

þ n
@2v

@x2
þ @2v

@y2

� �

Substituting the expressions obtained above for u and v into these equations
shows that the following pair of equations must be satis¢ed:

4U 2xð f 0Þ2 � 4U 2xff 00 ¼ � 1
r
@p
@x

þ 2U nxf 000

4U 2ff 0 ¼ � 1
r
@p
@y

� 2U nf 00

The second of these equations will be used to establish the pressure dis-
tribution, and this result will be used to eliminate the pressure from the ¢rst
equation. The result will be a nonlinear ordinary di¡erential equation that
the function f ( y) must satisfy.

Integrating the last equation with respect to y gives the following
expression for the pressure:

pðx; yÞ ¼ �2rU 2ð f Þ2 � 2rUnf 0 þ gðxÞ
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where gðxÞ is some function of x that may be determined by comparisonwith
the potential-£ow pressure distribution that should be recovered for large
values of y. Recalling that f ð yÞ ! y for large values of y shows that, for large
values of y,

pðx; yÞ ! �2rU 2y2 � 2rU nþ gðxÞ

which, by comparison with the potential-£ow pressure, requires that

gðxÞ ¼ p0 � 2rU 2x2 þ 2rU n

Then the pressure distribution in the viscous £uid will be

pðx; yÞ ¼ p0 � 2rU 2ð f Þ2 þ 2rUnð1� f 0Þ � 2rU 2x2

So far we have satis¢ed the continuity equation and the equation of y
momentum. From the result above it follows that @p=@x ¼ �4rU 2x, so that
the equation of xmomentum becomes

4U 2xð f 0Þ2 � 4U 2xff 00 ¼ 4U 2x þ 2U nxf 000

In standard form, with the highest derivative to the left, this equation
becomes

n
2U

f 000 þ ff 00 � ð f 0Þ2 þ 1 ¼ 0

The boundary condition uðx; 0Þ ¼ 0 requires that f 0ð0Þ ¼ 0, while the con-
dition vðx; 0Þ ¼ 0 requires that f ð0Þ ¼ 0. In addition, the condition that the
potential-£ow solution be recovered as y ! 1 requires that f ð yÞ ! y, or
that f 0ðyÞ ! 1, as y ! 1.Thus the boundary conditions that accompany the
foregoing ordinary di¡erential equation are

f ð0Þ ¼ f 0ð0Þ ¼ 0

f 0ðyÞ ! 1 as y ! 1
That is, the potential-£ow solution may be modi¢ed to satisfy not only the
governing equations but also the viscous boundary conditions provided the
modifying function f ð yÞ satis¢es the foregoing conditions. Clearly, it would
be preferable to solve a problem that is free of the parameter n=ð2U Þ, for then
the result will be valid for all kinematic viscosities and all £ow velocities. It is
possible to render the foregoing problem free fromparameters bymaking the
following change of variables. Let

fðZÞ ¼
ffiffiffiffiffiffiffi
2U
n

r
f ð yÞ
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and

Z ¼
ffiffiffiffiffiffiffi
2U
n

r
y

Then, in terms of fðZÞ, the problem to be solved in order to satisfy all the
requirements is

f000 þ ff00 � ðf0Þ2 þ 1 ¼ 0 ð7:7aÞ

fð0Þ ¼ f0ð0Þ ¼ 0 ð7:7bÞ

f0ðZÞ ! 1 as Z ! 1 ð7:7cÞ

where the primes denote di¡erentiation with respect to Z. This nonlinear
problem must be solved numerically, but this is a much easier task than sol-
ving the original systemof partial di¡erential equations numerically.For this
reason the solution is usually considered to be exact.

To summarize, the velocity and pressure ¢elds in stagnation-point £ow
are given by

uðx; yÞ ¼ 2Uxf0 ð7:8aÞ

vðx; yÞ ¼ �
ffiffiffiffiffiffiffiffiffi
2U n

p
f ð7:8bÞ

pðx; yÞ ¼ p0 � rU nf2 þ 2rU nð1� f0Þ � 2rU 2x2 ð7:8cÞ

where fðZÞ is the solution to Eqs. (7.7) and Z ¼ ffiffiffiffiffiffiffi
2U

p
y=

ffiffiffi
n

p
. The nature of

this solution is shown in Fig.7.6b in the formof a curve off0 as a function of Z.
From quantitative plots of this type it is found that the value of Z for which
f0 ¼ 0:99 is about 2.4.

From this qualitative ¢gure and the supplementary quantitative data, it
is evident thatf0may be considered to be unity (and hence the potential-£ow
solution is recovered) when Z ¼ 2:4. Then if d denotes the value of y at this
edge of the viscous layer, it follows that

ffiffiffiffiffiffiffi
2U
n

r
d ¼ 2:4

hence

d ¼ 2:4
ffiffiffiffiffiffiffi
n
2U

r
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That is, viscous e¡ects are con¢ned to a layer adjacent to the boundary,
whose thickness varies as the square root of the kinematic viscosity of the
£uid and inversely as the square root of the velocity-magnitude parameter.

7.8 FLOW IN CONVERGENTANDDIVERGENT
CHANNELS

Another £ow ¢eld inwhich the continuity equation is not identically satis¢ed
and in which the nonlinear inertia terms are not identically zero is that of
£ow in a convergent or divergent channel. For such £ow ¢elds an exact
solution to the governing equations exists in the sense of the previous
section�that is, the system of partial di¡erential equations may be reduced
to a simple numerical problem.

Figure 7.7a shows the £ow con¢gurations for £ow in a converging
channel and £ow in a diverging channel.The preferred coordinate system for
such con¢gurations is cylindrical coordinates R; y, and z. Then, of the three
velocity components only the radial component uR will be di¡erent from
zero, and this velocity component will depend upon R and y only. Thus the
continuity equation and the Navier^Stokes equations become

FIGURE 7.7 (a) Flow configuration, and (b) velocity profiles for flow in convergent
and in divergent channels.

276 Chapter 7



1
R

@

@R
ðRuRÞ ¼ 0

uR
@uR
@R

¼ � 1
r
@p
@R

þ n
1
R

@

@R
þ R

@uR
@R

� �
� uR
R2 þ

1
R2

@2uR
@y2

� �

0 ¼ � 1
rR

@p
@y

þ n
2
R2

@uR
@y

� �

A separable form of solution will be sought to these equations. That is,
a solution for the velocity will be sought in the form

uRðR; yÞ ¼ f ðRÞFðyÞ

Then the continuity equation shows that RuR must be a constant, so that uR
must be proportional toR�1.Thus the velocity distributionwill be of the form

uRðR; yÞ ¼ n
R
FðyÞ ð7:9aÞ

where the kinematic viscosity has been used as a proportionality factor in
order to render the function FðyÞ dimensionless.

Having satis¢ed the continuity equation, the two components of the
Navier^Stokes equations must next be satis¢ed. This will impose some
restrictions on the function FðyÞ. Substitution of Eq. (7.9a) into the reduced
form of the Navier^Stokes equations shows that the following pair of equa-
tions must be satis¢ed:

� n2

R3 ðFÞ
2 ¼ � 1

r
@p
@R

þ n2

R3 F
00

0 ¼ � 1
rR

@p
@y

þ 2
n2

R3 F
0

where the primes denote di¡erentiation with respect to y. This pair of
equations may be reduced to a single equation by forming the second cross
derivative of p, namely, @2p=@R @y, and thus eliminating the pressure
between the two equations. The resulting ordinary di¡erential equation
for FðyÞ is

F 000 þ 4F 0 þ 2FF 0 ¼ 0

This equation may be immediately integrated once with respect to y to give

F 00 þ 4F þ ðFÞ2 ¼ K
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whereK is a constant of integration. In order to further reduce this equation,
new dependent and independent variables are introduced. Thus let
GðFÞ ¼ F 0 be the new dependent variable and F be the new independent
variable.Then

dG
dF

¼ d
dF

ðF 0Þ ¼ dy
dF

d
dy

ðF 0Þ ¼ F 00

F 0 ¼
F 00

G

Using this result to eliminate F 00, the di¡erential equation to be satis¢ed
becomes

G
dG
dF

þ 4F þ ðFÞ2 ¼ K

That is, in terms of GðFÞ the di¡erential equation is reduced to ¢rst order.
But this equation may be integrated directly to yield G as follows. Rewriting
the equation above in the form

d
dF

1
2
G2

� �
¼ K � 4F � F2

and integrating with respect to F gives

1
2
G2 ¼ Aþ KF � 2F2 � 1

3
F3

whereA is a constant of integration. Solving this equation forGðFÞ gives

GðFÞ ¼ dF
dy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðAþ KF � 2F2 � 1

3F
3Þ

q

Although this equation cannot be solved to give an explicit expres-
sion for F in terms of y, the result may be put in the form of an integral
expression for y as a function of F. The expression is the following elliptic
integral:

y ¼
Z F

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðAþ Kx� 2x2 � 1

3 x
3Þ

q þ B ð7:9bÞ

where x is a dummy variable of integration and B is a constant of inte-
gration. Equation (7.9b) represents a fairly simple numerical problem
whose solution, when coupled with Eq. (7.9a), de¢nes the velocity dis-
tribution.
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The physical boundary conditions that have to be satis¢ed are

uRðaÞ ¼ uRð�aÞ ¼ 0 ðdivergentÞ
uRðpþ aÞ ¼ uRðp� aÞ ¼ 0 ðconvergentÞ

These boundary conditions represent the no-slip condition at the walls of
the channel. In addition, since the velocity pro¢les will be symmetrical
about the reference axis, it follows that

@uR
@y

ðR; 0Þ ¼ 0 ðdivergentÞ
@uR
@y

ðR; pÞ ¼ 0 ðconvergentÞ
Then, from Eq. (7.9a), the conditions the function FðyÞmust satisfy are

FðaÞ ¼ Fð�aÞ ¼ F 0ð0Þ ¼ 0 ðdivergentÞ ð7:9cÞ
Fðpþ aÞ ¼ Fðp� aÞ ¼ F 0ðpÞ ¼ 0 ðconvergentÞ ð7:9dÞ

These boundary conditions are su⁄cient to determine the constantA,B, and
K that appear in Eq. (7.9b). Equations (7.9) describe velocity pro¢les that
have the form indicated in Fig.7.7b.

In Fig. 7.7b the various curves are identi¢ed by the Reynolds number
where RN1 > RN2 > RN3.Here the Reynolds number is de¢ned as

RN ¼ ucR
n

where uc is the velocity of the £uid along the centerline of the channel. It may
be seen that the nature of the velocity pro¢le in a convergent channel may be
quite di¡erent from that in a divergent channel, particularly at low Reynolds
numbers. The adverse pressure gradient that exists in a divergent channel
may overcome the inertia of the £uid near the wall (where viscous e¡ects
have reduced the velocity), resulting in a reversed-£ow con¢guration. This
separation of the £ow iswell established experimentally, particularly at large
values of the angle a.

7.9 FLOWOVER A POROUSWALL

The foregoing exact solutions to the equations of viscous £ow of an incom-
pressible £uid either were su⁄ciently simple that the nonlinear inertia terms
dropped out or these terms were nonzero and a reduction to a nonlinear
ordinary di¡erential equation was possible.The £ow ¢eld to be studied here
is an example of a case where the nonlinear inertia terms become linearized
and a closed form of solution becomes possible.
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Figure 7.8 shows a £at surface over which a steady uniform £ow exists.
Rather than being impervious, the surface is porous and £uid is being drawn
o¡ into the porous surface such that the normal component of velocity at the
surface is V. Porous surfaces of this type with suction beneath them are
sometimes used to prevent boundary layers from separating (a topic that will
be discussed in Chap. 9).However, it may be stated now that boundary-layer
separation on airfoil surfaces can lead to a stalled con¢guration that destroys
the lift generated by the airfoil.Thus it is natural that one of the applications
of boundary-layer suction has been in aeronautics.

A solution to the foregoing problem will be sought in which p is a
constant and u depends upon y only. That is, a solution to the governing
equations is being sought inwhich themagnitude of the suction is adjusted in
such a way that the tangential velocity component is independent of x. For
this situation the continuity and Navier^Stokes equations become

@v

@y
¼ 0

v
du
dy

¼ n
d2u
dy2

u
@v

@x
þ v

@v

@y
¼ n

@2v

@x2
þ @2v

@y2

� �

FIGURE 7.8 Uniform flow over a plane boundary with suction.
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with the boundary conditions

uð0Þ ¼ 0

vðx; 0Þ ¼ �V

uðyÞ ! U as y ! 1
Now the continuity equation may be integrated to show that vðx; yÞ is actu-
ally a constant, and the boundary condition at y ¼ 0 shows that this constant
must be�V .That is,

v ¼ �V

With this information the momentum equations reduce further to the fol-
lowing single equation:

� V
du
dy

¼ n
d2u
dy2

It may now be seen that the inertia terms are not retained in a comprehen-
sive form yet they are not zero. Rather, the intermediate case of a linearized
form exists in which the convection velocity isVrather than a variable,which
vwould be in more general cases.

The foregoing ordinary di¡erential equation may be integrated once
with respect to y to give

du
dy

þ V
n
u ¼ A

V
n

where the constant of integration has been chosen as AV=n. The particular
solution to the remaining equation is then u ¼ A, so that the complete solu-
tion is

uðyÞ ¼ Aþ Be�ðV =nÞy

where B is a constant. The boundary condition uð0Þ ¼ 0 requires that
B ¼ �A, and the condition u ! U as y ! 1 then gives A ¼ U . Hence the
velocity distribution will be

uðyÞ ¼ U ð1� e�ðV =nÞyÞ ð7:10Þ
Some idea of the thickness of the layer that is a¡ected by viscosity may

be obtained by considering the value of y at which u ¼ U ð1� 1=e2Þ to be d.
Then, from Eq. (7.10), the value of dwill be

d ¼ 2
n
V
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That is, the distance away from the surface at which the uniform £ow is
essentially recovered is proportional to the kinematic viscosity of the £uid
and inversely proportional to the suction velocity.

It will be observed that the solution [Eq. (7.10)] diverges for nega-
tive values of V (that is, for blowing instead of suction). Some insight
into the reason for this may be obtained by studying the vorticity distribu-
tion.The equation governing the vorticity is Eq. (III.4). Here we are dealing
with steady £ow without external body forces. In addition, the £ow is
two-dimensional, so that the vorticity vector will be v ¼ ð0; 0; xÞ. Then,
using the fact that v ¼ �V and u ¼ uðyÞ, the vorticity equation becomes

� V
dx
dy

¼ n
d2x
dy2

This equation may be integrated once with respect to y to give

� V x ¼ n
dx
dy

Interpreted physically, the term on the left-hand side of this equation repre-
sents the convection of vorticity, which is toward the boundary (negative y
direction), and the convection velocity isV. The term on the right-hand side
represents the di¡usion of vorticity in which the di¡usion coe⁄cient is the
kinematic viscosity of the £uid.Thus the equation states that the convection
rate of vorticity toward the wall due to the suction is just balancing the dif-
fusion of vorticity away from the wall. It is this balance that makes possible a
solution of the form assumed. However, if blowing instead of suction exists,
the convection and the di¡usionwill both take place in the same direction, so
that a solution of the form u ¼ uðyÞ only on longer exists.

PROBLEMS

7.1 To establish the manner in which Couette flow is established, find the
velocity distribution in a fluid that is bounded by two horizontal par-
allel surfaces in which everything is quiescent for t < 0 and for which
the upper surface is impulsively set into horizontal motion with con-
stant velocity U at time t ¼ 0. (This is readily done by obtaining the
solution in its asymptotic form, corresponding to t ! 1, then adding
a separation of variables solution).

7.2 To determine the manner in which Couettte flow decays, find the
velocity distribution in a fluid that is bounded by two horizontal par-
allel surfaces between which steady Couette flow exists for t < 0.The
motion of the upper surface is suddenly stopped at time t ¼ 0.Obtain
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an expression for the subsequent velocity distribution between the
two parallel surfaces.

7.3 Amoving belt is inclined at an angle a to the horizontal.The lower end
of this belt is immersed in a pool of liquid and thebelt drags someof the
liquid with it as it moves upward and out of the liquid.The liquid may
be assumed to be viscous, but incompressible.

(a) Using the configuration shown in Fig. 7.9a, solve the Navier^
Stokes equations for the following quantities:

(i) The velocity distribution in the liquid layer
(ii) The volumetric flow rate of liquid in the x direction
(iii) The angle a for which the volumetric flow rate is zero

(b) Repeat part a of this question for the configuration shown in
Fig.7.9b.

7.4 For Poiseuille flow through an elliptic pipe of semi-axes a and b, find
the ratio b/a that gives themaximum flow rate for a given flowarea and
a given pressure gradient.

For a given pressure gradient, find the ratio of the discharge
from an elliptic pipe to that from a circular pipe that has the same flow
area. Evaluate this ratio for the specific ratio b=a ¼ 8=7.

7.5 Figure 7.9 shows a conduit whose cross section is the shape of an
equilateral triangle.For the coordinate system shown in the figure, the

FIGURE 7.9 Liquid layer between a moving surface and (a) solid surface, (b) free
surface.
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equations of the three sides are

z þ b

2
ffiffiffi
3

p ¼ 0

z þ
ffiffiffi
3

p
y � bffiffiffi

3
p ¼ 0

z �
ffiffiffi
3

p
y � bffiffiffi

3
p ¼ 0

Look for a solution for the velocity distribution in this conduit of
the following form:

uðy; zÞ ¼ a z þ b

2
ffiffiffi
3

p
� �

z þ
ffiffiffi
3

p
y � bffiffiffi

3
p

� �
z �

ffiffiffi
3

p
y � bffiffiffi

3
p

� �

Determine the value of the constant a such that the assumed
form of solution is exact, the value of this constant being expressed in
terms of the applied pressure gradient.

7.6 Figure 7.10 shows two parallel, vertical surfaces and a horizontal sur-
face.The space defined by these surfaces, 0 < y < b for 0 < z, is filled
with a viscous, incompressible fluid. The horizontal surface, z ¼ 0, is
moving in the positive x direction with constant velocity U.The other
surfaces are stationary, as is the fluid�except for the motion that is
induced by the moving surface.

Derive an expression for the velocity distribution in the yz plane
if the flow is steady and if there are no body forces. Also obtain an
expression for the volumetric flow rate of the fluid that is induced to
flow in the x direction by the moving surface.

7.7 Two concentric circular cylinders enclose a viscous fluid. If the inner
cylinder is at rest and the outer cylinder rotates at a constant angular
velocity, calculate the torque required to rotate the outer cylinder and
that required to hold the inner cylinder at rest.

7.8 Using the solution for flow between concentric rotating circular
cylinders, deduce the velocity distribution created by a circular cylin-

FIGURE 7.10 Conduit with cross-sectional shape of an equilateral triangle.
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der that is rotating in a fluid of infinite extent that is otherwise at rest.
Compare this result with that for a line vortex of strength G ¼ 2pR2

i oi

in an inviscid fluid that is at rest at infinity.
7.9 Obtain the velocity distribution for the modified Stokes second pro-

blem consisting of a fluid that is contained between two infinite
parallel surfaces separated by a distance h. The upper surface is held
fixed,while the lower surface oscillates in its own plane with velocity
U cos nt.

7.10 The velocity profile in a fluid between two parallel surfaces due to an
oscillating pressure gradient was shown in Eq. (7.6) to be

uðy; tÞ ¼ Re i
Px

rn
1� cosh ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiðn=2np

y
� 

cosh ð1þ iÞ ffiffiffiffiffiffiffiffiffiffiffiffiðn=2np
a

� 
( )

eint
 !

FIGURE11 Fluid enclosed by vertical stationary and horizontal moving surfaces.

Exact Solutions 285



A Reynolds number for such a flow may be defined by the fol-
lowing quantity:

RN ¼ a2n
2n

For this situation, consider the two asymptotic limits that are
defined below:

(a) For RN � 1 it might be expected that viscous effects will dom-
inate. Expand the expression for the velocity in this case and
obtain an explicit expression for the leading term in the expan-
sion. Interpret the result physically.

(b) For RN � 1 it might be expected that viscous effects will be small
everywhere expect in the vicinity of the walls. Expand the
expression for the velocity for this case, and interpret the result
that is obtained.

7.11 For potential flow due to a line vortex the vorticity is concentrated
along the axis of the vortex.Thus the problem tobe solved for the decay
of a line vortex due to the viscosity of the fluid is as follows:

@o
@t

¼ nH2o

oðR; 0Þ ¼
0 for R > 0

G for R ¼ 0

( )

Here oðR; tÞ is the vorticity, and the maximum circulation
around the vortex for any time t � 0 isG.Look for a similarity solution
to this problem of the following from:

oðR; tÞ ¼ G
2pnt

f
Rffiffiffiffi
nt

p
� �

Thus obtain expressions for the velocity uyðR; tÞ and the pressure
pðR; tÞ in the fluid.

7.12 The following flow field satisfies the continuity equation everywhere
except at R ¼ 0,where a singularity exists:

uR ¼ �aR

uy ¼ K
R

uz ¼ 2az
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Show that this flow field also satisfies the Navier^Stokes equa-
tions everywhere except atR ¼ 0, and find the pressure distribution in
the flow field.

Modify the foregoing expressions to the following:

uR ¼ �aR

uy ¼ K
R
f ðRÞ

uz ¼ 2az

Determine the function f ðRÞ such that the modified expression
satisfies the governing equations for a viscous, incompressible fluid
and such that the original flow field is recovered for R ! 1.
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8

Low-Reynolds-Number Solutions

For £ow problems inwhich an exact solution is not known, itmay be possible
to obtain an approximate solution. By an approximate solution we mean an
analytic expression that approximately satis¢es the governing equations
rather than a numerical approximation to these equations.In this chapter the
full governing equations will be approximated for £ows involving low Rey-
nolds numbers, and some exact solutions to the resulting equations will be
established.

The fundamental low-Reynolds-number approximation is the Stokes
approximation, and this is the ¢rst topic in the chapter. Some fundamental
solutions are used to establish more practical solutions. In this way the
£ow in the vicinity of a rotating sphere is obtained, as is the solution for
uniform £ow past a sphere. The case of uniform £ow past a circular
cylinder is examined to illustrate the consequences of the Stokes approxi-
mation. Finally, an alternative low-Reynolds-number approximation, the
Oseen approximation, is brie£y discussed. A detailed study of the Oseen
equations is not made, but the nature and utility of the approximation is
discussed.
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8.1 THE STOKESAPPROXIMATION

The Stokes equations are a special case of the Navier-Stokes equations
corresponding to very slowmotion of a viscous £uid.Under these conditions
the inertia of the £uid may be neglected in comparison with the other forces
that will act on it. Since the Reynolds number may be considered to be the
ratio of the inertia forces of the £uid to the viscous forces, the condition of
negligible inertia forces amounts to very small Reynolds numbers. The
essential feature of the Stokes approximation is that all the convective iner-
tia components are assumed to be small compared with the viscous forces.
Then, from Eqs. (III.1) and (III.2), the equations governing the Stokes
approximation for a £ow ¢eld without body forces are

=�u ¼ 0 ð8:1aÞ

@u
@t

¼ � 1
r
=pþ nH2u ð8:1bÞ

Equations (8.1b),which represent three scalar equations, are usually referred
to as the Stokes equations. These equations, together with the continuity
equation [Eq. (8.1a)], represent four scalar equations in the four unknowns u
and p. The great simpli¢cation in this approximation is that the governing
equations are now linear.

The foregoing equations may be extracted from the Navier-Stokes
equations in a more formal manner. Since this alternative approach must be
used when employing higher-order corrections, it will be outlined here.The
¢rst step is to nondimensionalize the dependent and the independent
variables as follows. Let

u ¼ Uu�

p ¼ rnU
l

p�

xi ¼ lx�i

t ¼ l2

n
t�

HereU isacharacteristicvelocityof the£uid(suchasthefree-streamvelocity)
and l is a characteristic length scale (such as a body dimension).The starred
quantities are thedimensionless variableswhere thekinematic viscosity nhas
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beenused tonondimensionalize thepressureand the time.Experiencegained
in the previous chapter indicates that the time l2=n corresponds to the time
required for viscousdi¡usion to traverse thedistance l.

The variables that appear above are now substituted into the Navier-
Stokes equations to yield the equations governing the dimensionless vari-
ables.The resulting vector equation is

nU
l2

@u�

@t�
þ U 2

l
ðu��=�Þu� ¼ � nU

l2
=�p� þ nU

l2
=�2u�

where the gradient and the laplacian operators are now expressed in terms of
the dimensionless space coordinates. Multiplying this equation by l2=ðnU Þ
and introducing the Reynolds number RN ¼ Ul=n gives

@u�

@t�
þ RN ðu��=�Þu� ¼ �=�p� þ =�2u�

In this form it is evident that the Stokes equations [Eqs. (8.1b)] may be
obtained from the Navier-Stokes equations by taking the limit RN ! 0
while holding the coordinates ¢xed. This suggests that higher-order
approximations to the Stokes solution for any given problem could be
obtained by expanding the dependent variables in ascending powers of the
Reynolds number. The sequence of di¡erential equations that would have
to be solved could then be obtained from the above form of the Navier-
Stokes equations by a limiting procedure. Thus the Stokes equations may
be considered to be an asymptotic limit of the Navier-Stokes equations
corresponding to zero Reynolds number, while the space coordinates
remain of order unity.

An alternative form of Eqs. (8.1a) and (8.1b) exists that is frequently
useful. In this alternative form the velocity and the pressure equations are
separated so that the velocity and the pressure ¢elds may be established
separately.To obtain the equation governing the velocity ¢eld, the curl of the
curl of Eq. (8.1b) is taken. Having done this, the identities =�ð=�uÞ ¼
=ð= �uÞ � H2u and =�=p ¼ 0 are employed.The resulting equation is

@

@t
=ð=�uÞ � H2u
�  ¼ nH2 =ð=�uÞ � H2u

� 
Finally, using the continuity equation, the pressure-free form of the
momentum equation becomes

H2 @u
@t

¼ nH4u ð8:2aÞ
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To obtain the equation governing the pressure, the divergence of Eq. (8.1b) is
taken.This gives

H2p ¼ 0 ð8:2bÞ

The advantage in the formulation above is that the pressure ¢eld has been
separated,mathematically, from the velocity ¢eld.However, the price we pay
is that thehighest di¡erentials are now fourth-order insteadof second-order.

Solutions to the Stokes equationsmay beobtained in either of twobasic
ways. Using the governing equations and the appropriate boundary condi-
tions, the boundary-value problem for each geometry of interest may be
solved. Alternatively, basic solutions to the governing equations may be
established and superimposed to obtain other solutions. This is the proce-
dure that was used in Chaps. 4 and 5, and it will be used again here. The
principal value of this approach is that it leads to the clear understanding of
which elements of a mathematical solution are responsible for producing
forces and torques.

8.2 UNIFORM FLOW

The simplest solution to the Stokes equations is that for a uniform £ow. It
may be simply observed that for a constant velocity vector and a constant
pressure, Eqs. (8.1a) and (8.1b) are identically satis¢ed. That is, for any con-
stant U, the following velocity and pressure ¢elds satisfy the Stokes approx-
imation to the Navier-Stokes equations:

u ¼ U ex ð8:3aÞ
p ¼ constant ð8:3bÞ

where ex is the unit vector in the x direction,which is the reference direction.
Clearly this velocity and pressure distribution does not create a force or turn-
ing moment on the system.Some of the other fundamental solutions that will
be considered later correspond to point singularities, and some of these sin-
gularities correspond to point forces or turningmoments acting on the £uid.

8.3 DOUBLET

It was pointed out in Sec.7.7 that any potential £ow is an exact solution of the
full Navier-Stokes equations, since the viscous term is identically zero for
potential £ows.Then, for any steady potential £ow, the Stokes equationswill
be satis¢ed provided the pressure term is zero.That is, for steady £ow, all the
inertia terms are zero to the Stokes approximation, and for potential £ows
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the viscous term will be zero. Hence, ptential £ows are also solutions to the
Stokes equations provided=p ¼ 0 or p ¼ constant:

In the study of the £ow of ideal £uids it could be shown, through
Kelvin’s theorem, that an initially irrotational £ow would remain irrota-
tional irrespective of the shape of any bodies it may £ow around. Here, we
consider the nature of the velocity ¢eld assumed by an irrotational motion if
it exists. The solution to any real £ow problem may contain such a compo-
nent in its solution in addition to other fundamental solutions, someof which
may correspond to rotational motion. It should be noted that the velocity
¢eld corresponding to viscous irrotational motion is not related to the pres-
sure ¢eld in the manner that existed for ideal-£uid £ows.The conditions that
were stipulated in deriving the Bernoulli equation are violated for viscous
£ows, so that the pressure and the velocity are no longer connected by such a
relationship. Indeed, it was shown above that any irrotational velocity dis-
tribution had to be accompanied by a constant pressure in order to satisfy
the Stokes equations.

If an irrotational £ow ¢eld exists, the velocity will be derivable from a
velocity potential, and from the continuity equation, the velocity potential
must satisfy Laplace’s equation.Then, for three-dimensional potential £ows
themathematicalproblemis thesameas thatofChap.5.That is, if weare inter-
ested in axisymmetric £ow¢elds,wemay use thecoordinate systemde¢ned in
Fig.5.1andthesolutions toEq. (5.1) thathavealreadybeenestablished.

But the solution that was identi¢ed as a doublet [Eq. (5.7a)] was of the
functional form.

fðr; yÞ ¼ A
cos y
r2

¼ A
x
r3

where the fact that x ¼ r cos yhasbeenused.Then, since u ¼ =f; the velocity
vector will have a component along the x axis and a radial component, giving

u ¼ A
ex
r3

� 3xer
r4

� �
ð8:4aÞ

where ex and er are unit vectors in the x direction and in the radial direction,
respectively.This formulation of expressing variables in terms of streamwise
and radial components will be found to be useful in the present application.

The velocity ¢eld described by Eq. (8.4a) cannot be proved to be valid
from upstream irrotational conditions but is presented here only as a
possible form for a viscous £uid.Then, in order for this £ow ¢eld to satisfy the
present form of the momentum equations, the pressure distribution must be

p ¼ constant ð8:4bÞ
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Although the solution de¢ned by Eqs. (8.4a) and (8.4b) represents the
£ow ¢eld generated by a singularity that is located at the origin, this singu-
larity does not exert a force or a moment on the surrounding £uid.This may
be simply argued from the fact that the pressure is constant and the £ow
con¢guration is such that there is no net momentum £ux acting on the £uid.

8.4 ROTLET

In this section a solution to the Stokes equations will be sought in which the
vorticity is di¡erent from zero and the pressure is constant. That is, a rota-
tional-£ow solution will be sought.The resulting solution will involve a sin-
gularity at the origin that is known as a rotlet.

Consider steady £ow ¢elds of the form

u ¼ r� =w

Where r is the position vector. In tensor notation, this expression becomes

ui ¼ eijkxj
@w
@xk

Then, the divergence of this velocity vector will be given by

@ui
@xi

¼ eijk
@xj
@xi

@w
@xk

þ xj
@2w

@xi@xk

� �

The ¢rst term on the right-hand side of this equation is zero, since @xj=@xi is
zero unless i ¼ j and eijk is zerowhen i ¼ j.That is, the product of the pseudo-
scalar eijk and the symmetric tensor @xj=@xi is zero. Likewise, the second
term inside the parentheses in the equation above is a symmetric tensor, so
that the product of this quantity with the pseudoscalar eijk will be zero.That
is, the continuity equation will be satis¢ed identically for all forms of the
scalar w.

Since the £ow is assumed to be steady and since the pressure has been
taken to be constant, the Stokes equations reduce to

H2u ¼ 0

But, for the form of the velocity vector introduced above it follows that

H2ui ¼ @2ui
@xl@xl

¼ eijk
@2xj
@xl@xl

@w
@xk

þ xj
@

@xk

@2w
@xl@xl

� �
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The ¢rst term on the right-hand side of this equation is zero, since
@2xj=ð@xl @xlÞ ¼ 0 for all j and l . Also, the second term on the right-hand side
will be zero if H2w ¼ 0.That is, the velocity distribution u ¼ r� =wwill be a
valid solution to the Stokes equations for a constant pressure distribution,
providedH2w ¼ 0.The problem, therefore, again reduces to that of obtaining
axisymmetric solutions to the three-dimensional Laplace’s equation.

From Chap. 5, the ¢rst separable solution that was obtained corres-
ponded to a source and was of the form w � 1=r. This gives =w � er so that
u ¼ 0, and hence that particular solution is of no interest in this case. The
next solution, corresponding to a doublet,was of the form

w ¼ B
cos y
r2

¼ B
x
r3

The velocity ¢eld corresponding to this solution will be

u ¼ Br� =
x
r3


 �
¼ Br� ex

r3
� 3

xer
r4


 �

Since r ¼ rer and since er � er ¼ 0, this velocity distribution may be repre-
sented by the simpli¢ed expression

u ¼ B
er � ex

r2
ð8:5aÞ

while the corresponding pressure distribution is

p ¼ constant ð8:5bÞ
The streamlines corresponding to Eq. (8.5a) must be perpendicular to

both er and ex . That is, the streamlines are circles whose centers lie on the
x axis. A typical streamline is shown in Fig. 8.1a, in which the direction is
shown for B > 0. It is the nature of the streamlines that suggests the name
rotlet for the singularity that exists in the solution (8.5a) at r ¼ 0.

The rotlet does not exert a force on the £uid, but it does exert a turning
moment on it.Thismay be ver¢ed by constructing a spherical control surface
around the rotlet, as shown in Fig. 8.1b. Then, if F is the force acting on the
£uid contained within the control surface S and if n is the unit outward nor-
mal to S, it follows that

Fi ¼ �
Z
s
sijnj dS

where sij is the stress tensor. But, for an incompressible newtonian £uid,
Eq. (1.7) shows that the stress tensor may be expressed by

294 Chapter 8



sij ¼ �pdij þ m
@ui
@xj

þ @uj
@xi

� �

Using this result, the order of magnitude of the force Fi may be evaluated as
follows. Substituting sij gives

Fi ¼ �
Z
s

�pdij þ m
@ui
@xj

þ @uj
@xi

� �� �
nj dS

FIGURE 8.1 (a) Typical streamline due to a rotlet, and (b) spherical control surface

surrounding a rotlet.
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Since p = constant here, the ¢rst component of the integral above will be
zero. Also, Eq. (8.5a) shows that ui � r�2, and it is known that dS � r2 for an
element of surface of a sphere.Hence

Fi � 1
r3
r2 ¼ 1

r

Then by considering the control surface S to be of very large radius, it is
clear that Fi ¼ 0. That is, there is no force acting on the £uid due to the
rotlet.

The torque, or turning moment M, exerted on the £uid by the singu-
larity, may be calculated as follows:

M ¼
Z
s
r�P dS

whereP is the surface-force vector resulting from the existence of the stress
tensor sij. In tensor notation, this expression becomes

Mi ¼
Z
s
eijkxjPk dS

Using the relation Pk ¼ sklnl and the expression for skl that was used above,
the value of the turning moment becomes

Mi ¼
Z
s
eijkxj �pdkl þ m

@uk
@xl

þ @ul
@xk

� �� �
nl dS

Noting that, since p = constant, the ¢rst component of this integral is zero
and using the fact that nl ¼ xl=r for the spherical control surface of radius r,
the expression for the turning moment of the £uid becomes

Mi ¼ m
r

Z
s
eijkxjxl

@uk
@xl

þ @ul
@xk

� �
dS

The preceding expression is valid for any velocity distribution what-
soever. In this particular case, the velocity (8.5a) is a homogeneous function
of degree 2. A homogeneous function of order m is one that satis¢es the
condition

f
x
l
;
y
l
;
z
l


 �
¼ lmf ðx; y; zÞ
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For such functions, Euler’s theorem states that

x
@f
@x

þ y
@f
@y

þ z
@f
@z

¼ �mf

Then, for the velocity distribution under consideration, which is given by
Eq. (8.5a) and which is homogeneous of degree 2, it follows that

xl
@uk
@xl

¼ �2uk

This identi¢es one term that appears in the integrand for the expression for
themomentMi .Another term that appears in the integrandmaybe evaluated
as follows:

xl
@ul
@xk

¼ @

@xk
ðxlulÞ � ul

@xl
@xk

¼ �uk

Here, it is noted that the ¢rst term on the right-hand side of this identity is
zero,since @ðxlulÞ=@xk ¼ =ðr � uÞand the velocity vector u is perpendicular to
the position vector r, as may be seen from Eq. (8.5a). Also, @x1=@xk ¼ dlk, so
that ul@xl=@xk ¼ uldlk ¼ uk.Then the expression for the moment exerted on
the body of £uid by the rotlet at the origin becomes

Mi ¼ m
r

Z
s
eijkxjð�2uk � ukÞ dS

Or, in vector form, this expression is

M ¼ �3
m
r

Z
s
r� u dS

But, using Eq. (8.5a),

r� u ¼ r� B
er � ex

r2

¼ B
r2
ðr � exÞer � B

r2
ðr � erÞex ¼ B

x
r2
er � B

r
ex

Thus the expression for the momentM becomes

M ¼ �3Bm
Z
s

x
r
er � ex


 � dS
r2
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This integral may now be evaluated explicitly using the following relations,
which are obtained fromAppendix A:

x ¼ r cos y

er ¼ cos yex þ sin y cosoey þ sin y sinoez

dS ¼ r2 sin y dy do

Using these result, the expression forM becomes

M ¼ �3Bm
Z 2p

0
do
Z p

0
½ðcos2 y� 1Þex þ sin y cos y cosoey

þ sin y cos y sinoez� sin ydy
M ¼ 8pBmex ð8:5cÞ

That is, Eqs. (8.5a) and (8.5b) represent a valid solution to the Stokes equa-
tions, and they correspond to a singularity at the origin called a rotlet. This
singularity exerts no force on the surrounding £uid, but it does exert a turn-
ing moment on it.The magnitude of this turning moment is proportional to
the velocity-magnitude parameter, and it acts, according to the right-
hand-screw rule, in the x direction in the same algebraic sense as the
velocity-magnitude parameter.

8.5 STOKESLET

So far, all our fundamental solutions to the Stokes equations have corre-
sponded to a constant pressure. In general situations it is to be expected that
the pressure distribution will not be constant, so that another fundamental
solution will be sought, and this time the pressure will be assumed to be dif-
ferent fromaconstant value.Thenthepressuremustbeanontrivialsolutionto
Eq. (8.2b),which is Laplace’s equation. Having so determined the pressure,
the corresponding velocity distributionwill be obtained fromEq. (8.1b).

Since the pressure p satis¢es the three-dimensional Laplace equation,
the possible fundamental solutions may be written down immediately from
Sec. 5.3. The source type of solution, in which p � 1=r, turns out to be of no
special interest. The next highest form of separable solution, which is the
doublet type of solution, is p � cos y=r2. For reasons that will become
apparent shortly, the constant of proportionality will be taken as 2cm, so that
the pressure ¢eld which is being considered is

p ¼ 2cm
x
r3
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where cos y ¼ x=r hasbeenused.Then, if the £ow is assumed tobe steady, the
equation to be satis¢ed by the velocity is, from Eq. (8.1b),

H2u ¼ 1
m
=p

Of the three scalar equations represented by this vector equation, the equa-
tion for the velocity component u is the most complicated, because of the
nature of the pressure distribution; so this equation will be dealt with last.
From the expression for p, the equation to be satis¢ed by the velocity com-
ponent v is

=2v ¼ �6c
xy
r5

The particular integral to this nonhomogeneous partial di¡erential equa-
tion, which is v ¼ cxy=r3, is readily obtained if one is familiar with the pro-
perties of harmonic functions of di¡erent degrees. Alternatively, this result
may be deduced from the following identities:

H2 1
rn

� �
¼ nðn� 1Þ

rnþ2

H2ðfcÞ ¼ cH2fþ fH2cþ 2=f �=c

Here, r2 ¼ x2 þ y2 þ z2 and f;c are any two functions.Then if f ¼ 1=r3 and
c ¼ xy, it is readily veri¢ed that

H2f ¼ 6
r5

=f ¼ � 3
r4
er

H2c ¼ 0

=c ¼ yex þ xey

;=f � =c ¼ �6
xy
r5

where the ¢rst result follows from the ¢rst of the identities above.Then,using
the second of these identities,

H2ðfcÞ ¼ H2 xy
r3


 �
¼ �6

xy
r5
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That is, the particular solution to the equation for the velocity component v is

v ¼ c
xy
r3

The equation to be satis¢ed by the w component of the velocity
vectors is

H2w ¼ �6c
xz
r5

The particular solution to this equation is obtained in exactly the same way
as that for v and may be deduced to be

w ¼ c
xz
r3

The equation to be satis¢ed by the u component of the velocity vector is

H2u ¼ c
2
r3

� 6
x2

r5

� �

In view of the solutions for v and w, it might be expected that the solution to
this equation is u ¼ cx2=r3. This is indeed the case, as may be con¢rmed by
setting f ¼ 1=r3 and c ¼ x2 and employing the identities mentioned above.
Thus

H2f ¼ 6
r5

=f ¼ � 3
r4
er

H2c ¼ 2

=c ¼ 2xex

; =f � =c ¼ �6
x2

r5

hence H2ðfcÞ ¼ H2 x2

r3

� �
¼ 2

r3
� 6

x2

r5

Thus the particular integral to the equation for u is

u ¼ c
x2

r3
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To each of the foregoing particular integrals may be added solutions to
the homogeneous equations H2u ¼ 0;H2v ¼ 0; and H2w ¼ 0.Denoting these
solutionsby u0; v0, andw0, respectively, the complete solution for the velocity u
corresponding to the pressure distribution p ¼ 2cmx=r3 is

u ¼ c
x2

r3
ex þ xy

r3
ey þ xz

r3
ez

� �
þ u0 ¼ c

x
r2
er þ u0

where u0 ¼ ðu0; v0;w0Þ. The quantity u0, which must satisfy the equation
H2u0 ¼ 0,will now be determined such that the continuity equation is satis-
¢ed.Taking the divergence of the velocity u shows that

= � u ¼ c= � x
r3
r


 �
þ = � u0

but =� x
r3
r


 �
¼ r �= x

r3


 �
þ x
r3
ð= � rÞ

¼ x
1
r3

� 3x2

r5

� �
� y

3xy
r5

� z
3xz
r5

� �
þ 3

x
r3

¼ x
r3

where the fact that=�r ¼ 3 has been used.Hence

=�u ¼ c
x
r3

þ =�u0

Thus by choosing u0 ¼ cðex=rÞ, the continuity equation will be satis¢ed. It
will be noted that this form of u0 also satis¢es the homogeneous equation
=2u0 ¼ 0.Thus a valid velocity distribution has been found that satis¢es the
Stokes equations corresponding to a doublet type of pressure ¢eld. This
solution is

p ¼ 2cm
x
r3

ð8:6aÞ

u ¼ c
x
r3
er þ 1

r
ex

� �
ð8:6bÞ

The solution represented by the above equations has a singularity at
the origin, and this singularity is known as a stokeslet.Although the stokeslet
does not exert a torque on the surrounding £uid, it does exert a force on it.
The magnitude of this force may be established as follows: In tensor nota-
tion, the force Fi acting on the £uid will be
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Fi ¼ �
Z
s
sijnj dS

where, for a newtonian £uid,

sij ¼ �pdij þ m
@ui
@xj

þ @uj
@xi

� �

and for this particular £ow ¢eld the pressure is given by Eq. (8.6a).Hence the
expression for the force Fi becomes

Fi ¼ �
Z
s

�2cm
x
r3
dij þ m

@ui
@xj

þ @uj
@xi

� �� �
ni dS

Now if the surface S is considered to be a sphere of radius r, then nj ¼ xj=r,
so that the expression for Fi becomes

Fi ¼ �
Z
s

�2cm
x
r3
xi
r
� m

r
xj

@ui
@xj

þ @uj
@xi

� �� �
dS

But in this particular case the velocity distribution, which is given by
Eq. (8.6b), is homogeneous of degree 1. Hence, from Euler’s theorem, it fol-
lows that

xj
@ui
@xj

¼ �ui ¼ �c
x
r3
xi þ di1

r

� �

Asecond quantity that appears in the integrand of the foregoing integralmay
be evaluated as follows:

xj
@uj
@xi

¼ @

@xi
ðxjujÞ � uj

@xi
@xi

¼ @

@xi
ðr � uÞ � ui

where the fact that uj@xj=@xi ¼ ujdij ¼ ui has been used. Hence, using
Eq. (8.6b),

xj
@uj
@xi

¼ @

@xi
2c

x
r


 �
� c

xxi
r3

þ di1
r

� �

¼ c
2
r
di1 � 2

xxi
r3

� �
� c

xxi
r3

þ di1
r

� �

¼ c
di1
r
� 3

xxi
r3

� �

Using these results, the expression for the force acting on the £uid due to the
stokeslet becomes

302 Chapter 8



Fi ¼ �
Z
s

�2cm
xxi
r4

� c
m
r

xxi
r3

þ di1
r

� �
þ c

m
r

di1
r
� 3

xxi
r3

� �� �
dS

¼ 6cm
Z
s

xxi
r4

dS

Alternatively, in vector notation, this expression becomes

F ¼ 6cm
Z
s

x
r3
er dS

This integral may be evaluated explicitly using the following relations:

x ¼ cos y

er ¼ cos yex þ sin y cosoey þ sin y sinoez

dS ¼ r2 sin y dy do

Thus the force acting on the £uid due to stokeslet is

F ¼ 6cm
Z 2p

0
do
Z p

0
cos yðcos yex þ sin y cosoey þ sin y sinoezÞ sin y dy

F ¼ 8pcmex ð8:6cÞ

That is, the stokeslet exerts a force on the surrounding £uidwhose strength is
proportional to the pressure parameter c and whose direction is in the posi-
tive x direction for c > 0.

8.6 ROTATING SPHERE IN A FLUID

The foregoing fundamental solutions are su⁄cient to establish more prac-
tical solutions for low-Reynolds-number £ows. One of these solutions cor-
responds to a solid sphere that is rotating in an otherwise quiescent £uid.
Consider such a sphere to be rotating about the x axis with constant angular
velocityO.The nature of the resulting £ow ¢eldmay be expected to be similar
to that of a rotlet.Hence let the velocity distribution correspond to Eq. (8.5a )
and see if the boundary conditions may be satis¢ed.Then

u ¼ B
er � ex

r2

This velocity distribution gives a ¢nite velocity as r ! 1 as required. The
other boundary condition is, on r ¼ a, u ¼ Oaer � ex . This condition is
satis¢ed for B ¼ Oa3, so that the required velocity distribution is
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u ¼ O
a3

r2
er � ex ð8:7aÞ

Since the rotlet is located at r ¼ 0 and since the surface of the sphere is r ¼ a,
there is no singularity in the £uid.

Since the rotlet was found to exert a moment on the surrounding £uid,
the surrounding £uid will exert a moment on the surface r ¼ a in this case.
The magnitude of this moment is given by Eq. (8.5c). Hence, using B ¼ Oa3,
the moment acting on the spherewill be

M ¼ �8pmOa3ex ð8:7bÞ

This moment acts in a direction that opposes the motion of the sphere, as
might be expected.

8.7 UNIFORM FLOW PASTA SPHERE

The solution corresponding to uniform £ow past a sphere may be obtained
by superimposing the solutions for a uniform £ow, a doublet, and a stokeslet.
Hence from Eqs. (8.3a) (8.3b), (8.4a), (8.4b), and (8.6a), and (8.6b), the
assumed forms of the velocity and pressure ¢elds are

u ¼ U ex þ A
ex
r3

� 3
xer
r4


 �
þ c

x
r2
er þ ex

r


 �
p ¼ 2cm

x
r3

Far from the origin this velocity ¢eld reduces to that of a uniform £ow as
required. The simplest way of imposing the near boundary condition is to
observe that at the rear stagnation point, u ¼ 0.Hence substituting x ¼ r ¼ a
and setting u ¼ 0 in the foregoing expression for the velocity gives

0 ¼ U ex þ A
ex
a3

� 3
er
a3


 �
þ c

er
a
þ ex

a


 �

Setting the coe⁄cients of ex and er equal to zero separately yields the fol-
lowing pair of equations:

0 ¼ U þ A
a3

þ c
a

0 ¼ �3
A
a3

þ c
a
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The solution to these algebraic equations is

A ¼ �U
a3

4

c ¼ � 3
4
Ua

Thus the velocity and pressure distributions are

u ¼ U ex � 1
4
a
r

a2

r2
þ 3

� �
ex þ 3

4
ax
r2

a2

r2
� 1

� �
er

� �
ð8:8aÞ

p ¼ �3
2
uU

ax
r3

ð8:8bÞ

In this form it is readily con¢rmed that Eq. (8.8a) satis¢es the boundary
condition u ¼ 0 over the entire surface r ¼ a.

Neither the uniform £ow nor the doublet exerts a force on the £uid.
However, the stokeslet exerts a force on the surrounding £uid, and the mag-
nitude of this force is given by Eq. (8.6c). Then, since the stokeslet is inside
the spherical surface r ¼ a, the surrounding £uid will exert an equal but
opposite force on the sphere. Thus from Eq. (8.6c) and using the fact that
c ¼ �3Ua=4, the magnitude of the force acting on the sphere will be

F ¼ 6pmUaex ð8:8cÞ

This is the famous Stokes’ drag law for a sphere in a uniform £ow, and it is
valid for low Reynolds numbers. Since the direction of this force is clearly in
the direction of the uniform £ow, this result is frequently quoted in terms of
the dimensionless drag coe⁄cients,which involves the scalar magnitude of
the force only.This drag coe⁄cient is de¢ned as follows:

CD ¼ jFj=A
1
2rU

2

where A ¼ pa2 is the frontal area of the sphere.Thus, using Eq. (8.8c ),

CD ¼ 24
RN

ð8:8dÞ

whereRN ¼ rU2a=m is the Reynolds number of the £ow.This result is shown
in Fig. 8.2,which shows the form of the drag coe⁄cient as a function of the
Reynolds number for a sphere.Out of the entire range of Reynolds numbers,
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Eq. (8.8d) is the only closed-form analytic solution that exists. It is valid for
low Reynolds numbers, for which the viscous forces dominate the inertia
forces, but it is found experimentally that the result is valid for Reynolds
numbers that are less than unity.

8.8 UNIFORM FLOW PASTACIRCULARCYLINDER

It will be shown in this section that the solution obtained above for a sphere
in three dimensions has no counterpart in two dimensions. This will be
shown by attempting to solve the Stokes equations for uniform £ow past a
circular cylinder. Since the fundamental solutions have not been established
for two dimensions, the alternative approach of solving the boundary-value
problem for the stream function will be adopted.

For steady £ow, the Stokes equations are

0 ¼ � 1
r
=pþ nH2u

Taking the curl of this equation gives the following equation for the vorticity
to the Stokes approximation:

H2v ¼ 0

FIGURE 8.2 Drag coefficient as a function of Reynolds number for a sphere.
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But in two dimensions the only nonzero component of the vorticity vector is
z,which is the vorticity in the z direction.Hence

H2z ¼ 0

but z ¼ @v

@x
� @u

@y
¼ � @2c

@x2
þ @2c

@y2

� �

where the stream function that satis¢es the continuity equation has been
introduced.Thus the equation to be satis¢ed by the vorticity is

@2

@x2
þ @2

@y2

� �2

c ¼ 0

This is the biharmonic equation, and in cylindrical coordinates (R; y) it
becomes

@2

@R2 þ
1
R

@

@R
þ 1
R2

@2

@y2

� �2

c ¼ 0

Noting that the stream function for a uniform £ow is c ¼ Uy ¼
UR sin y,we look for a solution to the preceding equation of the form

cðR; yÞ ¼ f ðRÞ sin y

where f ðRÞ ! UR as R ! 1. Substituting this form of solution into the
biharmonic equation gives

d2

dR2 þ
1
R

d
dR

� 1
R2

� �2

f ¼ 0

This is an equidimensional equation whose solution is of the form

f ðRÞ ¼ AR3 þ BR logR þ CR þ D
R

Thus the stream function is of the form

cðR; yÞ ¼ AR3 þ BR logR þ CR þ D
R

� �
sin y

In order to recover a uniform £ow far from the cylinder,cðR; yÞmust tend to
UR sin y as R ! 1. Hence
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A ¼ B ¼ 0

and C ¼ U

Hence the expression for the stream function reduces to

cðR; yÞ ¼ UR þ D
R

� �
sin y

Thenear boundary condition requires that on the surfaceof the cylinder both
the tangential and the radial velocity components should vanish. That is,
on R ¼ a both @c=@y and @c=@R should vanish. Since @c=@y should be zero
for all values of y, the tangential velocity component being zero is equivalent
to requiring that cða; yÞ ¼ constant,where the constant may be taken to be
zero. That is, the no-slip boundary condition on the surface of the cylinder
requires that

cða; yÞ ¼ 0

@c
@R

ða; yÞ ¼ 0

It is now evident that there is no choice of the constantD in our solution that
satis¢es these two boundary conditions. If we had satis¢ed the near bound-
ary conditions ¢rst with the solution, it would have been found that it was
impossible to satisfy the far boundary condition.Thuswe conclude that there
is no solution to the two-dimensional Stokes equations that can satisfy both
the near and the far boundary conditions. The lack of such a solution is
known as Stokes’ paradox.

The di¡erence between the two-dimensional Stokes equations and the
three-dimensional Stokes equations is best explained by reexamining the
Stokes approximation. In terms of dimensionless variables, the Navier-
Stokes equations were shown to be

@u�

@t�
þ RN ðu� �=�Þu� ¼ �=�p� þ =�2u�

so that the Stokes equations correspond to the limit RN ! 0. Thus a more
accurate solution for low Reynolds numbers could be sought in the form

c ¼ c0 þ RNc1 þ OðR2
N Þ

which represents an asymptotic expansion for the stream function,which is
valid for low Reynolds numbers. Then, by employing a limiting procedure,
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the problem for c0 may be solved, then the problem for c1, and so on. It has
been shown here and in Sec. 8.7 that a solution corresponding toc0 exists for
a sphere but not for a cylinder.However, it is found that the problem forc1 in
the case of the sphere has no solution, which is known as Whitehead’s
paradox. Thus a basic di⁄culty has been encountered, and this di⁄culty
appears in the ¢rst-order problem in two dimensions and in the second-order
problem in three dimensions.

In mathematical terminology, the di⁄culty encountered above is
referred to as a singular perturbation. That is, the Stokes approximation is
really the ¢rst-order problem arising out of a perturbation type of solution to
the Navier-Stokes equations, and the inability of this type of solution to
match the required boundary conditions renders the perturbation singular.
In two dimensions the di⁄culty associated with this singular perturbation
appears immediately,whereas in three dimensions the di⁄culty is postponed
to the second-order term in the expansion.

In more physical terms, the di⁄culty encountered is associated with
the neglect of the convection of momentumof the £uid, an assumption that is
invalid far from the body. The limit RN ! 0 is equivalent to completely
neglecting the convection in the £uid in comparison with the viscous di¡u-
sion in the £uid. Because of the nature of the viscous boundary condition
near the body,viscous di¡usion will be large near the body,whereas convec-
tion will be small because of the retardation of the velocity by the body.
However, far from the body the velocity gradients will die down, so that vis-
cous di¡usion will be reduced. At the same time the £uid velocity will be
close to that of the free-stream velocity. That is, the convection in the £uid
will become more important, while the viscous di¡usion will become less
important. This means that the conditions required to satisfy the Stokes
approximation will be violated.

The nature of the failure of the approximation introduced by Stokes is
that of a nonuniform representation in space. The approximation is valid
close to the body but is invalid far from thebody.Thus singular perturbations
are sometimes referred to as nonuniform expansions. The mathematical
di⁄culties encountered in singular perturbations may be overcome by mat-
ched expansions,which will be described in the next section.

8.9 THEOSEEN APPROXIMATION

An alternative low-Reynolds-number approximation is the Oseen approxi-
mation. Oseen recognized the discrepancy that was inherent in the Stokes
approximation far from the body under consideration. He noted that the
Stokes approximation corresponds to convection at zero velocity and
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recognized that far from the body momentumwill be convected with a velo-
city that will be close to the free-stream velocity.Thus Oseen proposed line-
arizing the Navier-Stokes equations such that momentum is transported not
with the local velocity (as in the exact case) or with zero velocity (as in the
Stokes approximation), but with the free-stream velocity. Thus, if the free
stream £ows in the x direction with velocity U , the equations that represent
the Oseen approximation to the Navier-Stokes equations are

= � u ¼ 0 ð8:9aÞ
@u
@t

þ U
@u
@x

¼ � 1
r
=pþ vH2u ð8:9bÞ

Solutions to the equations above may be established in a manner simi-
lar to that used to obtain solutions to the Stokes equations. The results so
obtained will be valid far from the body but will fail close to the body.This is
exactly the opposite of the solutions to the Strokes equations. Thus two
independent solutions are obtained, one being valid near the body and the
other being valid far from the body. By matching these two solutions, a uni-
formly valid expression will result that will be valid for small Reynolds
numbers. The details are considered to be beyond the scope of the funda-
mentals that are being treated in this book,but theymay be found in the book
byVanDyke referenced at the end of Part III.Thismethod of overcoming the
di⁄culties encountered owing to the singular perturbation is called the
method of matched asymptotic expansions.

PROBLEMS

8.1 Using the Stokes solution for uniform flow over a sphere, integrate the
pressure around the surface of the sphere to establish the pressure drag
that acts on the sphere. Hence deduce what portion of the total Stokes
drag is due to the pressure distribution and what portion is due to the
viscous shear on the surface of the sphere.

8.2 A liquid dropwhose viscosity is m0moves slowly through another liquid
of viscosity m with velocityU.The shape of the dropmay be taken to be
spherical, and themotion to be sufficiently slow that inertia of the fluid
may be neglected. The boundary conditions at the surface of the drop
are that the velocity and the tangential stresses in the two fluids are the
same.

Show that the solution to the problem above exists in which the
pressure inside the drop is proportional to x and that outside the drop is
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proportional to x=r3. From the solution, calculate the drag of the drop
and show that it is smaller than that for a rigid sphere of the same size,
the drag ratio being:

1þ 2=3ðm=m0Þ
1þ m=m0

8.3 A flow field is represented by the following equations:

u ¼ rer � ex

p ¼ 0

Show that this representation satisfies the Stokes equations.Using this
solution, find the velocity and pressure fields for a fluid that is con-
tained between two concentric spheres of radii ri and ro > ri in which
the outer sphere is rotating with angular velocity Oo about the x axis
and the inner sphere is rotating with angular velocity Oi in the same
direction.Calculate the torque that acts on each of the spheres.
From the results obtained above, deduce the velocity and pressure
fields in a fluid that is contained inside a rotating sphere and find the
torque that acts on the sphere.

8.4 A flow field is represented by the following equations:

u ¼ Hw � V

p ¼ 0

Here V is a vector of constant magnitude. Show that this representa-
tion is a solution of the Stokes equations provided that w satisfies the
following equation:

H2w� 1
v
@w
@t

¼ 0

Solve this equation for w, and hence find the velocity field generated by
a sphere of radius a that is rotating with a periodic angular velocity
jVjeiot .

8.5 Obtain a solution to the Stokes equations for the stream function
cðR; tÞ in the following form:

cðR; tÞ ¼ Rf ðyÞ
Show that this solution can be used to represent Stokes flow in a right-
angled corner in which the vertical surface x ¼ 0 is stationary and the
horizontal surface y ¼ 0 ismoving in the negative x directionwith con-
stant velocityU. Estimate the range of validity of this solution by evalu-
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ating fromit theorderofmagnitudeof the inertia terms and the viscous
terms indicated below:

inertia: ruR
@uR
@R

viscous:
m
R2

@2uR
@y2
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9

Boundary Layers

Boundary layers are the thin £uid layers adjacent to the surface of a body in
which strong viscous e¡ects exist.Figure 9.1shows the nature of the £ow ¢eld
that would exist around an arbitrary body at a Reynolds number that is not
small or of order unity. The nature of such a £ow ¢eld is known from infor-
mation gathered from large numbers of experiments.

Adotted lines is shown in Fig. 9.1 that originates at the front stagnation
point and moves downstream near the top and bottom surfaces of the body.
Outside of this dotted line, relative to the body, the velocity gradients are not
large, and so viscous e¡ects are negligible.Then, if compressible e¡ects may
be ignored, the £uidmay be considered to be ideal and the results of Part IIof
this bookmay be employed.Thus if the £ow ¢eld far upstream is uniform, it is
also irrotational there, so that Kelvin’s theorem guarantees us that the £ow
outside the dotted line is everywhere irrotational.This potential-£ow ¢eld is
frequently referred to as the ‘‘outer £ow.’’

Between the dotted line and the body there are strong viscous e¡ects
due to the large velocity gradients that exist. These large velocity gradients
are necessitated by the no-slip boundary condition on the solid boundary
which reduces the large velocities that exist in the outer £ow to zero on the
surface.This is the so-called boundary layer or inner £ow.Here the vorticity
is not zero. Vorticity is generated along the surface of the body, and it is
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di¡used across the boundary layer and convected along the boundary layer
by the mean £ow.

Towards the rear of the body, the boundary layer will encounter an
adverse pressure gradient, that is, an increasing pressure.This usually causes
the boundary layer to separate from the body, forming a so-called wake
region behind the body. The velocity gradients are not large in the wake, so
viscous e¡ects are not too important.However, all the vorticity that exists in
the boundary layers is convected into the wake, so that the £ow in the wake is
not irrotational. If the boundary layer is still laminar at separation, a shear
layer will exist of the type discussed in Sec.6.12.Such shear layerswere found
to be unstable, and over a wide range of Reynolds numbers this instability
manifests itself in the formof a periodic wake that is thewell-knownKa¤ rma¤ n
vortex street.

The coverage of boundary layers begins here with the derivation of the
boundary-layer approximation to the Navier-Stokes equations. Some exact
solutions to theseequationsare thendiscussed, including theBlasiussolution

FIGURE 9.1 Nature of the flow around an arbitrarily-shaped bluff body.

314 Chapter 9



for the boundary layer on a £at plate and the Falkner-Skan similarity solu-
tions.The Ka¤ rma¤ n-Pohlhausen approximate method is then introduced and
applied to a general boundary-layer problem. Finally, the separation of
boundary layers and their stability are discussed.

9.1 BOUNDARY-LAYER THICKNESSES

Prior to establishing the boundary-layer equations, it is useful to establish
the three types of boundary-layer thicknesses that are in common use. The
most widely used of the boundary-layer thicknesses is simply referred to as
the boundary-layer thickness, and it is denoted by d. Its usual de¢nition is that
distance y ¼ d from the solid boundary where the local value of the velocity
reaches 0.99 of the free-stream or outer-£ow value.That is,

y ¼ d when u ¼ 0:99U ð9:1aÞ

Figure 9.2a shows the boundary-layer thickness d for £ow over a £at surface.
Another type of boundary-layer thickness that is useful under certain

circumstances is the displacement thickness, which is denoted by d*.
This thickness is de¢ned as the distance by which the undisturbed outer £ow
is displaced from the boundary by a stagnant layer that removes the same
mass £ow from the £ow ¢eld as the actual boundary layer. That is, d* is
the thickness of a zero-velocity layer that has the same mass-£ow defect
as the actual boundary layer. This thickness is illustrated in Fig. 9.2b.

FIGURE 9.2 Definition sketch for (a) boundary-layer thickness, and (b) displace-
ment thickness.
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In mathematical terms, the volume of £uid that is absent owing to the pre-
sence of the boundary-layer model is Ud�. Equating this to the volume of
£uid that is absent owing to the actual boundary layer gives the equation that
de¢nes the displacement thickness.Thus

Ud� ¼
Z 1

0
ðU � uÞ dy

hence

d� ¼
Z 1

0
1� u

U


 �
dy ð9:1bÞ

A third type of boundary-layer thickness that is frequently used is the
momentum thickness, denoted by y. The momentum thickness is de¢ned as
that thickness of layer which, at zero velocity, has the same momentum
defect, relative to the outer £ow, as the actual boundary layer. Thus the
momentum thickness is a layer similar to that illustrated in Fig. 9.2b, except
that momentum £uxes rather than mass £ows are compared with the actual
boundary layer. The mass £ow that would exist through the momentum
thickness at the outer velocity would be rUy. Hence the momentum defect
due to this layer will be rU 2y. Equating this to the momentum defect in the
actual boundary layer gives

rU 2y ¼ r
Z 1

0
uðU � uÞ dy

hence

y ¼
Z 1

0

u
U

1� u
U


 �
dy ð9:1cÞ

The various thicknesses de¢ned above are, to some extent, an indication of
the distance over which viscous e¡ects extend. Each of these thickness will
be used in later sections of this chapter, but in the meantime it may be stated
that the boundary-layer thickness d is usually larger than the displacement
thickness d*,which, in turn, is usually larger than themomentumthickness y.

9.2 THE BOUNDARY-LAYER EQUATIONS

The boundary-layer equations may be derived from the Navier-Stokes
equations by either a physically based argument or a limiting procedure as
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RN ! 1.The original derivation used by Prandtl was physical in nature and
will be followed here.

Figure 9.3 shows a typical boundary-layer con¢guration on a plane
surface or on a curved surface for which d is small compared with the radius
of curvature of the surface.The only geometric length scale in such problems
is the distance x from the leading edge of the surface. For all points in the
boundary layer except those near the leading edge, the boundary-layer
thicknesswill be small compared with the distance x.That is, except near the
leading edge, d=x � 1.The x component of velocity u is of orderU , the outer
£ow velocity, and @=@x is of order 1=x in the boundary layer. Thus @u=@x is
of order U=x and hence, from the continuity equation, @v=@y is also of
order U=x. Since v will be much smaller than u in the boundary layer and
since @=@y will be much larger than @=@x, this order of @v=@ymay be met by
considering v to beof orderUd=x and @=@y asbeing of order 1=d.Thus,within
the boundary layer, the following order of magnitudes will exist:

u � U

v � U
d
x

@

@x
� 1

x
@

@y
� 1

d

FIGURE 9.3 Development of a boundary layer on a plane surface.
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The Navier-Stokes equations for the steady two-dimensional £ow
under consideration are

u
@u
@x

þ v
@u
@y

¼ � 1
r
@p
@x

þ n
@2u
@x2

þ n
@2u
@y2

u
@v

@x
þ v

@v

@y
¼ � 1

r
@p
@y

þ n
@2v

@x2
þ n

@2v

@y2

Using the order of magnitudes established above, the various terms in these
two equations will be of the following order of magnitude:

U 2

x
þ U 2

x
¼ � 1

r
@p
@x

þ n
U
x2

þ n
U
d2

dU 2

x2
þ dU 2

x2
¼ � 1

r
@p
@y

þ n
dU
x3

þ n
U
xd

No attempt has yet been made to estimate the order of magnitude of the
pressure terms, so they are carried along as they are.

In the ¢rst of these two equations, the two inertia terms are of the same
order, but the second viscous term ðn@2u=@y2Þ is seen to be much larger than
the ¢rst viscous term ðn@2u=@x2Þ. Hence the latter viscous term may be
neglected in boundary layers. Since £uid particles may be accelerated in
boundary layers, and since strong viscous e¡ects exist, the dominant viscous
term is assumed to be of the same order of magnitude as the inertia terms.
This gives

U 2

x
� n

U
d2

or

d �
ffiffiffiffiffi
nx
U

r

That is, from purely order-of-magnitude considerations it may be deduced
that the boundary-layer thickness will increase as

ffiffiffi
x

p
. Furthermore, the

condition d=x � 1 becomes

x2

d2
� Ux

n
� 1
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or

RN ¼ Ux
n

� 1

That is, the boundary-layer assumption of d=x � 1 is equivalent to the con-
dition RN � 1,where the length scale used in the Reynolds number is x.

From the foregoing discussion, it is obvious that, provided the
Reynolds number based on x is large, the x component of the Navier-Strokes
equations may be approximated by the following equation:

u
@u
@x

þ v
@u
@y

¼ � 1
r
@p
@x

þ n
@2u
@y2

Furthermore, from the order-of-magnitude balance for the y component of
the Navier-Stokes equations, it is evident that the inertia in the y direction is
of order d=x smaller than that in the x direction and so may be neglected by
comparison. Also, the viscous terms in the y direction are of order d=x smal-
ler than those that act in the x direction, and so the former may be neglected.
Thus the y component of the Navier-Stokes equations becomes

0 ¼ � 1
r
@p
@y

That is, p is independent of the transverse coordinate y in boundary layers, so
that p will be a function of x only. Thus, in boundary layers, the continuity
equation and the Navier-Stokes equations become

@u
@x

þ @v

@y
¼ 0 ð9:2aÞ

u
@u
@x

þ v
@u
@y

¼ � 1
r
dp
dx

þ n
@2u
@y2

ð9:2bÞ

It will be noticed that the loss of the highest derivative in x now makes the
governing equations parabolic, whereas the Navier-Stokes equations are
elliptic. This mathematical change has physical consequences that will be
exposed in later sections.

Since the pressure p is independent of the transverse coordinate y in
boundary layers, the pressure distribution along the boundary layer will be
the same as that of the outer £ow.But the outer £ow is a potential £ow, and so
the Bernoulli equation is valid.Hence

p
r
þ 1
2
U 2 ¼ constant
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where the outer velocity U will be a constant for £ow over a plane surface,
but in general it will be a function of x.Thus, from the Bernoulli equation

� 1
r
@p
@x

¼ U
dU
dx

Substituting this result into Eq. (9.2b) gives the following alternative form of
the Prandtl boundary-layer equation:

u
@u
@x

þ v
@u
@y

¼ U
dU
dx

þ n
@2u
@y2

ð9:2cÞ

The boundary conditions that accompany any boundary-layer equa-
tions are the no-slip conditions on the surface and the condition that the
outer-£ow velocity is recovered far from the surface. That is, the following
boundary conditions must be satis¢ed:

uðx; 0Þ ¼ 0 ð9:3aÞ
vðx; 0Þ ¼ 0 ð9:3bÞ
uðx; yÞ ! U ðxÞ as y ! 1 ð9:3cÞ

The last condition in e¡ect matches the inner £ow to the outer £ow, so that
the potential-£ow solution must be known before the boundary-layer pro-
blem can be solved.

The alternative way of deriving the boundary-layer equations from the
Navier-Stokes equations involves a limiting procedure similar to that which
was used to extract the Stokes equations from the full Navier-Stokes equa-
tions. The Navier-Stokes equations are ¢rst written in terms of dimension-
less variables, which results in a coe⁄cient 1=RN appearing in front of the
viscous terms. Stretched coordinates X ¼ x and Y ¼ ffiffiffiffiffiffiffiffiffi

RNy
p

are then intro-
duced,which removes the coe⁄cient 1=RN from one of the viscous terms. If
the limit RN ! 1 while X and Y are held ¢xed is now taken, the boundary-
layer equationswill be obtained.This approach is useful if higher approxim-
ations to the boundary-layer theory are required, that is, if an expansion type
of solution is sought.However, the nature of the coordinate stretching is not
obvious without appealing to the physical approach.

9.3 BLASIUS SOLUTION

An exact solution to the boundary-layer equations corresponding to a uni-
form £ow over a £at surface was obtained by Blasius.The £ow con¢guration
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for a £at boundary is shown in Fig. 9.3, where it is understood that U is a
constant and d is a function of x. SinceU is constant, the pressure term in the
boundary-layer equation is identically zero. Thus the continuity equation
and the boundary-layer approximation to the Navier-Stokes equations are

@u
@x

þ @v

@y
¼ 0

u
@u
@x

þ v
@u
@y

¼ n
@2u
@y2

In order to reduce this pair of equations to a single equation, a stream func-
tion de¢ned by u ¼ @c=@y; v ¼ �@c=@x is introduced. This satis¢es the
continuity equation identically for all stream functions c and yields the
following form of the boundary-layer equation:

@c
@y

@2c
@x@y

� @c
@x

@2c
@y2

¼ n
@3c
@y3

Since this is a parabolic partial di¡erential equation and since there is
no geometric length scale in the problem, a similarity type of solutionwill be
sought. Similarity solutions were discussed in Sec. 7.4 and, in the context of
the problem in hand,were shown to be of the form

cðx; yÞ � f ðZÞ

where

Z � y
xn

The value of n for the case of a £at surface is 1
2, so that the similarity variable Z

is chosen to be

Z ¼ yffiffiffiffiffiffiffiffiffiffiffiffi
nx=U

p
Here, the parameters nandU havebeen used to render the similarity variable
dimensionless.For this choice of Z, the x component of velocity will have the
following functional form:

u ¼ @c
@y

�
ffiffiffiffiffi
U
nx

r
f 0ðZÞ
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where the prime denotes di¡erentiation with respect to Z. But when Z ¼
constant, u should be constant, so that the proportionality factor in the
equation cðx; yÞ � f ðZÞ should include a

ffiffiffi
x

p
. Then, since the units of c are

a length squared divided by time, the dimensions will be correct if the
proportionality factor also includes

ffiffiffiffiffiffiffi
nU

p
. That is, similarity solution of the

following form is sought:

cðx; yÞ ¼
ffiffiffiffiffiffiffiffiffi
nUx

p
f ðZÞ

where

Z ¼ yffiffiffiffiffiffiffiffiffiffiffiffi
nx=U

p
From these expressions, the various derivatives that appear in the

boundary-layer equation may be evaluated as follows:

@c
@x

¼ �U
2
y
x
f 0 þ 1

2

ffiffiffiffiffiffiffi
nU

p 1
x1=2

f

¼ � 1
2

ffiffiffiffiffiffiffi
nU
x

r
Z f 0 þ 1

2

ffiffiffiffiffiffiffi
nU
x

r
f

@c
@y

¼ Uf 0

@2c
@x@y

¼ �U
2

ffiffiffiffiffi
U
n

r
y

x3=2
f 00 ¼ � U

2x
Z f 00

@2c
@y2

¼ U

ffiffiffiffiffi
U
nx

r
f 00

@3c
@y3

¼ U 2

nx
f 000

Substituting these results into the equation for the stream function gives

� U 2

2x
Z f 0f 00 � U 2

2x
ð f � Z f 0Þf 00 ¼ U 2

x
f 000

or

� U 2

2x
ff 00 ¼ U 2

x
f 000
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Since xmay be canceled from this equation, the existence of a similarity type
of solution is con¢rmed. That is, a solution of the assumed form exists pro-
vided the function f satis¢es the following conditions:

f 000 þ 1
2
ff 00 ¼ 0 ð9:4aÞ

f ð0Þ ¼ f 0ð0Þ ¼ 0 ð9:4bÞ
f 0ðZÞ ! 1 as Z ! 1 ð9:4cÞ

The boundary conditions ð9:4bÞ and ð9:4cÞ follow from the no-slip boundary
conditions and the matching condition with the outer £ow as described by
Eqs. (9.3). From the solution to this problem the stream function may be
obtained using the relationship

cðx; yÞ ¼
ffiffiffiffiffiffiffiffiffi
nUx

p
f

yffiffiffiffiffiffiffiffiffiffiffiffi
nx=U

p
 !

ð9:4dÞ

The problem represented by Eqs. (9.4a), (9.4b), and (9.4c) is a well-
posed problem. It is shown in the problems at the end of this chapter that the
di¡erential equation may be reduced in order. However, numerical integra-
tion is eventually required. In spite of this, the Blasius solution to the
boundary-layer equations is considered to be exact, since the partial di¡er-
ential equation has been reduced to an ordinary di¡erential equation that,
together with the appropriate boundary conditions, may be solved numeri-
cally to a high degree of accuracy.

The results of interest that should be extracted from the solution are the
shear-stress distribution along the surface, the drag acting on the surface,
and the boundary-layer thickness.The shear stress on the surface is given by

t0ðxÞ ¼ m
@u
@y

ðx; 0Þ

¼ m
@2c
@y2

ðx; 0Þ

¼ m

ffiffiffiffiffiffiffi
U 3

nx

r
f 00ð0Þ

Nondimensionalizing this surface shear stress bymeans of thekinetic energy
in the free stream gives

t0ðxÞ
1
2rU

2
¼ 2f 00ð0Þffiffiffiffiffiffiffi

RN
p
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where the Reynolds number is based on the distance x from the leading edge
of the surface to the location under consideration. But the value of f 00ð0Þ is
found numerically to be 0.332, so that the shear-stress distribution along the
surface will be given by the expression

t0ðxÞ
1
2rU

2
¼ 0:664ffiffiffiffiffiffiffi

RN
p ð9:5aÞ

This result shows that the shear stress falls o¡ as
ffiffiffi
x

p
along the surface.

The drag force acting on the surface may be evaluated by integrating
the shear stress.That is, the drag force acting on the surface up to the station x
will be given by

FD ¼
Z x

0
t0ðxÞ dx

Thus the drag coe⁄cient of the surface will be

CD ¼ FD=x
1
2 rU

2
¼ 1

x

Z x

0

t0ðxÞ
1
2 rU

2
dx

Using the result obtained above for the surface shear-stress distribution
gives

CD ¼ 0:664
x

Z x

0

dxffiffiffiffiffiffiffi
RN

p

CD ¼ 1:328ffiffiffiffiffiffiffi
RN

p ð9:5bÞ

Strictly speaking, the shear-stress distribution given by Eq. ð9:5aÞshould not
be used near the leading edge of the surface, since the boundary-layer
assumptions are no longer valid there. However, any di¡erence between the
actual shear-stress and that given by Eq. ð9:5aÞ is not likely to create any
signi¢cant discrepancy because of the relatively short distance involved.The
shear stress actually has a singularity at x ¼ 0, but this singularity is integr-
able, so that the drag force is not singular. Indeed, Eq. ð9:5bÞ shows that the
drag force varies as

ffiffiffi
x

p
,where x is the point up towhich the accumulateddrag

is being considered.
To obtain the boundary-layer thickness, it is observed from the

numerical solution that u ¼ 0:99U when Z ¼ 5:0.Then, using the de¢nition
of Z and the fact that y ¼ dwhen u ¼ 0:99U gives

dffiffiffiffiffiffiffiffiffiffiffiffi
nx=U

p ¼ 5:0
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hence

d
x
¼ 5:0ffiffiffiffiffiffiffi

RN
p ð9:5cÞ

where, again, the length used in the Reynolds number is the distance x to
which the boundary-layer thickness applies. In the same way the following
expressions are obtained from the numerical results for the displacement
thickness and the momentum thickness:

d�

x
¼ 1:72ffiffiffiffiffiffiffi

RN
p ð9:5dÞ

y
x
¼ 0:664ffiffiffiffiffiffiffi

RN
p ð9:5eÞ

These results show that the various boundary-layer thicknesses grow as
ffiffiffi
x

p
and that y < d� < d.

9.4 FALKNER-SKAN SOLUTIONS

Awhole family of similarity solutions to the boundary-layer equations were
found by Falkner and Skan.These solutions are obtained by seeking general
similarity-type solutions and interpreting the £ow ¢eld for each solution so
obtained.

Look for general similarity solutions of the form

uðx; yÞ ¼ U ðxÞ f 0ðZÞ

where

Z ¼ y
xðxÞ

Here, U ðxÞ is the outer £ow and xðxÞ is an unspeci¢ed function of x that will
be determined later. For this form of velocity the stream function must be

cðx; yÞ ¼ U ðxÞxðxÞ f ðZÞ

But, from Eq. ð9:2cÞ, the equation to be satis¢ed by c is

@c
@y

@2c
@x@y

� @c
@x

@2c
@y2

¼ U
dU
dx

þ n
@3c
@y3
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The various terms that appear in this equation may be evaluated as follows:

@c
@x

¼ � dU
dx

x f þ U
dx
dx

f � Ux
y
x2

dx
dx

f 0

¼ dU
dx

x f þ U
dx
dx

f � U
dx
dx

Z f 0

@c
@y

¼ Uf 0

@2c
@x@y

¼ dU
dx

f 0 � U
y
x2

dx
dx

f 00

¼ dU
dx

f 0 � U
x
dx
dx

Z f 00

@2c
@y2

¼ U
x
f 00

@3c
@y3

¼ U
x2

f 000

Substituting these results into the equation to be satis¢ed by c gives

Uf 0
dU
dx

f 0 � U
x
dx
dx

Z f 00
� �

� dU
dx

x f þ U
dx
dx

f � U
dx
dx

Z f 0
� �

U
x
f 00 ¼ U

dU
dx

þ n
U
x2

f 000

U
dU
dx

ð f 0Þ2 � U
dU
dx

ff 00 � U 2 1
x
dx
dx

ff 00 ¼ U
dU
dx

þ n
U
x2

f 000

where the second term in the ¢rst bracket has been canceled with the third
term in the second bracket. Combining the second and third terms of this
equation gives

U
dU
dx

ð f 0Þ2 � U
x

d
dx

ðUxÞff 00 ¼ U
dU
dx

þ n
U
x2

f 000

This equation may be put in standard formby multiplying by x2=ðnU Þ, giving

f 000 þ x
n
d
dx

ðUxÞ
� �

ff 00 þ x2

n
dU
dx

� �
f1� ðf 0Þ2g ¼ 0
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If a similarity solution exists, this should now be an ordinary di¡erential
equation for the function f in terms of Z.Thus the two coe⁄cients inside the
brackets should be constants at most, say a and b, respectively.That is, for a
similarity solution we must have

x
n
d
dx

ðUxÞ ¼ a

x2

n
dU
dx

¼ b

where a and b are constants.Aconvenient alternative to one of the preceding
equations may be obtained as follows:

d
dx

ðUx2Þ ¼ 2Ux
dx
dx

þ x2
dU
dx

¼ 2x U
dx
dx

þ x
dU
dx

� �
� x2

dU
dx

¼ 2x
d
dx

ðUxÞ � x2
dU
dx

i.e.,
d
dx

ðUx2Þ ¼ nð2a� bÞ

This equation, together with either of the foregoing two equations, is su⁄-
cient to relate U and x to the constants a and b. In terms of a and b, the dif-
ferential equation to be solved for the function f is

f 000 þ aff 00 þ b½1� ðf 0Þ2� ¼ 0

The boundary conditions that accompany this di¡erential equation are the
same as for the £at surface. If the problem so obtained is a solvable one, then
we have found an exact solution to the boundary-layer equations.

From the foregoing analysis and discussion, it is evident that exact
solutions to the boundary-layer equations may be obtained by pursuing the
following procedure:

1. Select values of the constants a and b.
2. Find the corresponding values ofU ðxÞ and xðxÞ from the relations

d
dx

ðUx2Þ ¼ nð2a� bÞ ð9:6aÞ

x2
dU
dx

¼ bn ð9:6bÞ
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3. Determine the function f ðZÞ that is the solution to the following
problem:

f 000 þ aff 00 þ b½1� ðf 0Þ2� ¼ 0 ð9:6cÞ
f ð0Þ ¼ f 0ð0Þ ¼ 0 ð9:6dÞ

f 0ðZÞ ! 1 as Z ! 1 ð9:6eÞ
4. The stream function for the flow field in the boundary layer is then

given by

cðx; yÞ ¼ U ðxÞxðxÞf y
xðxÞ
� �

ð9:6f Þ

Having chosen the constants a and b, a particular £ow con¢guration is
being considered.This £ow con¢gurationwill not be known a priori but will
become evident when step 2 is completed. The function U ðxÞ is the outer-
£ow velocity, which is the potential-£ow velocity for the geometry under
consideration. Then, when U ðxÞ is established through step 2, comparison
with the results of Chap. 4 will reveal the geometry of the problem. Since a
and b have been chosen, the problem to be satis¢ed by the function f ðZÞ is
now explicit, so a solution may be sought. This solution, together with the
quantities U ðxÞ and xðxÞ, completely determines the stream function for the
problem fromwhich all properties of the £ow ¢eld may be derived.

Several exact solutions to the boundary-layer equations may be
obtained by the foregoing method.The solution corresponding to a £at sur-
face,which has already been established,will be obtained from the Falkner-
Skan solutions to illustrate the procedure and to verify the result. Some new
solutions to the boundary-layer equationswill then be established in the next
few sections.

It should be noted that for a ¼ 1 numerical solutions to Eqs. (9.6) show
that f 00ð0Þ ! 0 as b is decreased. The value for which f 00ð0Þ ¼ 0 is
b ¼ �0:1988, and for values of b that are smaller than this value, f 0ðZÞ > 1 at
some location.This corresponds to u > U ,which is physically unreasonable.
Therefore, for a ¼ 1,we must have b > �0:1988.

The solution corresponding to a £at surface is obtained by choosing
a ¼ 1

2 and b ¼ 0 in the Falkner-Skan solutions. Then, from Eqs. (9.6a) and
(9.6b),

d
dx

ðUx2Þ ¼ n

x2
dU
dx

¼ 0
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Since xðxÞ cannot be zero, the second of these equations shows that
U ðxÞ ¼ c,where c is a constant.Then the other equation shows that

xðxÞ ¼
ffiffiffiffiffi
nx
c

r

The fact that U ðxÞ is a constant in this case identi¢es the geometry as a £at
surface rather than a curvilinear one that may be thought of as being stret-
ched out into a plane.Using the values of aandbchosen above,the problem to
be solved by the function f ðZÞ is

f 000 þ 1
2
ff 00 ¼ 0

f ð0Þ ¼ f 0ð0Þ ¼ 0

f 0ðZÞ ! 1 as Z ! 1

The stream function is then given by

cðx; yÞ ¼ ffiffiffiffiffiffiffi
cnx

p
f

yffiffiffiffiffiffiffiffiffiffi
nx=c

p
 !

These results are seen to agree identically with the Blasius solution,which is
given by Eqs. (9.4).

9.5 FLOWOVER AWEDGE

The solution to the boundary-layer equations corresponding to £ow over a
wedge may be obtained from the Falkner-Skan equations by setting a ¼ 1
and keeping b arbitrary.Then, from Eqs. (9.6a) and (9.6b) with a ¼ 1; U ðxÞ
and xðxÞwill be de¢ned by the following equations:

d
dx

ðx2U Þ ¼ nð2� bÞ

x2
dU
dx

¼ nb

Integrating the ¢rst of these equations gives

x2U ¼ nð2� bÞx
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Dividing the second of the foregoing equations by this last result gives

1
U

dU
dx

¼ b
2� b

1
x

This equation may be integrated directly to give

logU ¼ b
2� b

log x þ log c

where c is an arbitrary constant. Hence the outer-£ow velocity correspond-
ing to our choice of a is

U ðxÞ ¼ cxb=ð2�bÞ ð9:7aÞ

but

x2
dU
dx

¼ nb

;x2c
b

2� b
x�2ð1�bÞ=ð2�bÞ ¼ nb

hence

xðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2� bÞ

c

r
xð1�bÞ=ð2�bÞ ð9:7bÞ

Equation (9.7a) shows that the outer £ow is that over a wedge of angle
pb. This may be shown by using the potential £ow for a sector whose angle,
measured in the £uid, is p=n.The result, as given by Eq. (4.10), is

FðzÞ ¼ Uzn

;W ðzÞ ¼ nUzn�1

that is,

u� iv ¼ nU ðx þ iyÞn�1

Hence on the surface y ¼ 0 the velocity components are

u ¼ nUxn�1

v ¼ 0
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That is, the velocity given by Eq. (9.7a) has the same form as that near the
boundary of the £ow in a sector of angle p=n. To ¢nd the angle of the wedge
corresponding to Eq. (9.7a), the exponents of x in these two expressions are
equated.Hence

n� 1 ¼ b
2� b

This gives the angle of the half wedge measured in the £uid. Then, from the
symmetry of the £ow ¢eld, the angle of the wedge will be 2ðp� p=nÞ. From
the equation above, this angle is pb,which is shown in Fig. 9.4.

From Eqs. (9.6c), (9.6d), and (9.6e), the problem to be solved for the
function f is

f 000 þ ff 00 þ b½1� ðf 0Þ2� ¼ 0 ð9:7cÞ
f ð0Þ ¼ f 0ð0Þ ¼ 0 ð9:7dÞ

f 0ðZÞ ! 1 as Z ! 1 ð9:7eÞ
This problem may be solved numerically. Having obtained the solution for
f ðZÞ, the stream function will be given by Eq. (9.6f ),whereU ðxÞ and xðxÞ are
given by Eqs. (9.7a) and (9.7b).This gives

cðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð2� bÞn

p
x1=ð2�bÞf

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2� bÞn=cp x�ð1�bÞ=ð2�bÞ
 !

ð9:7f Þ

FIGURE 9.4 Boundary-layer flow over a wedge.
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9.6 STAGNATION-POINT FLOW

Another exact solution to the boundary-layer equations that may be
obtained from the Falkner-Skan similarity solution is that corresponding to
a stagnation-point £ow. The values of the constants a and b that yield this
solution are a ¼ b ¼ 1. But this is equivalent to letting b be unity in the
solution for the £ow over a wedge. Then the angle of the wedge becomes p,
which means the £ow impinges on a £at surface yielding a plane stagnation
point.

The solution may be obtained by setting b ¼ 1 in Eqs. (9.7).This gives

U ðxÞ ¼ cx ð9:8aÞ

xðxÞ ¼
ffiffiffi
n
c

r
ð9:8bÞ

f 000 þ ff 00 þ 1� ð f 0Þ2 ¼ 0 ð9:8cÞ

f ð0Þ ¼ f 0ð0Þ ¼ 0 ð9:8dÞ

f 0ðZÞ ! 1 as Z ! 1 ð9:8eÞ

cðx; yÞ ¼ ffiffiffiffiffi
cn

p
xf

yffiffiffiffiffiffiffi
n=c

p
 !

ð9:8f Þ

It will be noticed that this is precisely the exact solution to the full Navier-
Stokes equations that was obtained by Hiemenz for a stagnation point.This
solution is given by Eqs. ð7:7aÞ, ð7:7bÞ, and ð7:7cÞ.Thus the exact solution to
the boundary-layer equations is also an exact solution to the full Navier-
Stokes equations in this instance.

9.7 FLOW IN ACONVERGENTCHANNEL

The boundary-layer solution for £ow in a convergent channel may be
obtained from the Falkner-Skan solution by choosing a ¼ 0 and b ¼ 1. For
these values of the constants, Eqs. (9.6a) and (9.6b) become

d
dx

ðUx2Þ ¼ �n

x2
dU
dx

¼ n
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Integrating the ¢rst of these equations gives

Ux2 ¼ �nx

and dividing the second equation by this last result gives

1
U

dU
dx

¼ � 1
x

Integrating this equation shows that the outer-£ow velocity is of the form

U ðxÞ ¼ � c
x

ð9:9aÞ

where c is a constant.Then from one of the results above it follows that

xðxÞ ¼
ffiffiffi
n
c

r
x ð9:9bÞ

Equation (9.9a) is the potential-£ow velocity for £ow in a convergent chan-
nel. That is, the solution obtained here corresponds to a boundary layer on
the wall of a convergent channel in which the £ow is directed inward to the
apex of the channel walls.This £ow con¢guration is shown in Fig. 9.5. It will
be noted that for c < 0, that is, for outward £ow from the apex, Eq. (9.9b)
shows that no solution exists. This may be interpreted as meaning that for

FIGURE 9.5 Boundary-layer flow on the wall of a convergent channel.
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£ow in a divergent channel the adverse pressure gradient will cause the
boundary layers to separate, and hence a reverse £ow will result.This situa-
tion was encountered in Sec. 7.8 when the exact solution for viscous £ow in
convergent and divergent channels was studied.

For a ¼ 0 and b ¼ 1, the problem to be satis¢ed by the function f ðZÞ is

f 000 þ 1� ðf 0Þ2 ¼ 0 ð9:9cÞ

f ð0Þ ¼ f 0ð0Þ ¼ 0 ð9:9dÞ

f 0ðZÞ ! 1 as Z ! 1 ð9:9eÞ

Then,using Eq. (9.6f ) and the results (9.9a) and (9.9b), the value of the stream
function will be

cðx; yÞ ¼ � ffiffiffiffiffi
cn

p
f

yffiffiffiffiffiffiffi
n=c

p
x

 !
ð9:9f Þ

9.8 APPROXIMATE SOLUTION FOR A FLAT
SURFACE

The foregoing solutions have all been exact in the sense that a similarity form
of solution reduced the governing partial di¡erential equations to a non-
linear ordinary di¡erential equation that could be solved numerically to a
high degree of accuracy. For situations where an exact solution does not
exist, an approximate solution must be sought. One of the classical approx-
imate methods which is widely used was introduced by von Ka¤ rma¤ n and
re¢ned by Pohlhausen.The basic procedure will be presented in this section
in the context of boundary-layer £owon a £at surface, and the procedure will
be generalized in the next section.

For £ow over a £at surface the outer velocity U is constant, so that the
boundary-layer equations are

@u
@x

þ @v

@y
¼ 0

u
@u
@x

þ v
@u
@y

¼ n
@2u
@y2

Normally, a functional form of solution to these equations is sought that
satis¢es the equations identically at each point in space, that is, at each
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value of x and y, and that tends to the appropriate values on the bound-
aries. If such a solution cannot be found, it may be possible to satisfy the
basic equations on the average rather than at each and every point in the
£uid. That is, if the boundary-layer equation is integrated with respect to
y across the boundary layer, the resulting equation will represent a bal-
ance between the average inertia forces and viscous forces for each x
location. Then a velocity distribution may be obtained that satis¢es this
averaged balance of forces but that does not satisfy the balance at each
point across the boundary layer. The results that are extracted from such
approximate solutions are found to be reasonably accurate in most
instances.

Prior to integrating the boundary-layer equations, it is useful to recast
them in a slightly di¡erent form.The term u @u=@x may be rewritten as fol-
lows:

u
@u
@x

¼ @

@x
ðu2Þ � u

@u
@x

¼ @

@x
ðu2Þ þ u

@v

@y

in which @u=@x has been replaced by �@v=@y from the continuity equation.
Thus the boundary-layer form of the equation for the x momentum may be
written in the form

@

@x
ðu2Þ þ u

@v

@y
þ v

@u
@y

¼ n
@2u
@y2

or

@

@x
ðu2Þ þ @

@y
ðuvÞ ¼ n

@2u
@y2

This equation is still exact within the boundary-layer approximation. This
local balance of forces will now be reduced to an average balance across the
boundary layer by integrating with respect to y from y ¼ 0 to y ¼ d.

Z d

0

@

@x
ðu2Þdy þ ½uv�20 ¼ n

@u
@y

� �d
0

But, uðx; 0Þ ¼ vðx; 0Þ ¼ 0 from the no-slip boundary condition and
uðx; dÞ ¼ U ,which is the outer-£ow velocity. Also, m @u=@y ¼ t0, the surface
shear stress,when y ¼ 0, and since the boundary-layer velocity pro¢le should
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blend smoothly into the outer-£ow velocity at y ¼ d; @u=@y ¼ 0 there.Hence
the integrated boundary-layer equation becomesZ d

0

@

@x
ðu2Þdy þ U vðx; dÞ ¼ � t0

r

The quantity vðx; dÞmay be evaluated by integrating the continuity equation
between the limits y ¼ 0 and y ¼ d.This givesZ d

0

@u
@x

dy þ ½v�d0 ¼ 0

;U vðx; dÞ ¼ �U
Z d

0

@u
@x

dy

Then the integrated boundary-layer equationmay bewritten in the following
form: Z d

0

@

@x
ðu2Þdy � U

Z d

0

@u
@x

dy ¼ � t0
r

Finally, these two integrals involving derivatives may be expressed as deri-
vatives of integrals through the rule of Leibnitz. For any function f ðx; yÞ this
rule statesZ bðxÞ

aðxÞ

@f
@x

ðx; yÞdy ¼ d
dx

Z bðxÞ

aðxÞ
f ðx; yÞdy � f ðx; bÞ db

dx
þ f ðx; aÞ da

dx

Using this rule, the integrals that appear above may be rewritten as follows:

Z d

0

@

@x
ðu2Þdy ¼ d

dx

Z d

0
u2 dy � U 2 dd

dxZ d

0

@u
@x

dy ¼ d
dx

Z d

0
u dy � U

dd
dx

Thus the integrated boundary layer equation becomes

d
dx

Z d

0
u2 dy � U

d
dx

Z d

0
u dy ¼ � t0

r

Since U is a constant, it may be taken inside the derivative and the integral,
and the two integrals may be combined.This gives
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d
dx

Z d

0
uðU � uÞdy ¼ t0

r

This equation is known as the momentum integral, and it is valid for bound-
ary layer £ow over a £at surface. Physically, this equation states that the rate
of change of the momentum in the entire boundary layer at any value of x is
equal to the force produced by the shear stress at the surface at that loca-
tion.

The manner in which the momentum integral is used is as follows:
A form of velocity pro¢le is ¢rst assumed, typically a polynomial in y. The
arbitrary constants in this expression are used to match the required
boundary conditions.These boundary conditions are

uðx; 0Þ ¼ 0

uðx; dÞ ¼ U

@u
@y

ðx; dÞ ¼ 0

The ¢rst of these conditions is the no-slip boundary condition at the surface,
the second condition matches the boundary-layer velocity to the outer-£ow
velocity, and the third condition ensures that the matching is smooth at
y ¼ d. It should be noted that all the higher derivatives should also be zero at
y ¼ d for a smooth transition from the boundary layer to the outer £ow.The
number of conditions that can be satis¢ed, of course, depends upon the
number of free parameters in the assumed velocity pro¢le. It should further
be noted that a series of boundary conditions should also be imposed at
y ¼ 0.The boundary-layer equation for this case is

u
@u
@x

þ v
@u
@y

¼ n
@2u
@y2

Hence the no-slip boundary condition at y ¼ 0would automatically result in
@2u=@y2 ¼ 0 at y ¼ 0 if our velocity pro¢le was the correct one. However,
since we know that our assumed velocity pro¢le is not the correct one, this
boundary condition must be imposed separately. Likewise, by di¡erentiat-
ing the boundary-layer equation, conditions for the third and higher deriva-
tives will be obtained which should be imposed separately in our
approximate solution. The number of boundary conditions out of this in¢-
nite array at y ¼ 0 and y ¼ dwhich can be accommodated depends upon the
number of free parameters that are available.Normally the three conditions
mentioned above are included in the order of priority in which they are
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written down, then the condition @2u=@y2 ¼ 0 at y ¼ 0 is imposed, then
@2u=@y2 ¼ 0 at y ¼ d, and so on.

Typically, the velocity pro¢le is taken to be a polynomial in y, and the
degree of this polynomial determines the number of boundary conditions
that may be satis¢ed. For the case under consideration we propose the
following form:

u
U

¼ a0 þ a1
y
d
þ a2

y
d


 �2
Then three boundary conditions may be satis¢ed, and since these boundary
conditions all involve constants, the quantities a0, a1, and a2 will be con-
stants.Thus the velocity pro¢le represented above will be similar at the var-
ious values of x and so represents a similarity type of pro¢le. The boundary
conditions uðx; 0Þ ¼ 0; uðx; dÞ ¼ U , and @u=@yðx; dÞ ¼ 0 give, respectively,

0 ¼ a0

1 ¼ a0 þ a1 þ a2

0 ¼ a1 þ 2a2

The solution to these equations is a0 ¼ 0, a1 ¼ 2, and a2 ¼ �1, so that the
velocity pro¢le becomes

u
U

¼ 2
y
d
� y

d


 �2
ð9:10aÞ

Using the assumed velocity pro¢le across the boundary layer will
reduce the momentum integral to an ordinary di¡erential equation for the
boundary-layer thickness dðxÞ. The terms that appear in the momentum
integral may be evaluated as follows:

Z d

0
uðU � uÞ dy ¼ U 2

Z d

0

u
U

1� u
U


 �
dy

¼ U 2
Z d

0
2
y
d
� y

d


 �2� �
1� 2

y
d
þ y

d


 �2� �
dy

¼ dU 2
Z 1

0
ð2Z� Z2Þð1� 2Zþ Z2ÞdZ

¼ 2
15

dU 2

t0 ¼ m
@u
@y

��
y¼0
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¼ mU
@

@y
2
y
d
� y

d


 �2� �
y¼0

¼ m
U
d

@

@Z
ð2Z� Z2Þ��Z¼0

¼ 2m
U
d

Substituting these results into the momentum integral gives

d
dx

2
15

dU 2
� �

¼ 2nU
d

d dd ¼ 15
n
U

dx

Integrating this equation and setting d ¼ 0 when x ¼ 0 gives

d ¼
ffiffiffiffiffiffi
30

p ffiffiffiffiffi
nx
U

r

In nondimensional form this result becomes

d
x
¼ 5:48ffiffiffiffiffiffiffi

RN
p ð9:10bÞ

where the length scale that has been used in the Reynolds number is the dis-
tance x. Equation (9.10b) compares favorably with Eq. (9.5c), which is the
exact solution for a £at surface.The relation t0 ¼ 2mU=d shows that the shear
stress on the surface is given by

t0
1
2rU

2
¼ 0:73ffiffiffiffiffiffiffi

RN
p ð9:10cÞ

This result also compares favorably with the exact solution,which is given by
Eq. (9.5a).

It is evident that the momentum-integral approach is capable of pro-
ducing meaningful results, even when it is used in conjunction with a rather
crude approximation to the form of the velocity pro¢le. In the case under
consideration here a second-degree polynomial was used. An even more
crude representation of the velocity pro¢le would be a straight line that
matches only the boundary conditions uðx; 0Þ ¼ 0 and uðx; dÞ ¼ U . On the
other hand, third-, or higher-degree polynomials could also be employed
that would yield more accurate results. The second-order pro¢le used here
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gives @2u=@y2ðx; 0Þ ¼ �2U=d2 instead of zero. By employing a third-degree
polynomial the correct velocity curvature could be imposed, which would
yieldmore accurate results.Thiswill be con¢rmed in the problems at the end
of the chapter.

9.9 GENERAL MOMENTUM INTEGRAL

The momentum integral that was developed in the previous section for £at
surfaceswill begeneralizedhereto includeouter £owswhosevelocitiesare, in
general, functionsof x.Theboundary layermay still be considered tobe stret-
ched out in a plane, provided the radius of curvature of the body is large com-
pared with the boundary-layer thickness, and centrifugal e¡ects are
negligible. In such cases the outer-£ow velocityU ðxÞwill not be constant but
willbede¢nedbythepotential-£owsolutionforthebodyunderconsideration.

Performing the samemanipulation on the term u @u=@x as was carried
out in the previous section, the boundary-layer equations may be written in
the form

@u
@x

þ @v

@y
¼ 0

@

@x
ðu2Þ þ @

@y
ðuvÞ ¼ U

dU
dx

þ m
r
@2u
@y2

Integrating the second equation across the boundary layer and utilizing
the boundary conditions uðx; 0Þ ¼ 0; uðx; dÞ ¼ U ; m @u=@yðx; 0Þ ¼ t0, and
@u=@yðx; dÞ ¼ 0 givesZ d

0

@

@x
ðu2Þ dy þ U vðx; dÞ ¼ dU

dx

Z d

0
U dy � t0

r

The outer-£ow velocityU ðxÞ at the edge of the boundary layer depends upon
x only, and dU=dx has been taken outside the integral whileU has been kept
inside the integral in the pressure term. This is purely a matter of con-
venience that will permit two integrals to be combined in the subsequent
analysis. Integrating the continuity equation shows that

vðx; dÞ ¼ �
Z d

0

@u
@x

dy

so that the momentum-integral equation becomesZ d

0

@

@x
ðu2Þ dy � U

Z d

0

@u
@x

dy ¼ dU
dx

Z d

0
U dy � t0

r
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Using Leibnitz’s rule permits the order of the integration and the di¡er-
entiation to be interchanged, yielding the following result:

d
dx

Z d

0
u2 dy � U 2 dd

dx
� U

d
dx

Z d

0
u dy þ U 2 dd

dx
¼ dU

dx

Z d

0
U dy � t0

r

The second integral may be rewritten as follows:

U
d
dx

Z d

0
u dy ¼ d

dx

Z d

0
Uudy � dU

dx

Z d

0
u dy

Thus the momentum integral becomes

d
dx

Z d

0
u2 dy � d

dx

Z d

0
Uu dy þ dU

dx

Z d

0
u dy ¼ dU

dx

Z d

0
U dy � t0

r

The ¢rst and second integralsmay nowbe combined and the third and fourth
integrals may be combined to give

d
dx

Z d

0
uðU � uÞ dy þ dU

dx

Z d

0
ðU � uÞ dy ¼ t0

r

But the integrands of these two integrals are essentially zero for y > d, so that
the upper limits of integration may be taken to be in¢nity.This gives

d
dx

U 2
Z 1

0

u
U

1� u
U


 �
dy

� �
þ dU

dx
U
Z 1

0
1� u

U


 �
dy ¼ t0

r

Now the ¢rst integral is themomentum thickness y and the second integral is
the displacement thickness d�, as may be seen from comparison with
Eqs. (9.1c) and (9.1b), respectively. Then the momentum integral may be
rewritten in the form

d
dx

ðU 2yÞ þ dU
dx

Ud� ¼ t0
r

Expanding the ¢rst derivative and dividing the entire equation by U 2 yields
the following alternative form of the generalized momentum integral:

dy
dx

þ ð2yþ d�Þ 1
U

dU
dx

¼ t0
rU 2 ð9:11Þ

For any assumed form of velocity pro¢le across the boundary layer, y,
d�, and t0 may be evaluated from their de¢nitions. Then Eq. (9.11) will
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provide an ordinary di¡erential equation that may be solved for the bound-
ary-layer thickness.The manner in which the solution is carried out, for the
case of a fourth-order polynomial for u,will be covered in the next section.

9.10 KA¤ RMA¤ N-POHLHAUSEN APPROXIMATION

The general momentum integral, when used in conjunction with a fourth-
order polynomial to represent the velocity pro¢le, is known as the Ka¤ rma¤ n-
Pohlhausen method.The velocity pro¢le is taken to be of the form

u
U

¼ aþ bZþ cZ2 þ dZ3 þ eZ4

where

Zðx; yÞ ¼ y
dðxÞ

The coe⁄cients a, b, c, d, and e will, in general, be functions of x, so that
solutions which are not similar may be obtained. The foregoing velocity
pro¢le can satisfy ¢ve boundary conditions, and these are taken to be

uðx; 0Þ ¼ 0

uðx; dÞ ¼ U ðxÞ
@u
@y

ðx; dÞ ¼ 0

@2u
@y2

ðx; 0Þ ¼ �U ðxÞ
n

dU ðxÞ
dx

@2u
@y2

ðx; dÞ ¼ 0

The fourth boundary condition comes from the boundary-layer form of the
momentum equation and the no-slip boundary condition. In terms of the
dimensionless velocity u=U and the dimensionless coordinate Z ¼ y=d, these
boundary conditions become

u
U

¼ 0 and
@2ðu=U Þ

@Z2
¼ � d2

n
dU
dx

¼ �LðxÞ on Z ¼ 0

and

u
U

¼ 1 and
@ðu=U Þ

@Z
¼ @2ðu=U Þ

@Z2
¼ 0 on Z ¼ 1
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The quantityLðxÞ that has been introduced here is a dimensionless variable
that is a measure of the pressure gradient in the outer £ow.

Imposing the foregoing boundary conditions on the assumed form of
velocity pro¢le gives the following set of algebraic equations for the
unknown coe⁄cients:

0 ¼ a

�L ¼ 2c

1 ¼ aþ bþ c þ d þ e

0 ¼ bþ 2c þ 3d þ 4e

0 ¼ 2c þ 6d þ 12e

The solution to this set of equations is

a ¼ 0

b ¼ 2þ L
6

c ¼ �L
2

d ¼ �2þ L
2

e ¼ 1� L
6

Thus the assumed form of velocity pro¢le that satis¢es the principal bound-
ary conditions is

u
U

¼ 2þ L
6

� �
Z� L

2
Z2 � 2� L

2

� �
Z3 þ 1� L

6

� �
Z4

It is advantageous to separate the right-hand side of this expression into
terms that are independent of LðxÞ and terms that depend upon LðxÞ. This
gives

u
U

¼ ð2Z� 2Z3 þ Z4Þ þ L
6
ðZ� 3Z2 þ 3Z3 � Z4Þ

u
U

¼ 1� ð1þ ZÞð1� ZÞ3 þ L
6
Zð1� ZÞ3 ð9:12aÞ
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Equation (9.12a) is now in the form
u
U

¼ FðZÞ þ LGðZÞ

where the functions FðZÞ and GðZÞ are shown schematically in Fig. 9.6a.The
function FðZÞ is seen to be a monotonically increasing function of Z that
ranges from zero at Z ¼ 0 to unity at Z ¼ 1.The functionGðZÞ increases from
zero at Z ¼ 0 to a maximum of 0.0166 at Z ¼ 0:25, after which it drops o¡ to
zero at Z ¼ 1.

Figure 9.6b shows the velocity pro¢les corresponding to various values
of the pressure parameter L. For L ¼ 0 the velocity pro¢le corresponds to a
£at surface in which the representation is a fourth-order polynomial. For
values ofL greater than12, the resulting velocity pro¢les show that u=U > 1.
Since the boundary-layer velocity is not expected to exceed that of the outer
£ow locally, it is concluded that L < 12. Also, for values of L less than �12,
the velocity pro¢les show negative regions that correspond to reverse £ow.
Although reverse £ows do occur physically, under these conditions the basic
assumptions upon which the theory is based cannot be justi¢ed. Thus the
parameter L should be greater than �12. Combining these two results it is
concluded that the parameterL should lie in the range

� 12 < LðxÞ < 12 ð9:12bÞ

FIGURE9.6 (a) Form of the functions FðZÞ and GðZÞ, and (b) the velocity profiles for
various values of the parameter LðxÞ.
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Having established a suitable approximation to the velocity pro¢le, the
boundary-layer thicknesses and the surface shear stress may be evaluated.
Substituting the velocity pro¢le (9.12a) into Eq. (9.1b) gives the following
expression for the displacement thickness in terms of the boundary-layer
thickness:

d� ¼ d
Z 1

0
1� u

U


 �
dZ

¼ d
Z 1

0
ð1þ ZÞð1� ZÞ3 � L

6
Zð1� ZÞ3

� �
dZ

d� ¼ d
3
10

� L
120

� �
ð9:12cÞ

Similarly, Eq. ð9:1cÞ yields the following expression for the momentum
thickness:

y ¼ d
Z 1

0

u
U

1� u
U


 �
dZ

¼ d
Z 1

0
1� ð1þ ZÞð1� ZÞ3 þ L

6
Zð1� ZÞ3

� �

� ð1þ ZÞð1� ZÞ3 � L
6
Zð1� ZÞ3

� �
dZ

y ¼ d
37
315

� L
945

� L2

9; 072

� �
ð9:12dÞ

The shear stress on the surface for this velocity distribution will be

t0 ¼m
U
d
@ðu=U Þ

@Z

����
Z¼0

¼m
U
d

@

dZ
1� ð1þ ZÞð1� ZÞ3 þ L

6
Zð1� ZÞ3

� �����
Z¼0

t0 ¼m
U
d

2þ L
6

� �
ð9:12eÞ

The foregoing expressions relate the displacement and momentum thick-
nesses and the surface shear stress to the boundary-layer thickness,which as
yet, is unknown.These relations follow purely from the velocity pro¢le under
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consideration.The additional relation is required to determine the absolute
value of these various quantities is supplied by the momentum integral.

Multiplying the momentum integral [Eq. (9.11)] by Uy=n gives the
following additional relation connecting y; d�; and t0 :

Uy
n

dy
dx

þ ð2yþ d�Þ y
n
dU
dx

¼ t0y
mU

or

1
2
U

d
dx

y2

n

� �
þ 2þ d�

y

� �
y2

n
dU
dx

¼ t0y
mU

Expressions for the various quantities that appear in this equation will now
be established as functions of the pressure parameter LðxÞ. Recall

L ¼ d2

n
dU
dx

hence

y2

n
dU
dx

¼ y2

d2
L

But y=dmay be evaluated in terms ofL through Eq. (9.12d).This gives

y2

n
dU
dx

¼ 37
315

� L
945

� L2

9; 072

� �2

L

or

y2

n
dU
dx

¼ KðxÞ

where

KðxÞ ¼ 37
315

� L
945

� L2

9; 072

� �2

L

The term d�=y that appears in the momentum integral may be similarly
evaluated using Eqs. (9.12c) and (9.12d).Thus

d�

y
¼

3
10 � L

120

� �
37
315 � L

945 � L2

9;072


 �
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or

d�

y
¼ f ðKÞ

where

f ðKÞ ¼
3
10 � L

120

� �
37
315 � L

945 � L2

9;072


 �

The function f depends onL and hence upon x.However,K is also a function
of x, so that f may be considered to be a function of K. The other parameter
that appears in the momentum integral is t0y=ðmU Þ.Multiplying Eqs. (9.12e)
and (9.12d) gives the following expression for this parameter:

t0y
mU

¼ gðKÞ

where

gðKÞ ¼ 2þ L
6

� �
37
315

� L
945

� L2

9; 072

� �

These results will now be substituted into the momentum integral. For
the time being the leading term in the momentum integral will be retained in
its existing form. Substituting from the above results for d�=y; y2ðdU=dxÞ=n,
and t0yðmU Þ then gives

1
2
U

d
dx

y2

n

� �
þ ½2þ f ðKÞ�K ¼ gðKÞ

where

K ¼ y2

n
dU
dx

It is now proposed to take Z ¼ y2=n as a new dependent variable so that

K ¼ Z
dU
dx

and the momentum integral becomes

U
dZ
dx

¼ 2 gðKÞ � ½2þ f ðKÞ�Kf g
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or

U
dZ
dx

¼ H ðKÞ

where

H ðKÞ ¼ 2 gðKÞ � ½2þ f ðKÞ�Kf g

Then, substituting for gðKÞ and K from their de¢nitions shows that HðKÞ is
related toLðxÞ through the following identity:

HðKÞ ¼ 2 2þ L
6

� �
37
315

� L
945

� L2

9; 072

� ��

� 2þ
3
10 � L

120

� �
37
315 � L

945 � L2

9;072


 �
2
4

3
5 37

315
� L
945

� L2

9; 072

� �2

L

9=
;

¼ 2
37
315

� L
945

� L2

9; 072

� �
2� 116

315
Lþ 2

945
þ 1
120

� �
L2 þ 2

9; 072
L3

� �

where the quantity K is related toL by the expression

K ¼ 37
315

� L
945

� L2

9; 072

� �2

L

From these two expressions,bothK andH ðKÞmay be evaluated for any
value of the pressure parameterLðxÞ.Thus a curve ofH ðKÞ as a function ofK
may be constructed.The form of this curve is shown in Fig. 9.7.The momen-
tum integral has been reduced to the ordinary di¡erential equation
U dZ=dx ¼ HðKÞwhere the functional form of the quantityH is su⁄ciently
complex that this integral cannot be evaluated explicitly.However, it may be
seen from Fig. 9.7 that the function H is approximately linear in K over the
range of interest.

Thus the functionHmay be approximated by the equation

H ðKÞ ¼ 0:47� 6K

Then the momentum integral becomes

U
dZ
dx

¼ 0:47� 6K
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¼ 0:47� 6Z
dU
dx

or

1
U 5

d
dx

ðZU 6Þ ¼ 0:47

In this form the momemtum integral may be expressed in terms of the fol-
lowing quadrature:

ZðxÞ ¼ 0:47

U ðxÞ6
Z x

0
U ðxÞ5dx

Then, since Z ¼ y2=v, the value of ywill be

y2ðxÞ ¼ 0:47v

U ðxÞ6
Z x

0
U ðxÞ5 dx ð9:12f Þ

FIGURE 9.7 Exact form of the function HðKÞ (solid line) and straight-line approx-
imation (dashed line).
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For any given boundary shape the approximate solution to the bound-
ary layer equations may be obtained as follows: For the speci¢ed boundary
shape the potential-£ow problem should be solved to yield the outer velocity
U ðxÞ. Then Eq. (9.12f ) may be used to evaluate the momentum thickness
yðxÞ.The pressure parameterLðxÞmay then be evaluated from the relation

37
315

� L
945

� L2

9; 072

� �2

L ¼ y2

n
dU
dx

ð9:12gÞ

Having establishedL, the boundary-layer thickness dmay be evaluated from
Eq. (9:12d), and the displacement thickness d� may then be obtained from
Eq. (9.12c).The velocity distribution across the boundary layer will be given
by Eq. (9.12a), and the shear stress at the surface will be given by Eq. (9.12e).
In practice it is di⁄cult to evaluate the quantityLðxÞ from Eq. (9.12g) unless
L ¼ constant. It is thereforemuch simplier to choose speci¢c functionsLðxÞ
and use the foregoing equations to determine the outer-£ow velocity and
hence the nature of the boundary shape.

As an example, the Ka¤ rma¤ n-Pohlhausen approximation will be
applied to the case of £ow over a £at surface.For a £at surface the outer-£ow
velocityUwill be constant, so that Eq. (9.12f ) gives

y2 ¼ 0:47
vx
U

or

y
x
¼ 0:686ffiffiffiffiffiffiffi

RN
p ð9:13aÞ

Since U ¼ constant, dU=dx ¼ 0, so that Eq. (9.12g) will have the solution
L ¼ 0.Then, from Eq. (9.12d),

y ¼ 37
315

d

so that, from Eq. (9.13a), the boundary-layer thickness will be

d
x
¼ 5:84ffiffiffiffiffiffiffi

RN
p ð9:13bÞ

Equations (9.12c) and (9.12e) may now be employed to evaluate the dis-
placement thickness and the surface shear stress.This gives
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d�

x
¼ 1:75ffiffiffiffiffiffiffi

RN
p ð9:13cÞ

t0
1
2 rU

2
¼ 0:686ffiffiffiffiffiffiffi

RN
p ð9:13dÞ

These results compare favorably with the results obtained from the Blasius
solution that are given by Eqs. (9.5).The principal result of physical interest
is the surface shear stress. The exact solution has a coe⁄cient of 0.664,
whereas the Ka¤ rma¤ n-Pohlhausen approximate solution has a coe⁄cient of
0.686.Thus the shear-stress distribution obtained here is within 3.5 percent
of the exact solution. It should also be noted that there is considerable
improvement in the fourth-order polynomial velocity distribution used here
over the second-order polynomial analysis, which yielded a coe⁄cient of
0.73 as was established in Eq. (9.10c).

9.11 BOUNDARY-LAYER SEPARATION

It is known from experimental observations that boundary layers have a
tendency to separate from the surface over which they £ow to form a wake
behind the body, as shown in Fig. 9.1. The existence of such wakes leads to
large streamwise pressure di¡erentials across the body, which results in a
substantial pressure drag or form drag. Indeed, for blu¡ bodies such as cir-
cular cylinders, the form drag constitutes almost all the total drag at
Reynolds numbers of 104 or higher.That is, the shear stress along the surface
of a cylinder produces a drag force that is negligible compared with the form
drag for large Reynolds numbers. For lifting bodies such as airfoils,
separation of the boundary layer can destroy the bound vortex on the body,
thus destroying the lift that the airfoil generates. This is the so-called stall
condition.

A simple qualitative explanation for the existence of boundary-layer
separation on a blu¡ body may be given as follows: The pressure gradient
along a boundary layer is determined by that of the outer £ow, as was estab-
lished earlier.Then, if a region of adverse pressure gradient exists in the outer
£ow, this pressure gradient will exert itself along the surface of the body near
which the £uid velocity is small.Themomentum contained in the £uid layers
that are adjacent to the surface will be insu⁄cient to overcome the force
exerted by the pressure gradient, so a region of reverse £owwill exist.That is,
at some point the adverse pressure gradient will cause the £uid layers adja-
cent to the surface to £ow in a direction opposite to that of the outer £ow.
Such a £ow con¢guration means that the boundary layer has separated from
the surface and is de£ected over the reverse-£ow region.

Boundary Layers 351



Figure 9.8 shows the qualitative form of the velocity pro¢le in a
boundary layer in the vicinity of the separation point. Prior to separation the
velocity gradient at the surface is positive, so the shear stress there opposes
the outer-£ow ¢eld. After separation the velocity gradient at the surface is
negative, so the shear stress has changed its sign and direction. This obser-
vation leads to the classical de¢nition of a separation point as a point at
which the shear stress vanishes. That is, separation is said to occur at the
point where the velocity gradient vanishes.

@u
@y

ðx; 0Þ ¼ 0 for separation ð9:14Þ

Using this de¢nition of separation, it may be shown that separation can
occur only in a region of adverse pressure gradient. Along the surface y ¼ 0
the boundary-layer equations reduce to

0 ¼ � dp
dx

þ m
@2u
@y2

owing to the no-slip boundary condition.Thus the curvature of the velocity
pro¢le is proportional to the pressure gradient along the surface. Then if
dp=dx is negative, the curvature of the velocity pro¢le is negative and will
remain negative at the surface just as it is at the edge of the boundary layer.
That is, separation will not occur in a region of favorable pressure gradient.
On the other hand, if dp=dx is positive, the curvature of the velocity pro¢le
will be positive at the surface.Since @2u=@y2 must still be negative at the edge
of the boundary layer, the velocity pro¢lemust go through an in£ection point

FIGURE 9.8 Velocity profiles in a boundary layer in the vicinity of separation.
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somewhere between y ¼ 0 and y ¼ d. Such a velocity pro¢le may lead to
separation if the curvature at y ¼ 0 is su⁄ciently positive to yield a reverse-
£ow con¢guration, as shown in Fig. 9.8. Thus it may be concluded that
separation can occur in a region of positive pressure gradient.

Calculating the location of the separation point is not an easy matter.
The obviousway of proceeding is ¢rst to solve the potential-£ow problem for
the body in question.The pressure so obtained could then be substituted into
the boundary-layer equations,which could then be solved by either an exact
solution or an approximate solution. From the solution to the boundary-
layer equations the location of the point of zero shear stress could then be
located. The obvious di⁄culty with such a procedure is that as soon as the
boundary layer separates, the pressure distribution will di¡er from that pre-
dicted by the potential-£ow solution, since the latter applies to a di¡erent
streamline con¢guration from that which exists physically.

There are two principal approaches that are used to overcome the dif-
¢culty outlined above.The approach used byHiemenz involved determining
the pressure distribution around the body in question experimentally. The
resulting pressure curve may then be represented analytically by a poly-
nomial that permits it to be used in the boundary-layer equations.The results
obtained by this method show good agreement with experimental observa-
tions. However, the disadvantage of this approach lies in the fact that the
pressure distribution must be established experimentally for each body
shape and for each Reynolds number of interest. Measuring the pressure
distribution around circular cylinders is not di⁄cult, since a single pressure
tap may be rotated to sense the pressure at di¡erent angles from the front
stagnation point. On the other hand, measuring the pressure distribution
around noncircular cylinders is not such a simple matter.

The second approach that is used to determine analytically the loca-
tion of the separation point is tomodify the potential-£owmodel fromwhich
the pressure distribution is obtained. Several £ow models exist, each of
which takes into account the separated con¢guration of the outer £ow.The
di⁄culty with this approach is that empirical constants exist in the poten-
tial-£owmodel and experimental resultsmust be consulted to establish these
constants.

From the foregoing discussion it is evident that the subject of bound-
ary-layer separation is one that is not well understood analytically. Indeed, it
is still not clear whether or not the boundary-layer equations are regular at
separation.One school of thought claims that the boundary-layer equations
are regular at separation by virtue of the appropriate pressure distribution.
Some recent results even question the validity of the condition (9.14) at
separation. Evidence suggests that the location of the point where dp=dx
vanishes,that where @u=@y vanishes, and that where separationoccurs are all
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distinct.However, no length scales could be established; thus all these points
could possibly concur within the appropriate macroscopic length scales.
What is known is that boundary layers will separate in adverse pressure
gradients, so the magnitude and extent of such pressure gradients should be
minimized. This means that bodies should be streamlined rather than blu¡
and should be oriented at small angles of attack. Also, it is known that sharp
corners that bend away from the £uid become separation points; thus such
corners should be avoided if separation is to be delayed as far as possible.

9.12 STABILITYOF BOUNDARY LAYERS

Like any £uid-£owsituation,boundary layersmay become unstable.Usually,
instabilities in boundary layers manifest themselves in turbulence.That is, a
laminar boundary layer that becomes unstable usually becomes a turbulent
boundary layer.The properties of laminar and turbulent boundary layers are
quite di¡erent. For example, the angle to the location of the separation point
on a circular cylinder,measured from the front stagnation point, is about 82�

for a laminar boundary layer and about 108� for a turbulent boundary layer.
This signi¢cant change in location of the separation points results in an
appreciable drop in the drag coe⁄cient, as shown in Fig. 8.2. It is therefore of
some interest to investigate the stability of boundary layers.

The basis of our stability calculation will be to introduce a small dis-
turbance into the boundary-layer variables and determine whether this dis-
turbance grows or decays with time. If the disturbance grows with time, the
boundary layer will be classi¢ed as unstable, and if the disturbance decays
with time, the boundary layer will be classi¢ed as stable. Intermediate to
these two situations is the case ofmarginal stability, inwhich the disturbance
neither grows nor decays.

Figure 9.9a shows the velocity pro¢le in a narrow strip of a boundary
layer. For such a narrow strip the velocity in the horizontal direction may be
considered to be a function of y only, say V ðyÞ, and the vertical velocity may
be considered to be zero.The undisturbed boundary-layer velocityV ð yÞ acts
in the horizontal direction, although the symbol V has been used.This sym-
bol has been employed to avoid confusion with the outer-£ow velocity U ðxÞ
at the edge of the boundary layer.

A small but arbitrary disturbance is introduced to this boundary-layer
velocity pro¢le so that the velocity components and the pressure become

uðx; y; tÞ ¼ V ð yÞ þ u0ðx; y; tÞ
vðx; y; tÞ ¼ 0þ v0ðx; y; tÞ
pðx; y; tÞ ¼ p0ðxÞ þ p0ðx; y; tÞ
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where ju0=V j; jv0=V j; and jp0=p0j are all small compared with unity. Sub-
stituting these instantaneous local values of the velocity components and the
pressure into the continuity and the Navier-Stokes equations gives

@u0

@x
þ @v0

@y
¼ 0

@u0

@t
þ ðV þ u0Þ @u

0

@x
þ v0

dV
dy

þ @u0

@y

� �

¼ � 1
r

dp0
dx

þ @p0

@x

� �
þ n

@2u0

@x2
þ d2V

dy2
þ @2u0

@y2

� �

@v0

@t
þ ðV þ u0Þ @v

0

@x
þ v0

@v0

@y
¼ � 1

r
@p0

@y
þ n

@2v0

@x2
þ @2v0

@y2

� �

FIGURE 9.9 (a) Undisturbed boundary-layer velocity profile, (b) stability

calculation results for fixed V, and (c) stability diagram.
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As a special case, when the perturbation is zero, the foregoing equations
reduce to

0 ¼ � 1
r
dp0
dx

þ n
d2V
dy2

Hence these terms may be removed from the equation of x momentum.
Furthermore, since the perturbation is assumed to be small, products of all
primed quantities may be neglected as being small. Thus the linearized
equations governing the motion of the disturbance are

@u0

@x
þ @v0

@y
¼ 0

@u0

@t
þ V

@u0

@x
þ v0

dV
dy

¼ � 1
r
@p0

@x
þ n

@2u0

@x2
þ @2u0

@y2

� �

@v0

@t
þ V

@v0

@x
¼ � 1

r
@p0

@y
þ n

@2v0

@x2
þ @2v0

@y2

� �

These three equations may be reduced to two by introducing a perturbation
stream function de¢ned by

u0 ¼ @c
@y

v0 ¼ � @c
@x

In terms of this stream function the governing equations become

@2c
@y@t

þ V
@2c
@x@y

� @c
@x

dV
dy

¼ � 1
r
@p0

@x
þ n

@3c
@x2@y

þ @3c
@y3

� �

� @2c
@x@t

� V
@2c
@x2

¼ � 1
r
@p0

@y
� n

@3c
@x3

þ @3c
@x@y2

� �

Finally, by forming themixed derivative @2p0=@x @y, these two equationsmay
be reduced to one that may be written in the form

@

@t
þ V

@

@x

� �
@2c
@y2

þ @2c
@x2

� �
� d2V

dy2
@c
@x

¼ n
@4c
@y4

þ 2
@4c

@x2@y2
þ @4c

@x4

� �

The stream function for the disturbance must satisfy this linear, fourth-
order, partial di¡erential equation.
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Since the disturbance under consideration is arbitrary in form, it may
be Fourier-analyzed in the x direction. That is, the perturbation stream
function may be represented by the following Fourier integral:

cðx; y; tÞ ¼
Z 1

0
Cð yÞeiaðx�ctÞ da

where a is real and positive.The time variation has been taken to be e�iact, so
that if the imaginary part of c is positive, the disturbance will grow, and if it is
negative, the disturbance will decay with time. For c ¼ 0, the disturbance
will be neutrally stable. Substituting the preceding expression for the stream
function into the governing equation yields the following integro-di¡erential
equation: Z 1

0
½ð�iac þ iaV ÞðC00 � a2CÞ � iaCV 00�eiaðx�ctÞ da

¼
Z 1

0
½nðC0000 � 2a2C00 þ a4CÞ�eiaðx�ctÞ da

where the primes denote derivatives with respect to y. Since this equation
should be valid for any arbitrary disturbance whatsoever, it should be valid
for each individual value of the inverse wavelength a. Thus the integrand in
the preceding equation should vanish.This gives

ðV � cÞðC00 � a2CÞ � V 00C ¼ n
ia
ðC0000 � 2a2C00 þ a4CÞ ð9:15aÞ

Equation (9.15a) is known as the Orr-Sommerfeld equation. The boundary
conditions that accompany this equation may be derived from the condition
that the disturbance should vanish at the surface y ¼ 0 and at the edge of the
boundary layer.Thus

u0ðx; 0; tÞ ¼ v0ðx; 0; tÞ ¼ 0

u0ðx; y; tÞ ¼ v0ðx; y; tÞ ! 0 as y ! 1

In terms of the stream functionCðyÞ these boundary conditions become

Cð0Þ ¼ C0ð0Þ ¼ 0 ð9:15bÞ
CðyÞ ¼ C0ðyÞ ! 0 as y ! 1 ð9:15cÞ

Solutions to the Orr-Sommerfeld equation are obtained as follows.For
a given undisturbed velocity pro¢le and disturbance wavelength, both V ð yÞ
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and a will be known. Then Eqs. (9.15a), (9.15b), and (9.15c) represent an
eigenvalue problem for the time coe⁄cient c. Then if each possible wave-
length in turn is treated, results of the form indicated in Fig. 9.9b may be
established.That is, regions that are stable (corresponding to the imaginary
part of c being negative) and regions that are unstable (corresponding to the
imaginary part of cbeing positive)may be identi¢ed.Then,by considering all
possible values of the undisturbed boundary-layer velocity that are less than
the outer-£ow velocity, a stability diagram may be constructed. That is, by
considering all possible values of V ð yÞ in the range 0 � V ð yÞ � U ðxÞ, the
stability boundaries for that particular x location may be established.Figure
9.9c shows the results of carrying out such a procedure for £ow over a £at
surface. Here the Reynolds number has been based on the displacement
thickness of the boundary layer, and the inverse wavelength a has been non-
dimensionalized by the same quantity. It may be seen that the lower
Reynolds number for which an instability may occur is 520.Thus

Ud�crit
n

¼ 520 ð9:16Þ

Hence an arbitrary disturbance having a Fourier component whose wave-
length is such that ad� ¼ 0:34will lie on the stability boundary.Thus itmay be

PLATE 2 Flow around a snowmobile. (Photograph courtesy of the National

Research Council of Canada.)
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expected that for Reynolds numbers in excess of 520, arbitrary disturbances
will be unstable. Such instabilities will manifest themselves in the form
of turbulence at Reynolds numbers slightly larger than this critical value.

PROBLEMS

9.1 It was stated in the text that the boundary-layer equations are para-
bolic. Show that they may be put in the form of the one-dimensional
diffusion equation or heat conduction equation by taking
h ¼ pþ ru�u=2 as a new dependent variable with x ¼ x and Z ¼ c as
new independent variables.

9.2 The Blasius solution for flow over a flat surface involves solving a
third-order, nonlinear, ordinary differential equation. It will be
noticed that this differential equation is invariant to the following
transformations:

(a) f ! f ; Z ! Zþ constant
(b) f ! f =a; Z ! aZ

Show that (a) enables the Blasius equation to be reduced to a second-
order equation by taking F ¼ df =dZ as a newdependent variable and f
as a new independent variable.Then show that (b) enables the result-
ing second-order equation to be reduced to a first-order equation by

PLATE3 Vortex street generated by a circular cylinder. (Photograph courtesy of the
National Research Council of Canada.)
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takingG ¼ ðdF=df Þ=f as a new dependent variable and x ¼ F=f 2 as a
new independent variable. Find the resulting ordinary differential
equation forGðxÞ.

9.3 The solution to the boundary layer equations corresponding to flow in
a convergent channel resulted in the following ordinary differential
equation:

f 000 þ 1� ðf 0Þ2 ¼ 0

Show that this third-order, nonlinear, ordinary differential equation
may be integrated to give

f 0ðZÞ ¼ 3 tanh2
Zffiffiffi
2

p þ 1:146
� �

� 2

where the primes denote differentiation with respect to Z.
9.4 Figure 9.10 illustrates a two-dimensional jet entering a reservoir that

contains a stationary fluid. A solution is sought to the laminar
boundary layer equations for this situation. Assuming that there is no
pressure gradient along the jet, look for a similarity solution for the
stream function of the following form:

cðx; yÞ ¼ 6avx1=3f ðZÞ

FIGURE 9.10 Jet entering a reservoir.
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where

Z ¼ a
y

x2=3

In the expressions above, a is a dimensional constant and n is the
kinematic viscosity of the fluid.Obtain an expression for the function
f ðZÞ in this solution and the boundary conditions that it has to satisfy.
From the solution for f ðZÞ, obtain the solution for the stream function
cðx; yÞ.

9.5 Aboundary layer develops on a surface over which the outer (inviscid)
flow velocity is represented by the following expression, inwhichk is a
constant:

U ðxÞ ¼ kx1=3

Look for a similarity solution to the boundary layer equations for this
flow of the following form:

cðx; yÞ ¼
ffiffiffiffiffiffiffiffi
3
2
kv

r
xmf ðZÞ where Z ¼

ffiffiffiffiffiffiffi
2
3
k
v

r
y

x1=3

Verify that such a similarity solution exists by finding the value of the
exponent m and establishing the ordinary differential equation to be
satisfied by the function f ðZÞ.

9.6 Use the momentum integral and the velocity profile
u
U

¼ aþ b
y
d

to evaluate the boundary-layer thicknesses d, d�, and y and the surface
shear stress t0 for flow over a flat surface.

9.7 Repeat Prob. 9.6 using the following velocity distribution:

u
U

¼ aþ b
y
d
þ c

y
d


 �2
þd

y
d


 �3
9.8 Repeat Prob. 9.6 using the following velocity distribution:

u
U

¼ sin
py
2d


 �
9.9 Use theKa¤ rma¤ n-Pohlhausen approximation to obtain the solution for

the boundary layer that develops on a surface for which the outer flow
velocity is defined by the following expression:

U ðxÞ ¼ Ax1=6
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whereA is a constant. From the solution, evaluate the boundary-layer
thicknesses d, d�, and y and the surface shear stress t0.

9.10 Figure 9.11 shows a viscous, incompressible liquid flowing down a
vertical surface.Aboundary layer develops on the vertical surface and
grows to approach the free surface.Taking into account the force due
to gravity,write down the boundary-layer equations for this flow con-
figuration. From these equations obtain the corresponding momen-
tum integral. Hence, by employing a second-order polynomial for the
velocity distribution, obtain an expression for the boundary-layer
thickness dðxÞ.

Figure 9.11 Liquid flowing down a vertical surface.
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10

Buoyancy-Driven Flows

There exists a large class of £uid £ows in which the motion is caused by
buoyancy in the £uid. Buoyancy is the force experienced in a £uid due to a
variation of density in the presence of a gravitational ¢eld. According to the
de¢nition of an incompressible £uid, as was presented in Sec. 1.6,variations
in the density normally mean that the £uid is compressible, rather than
incompressible. That being the case, one might expect that the material
content of this chapter would be presented in Part IVof the text, rather than
Part III.The rationale for this apparent contradiction is discussed below.

For many of the £uid £ows of the type mentioned above, the density
variation is important only in the body-force term of the Navier^Stokes
equations. In all other places in which the density appears in the governing
equations, the variation of density leads to an insigni¢cant e¡ect. That is,
compressibility of the £uid is not a prime consideration. However, viscous
e¡ects are of ¢rst-order importance.Buoyancy results in a force acting on the
£uid, and the £uid would accelerate continuously if it were not for the exis-
tence of the viscous forces. The viscous forces oppose the buoyancy forces
and cause the £uid tomove with a velocity distribution that creates a balance
between the opposing buoyancy and viscous forces.Therefore, if buoyancy-
driven £ows are to be classi¢ed as being viscous £ows of incompressible £uids
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or compressible £ows of inviscid £uids, the former is the more appropriate
classi¢cation.

The situation depicted above occurs in natural convection. The other
type of convection is forced convection, in which the £uid moves under the
in£uence of forces other than the buoyancy force. Since density variations
exist in buoyancy-driven £ows, the density is no longer a known quantity.
This means that the continuity and Navier^Stokes equations no longer
constitute a complete set of equations fromwhich the solution to a £ow pro-
blem may be obtained. The energy equation is required in order to yield a
complete set of equations, and this adds to the complication of solutions to
this class of problems.

The equations that are most commonly used to solve buoyancy-driven
£ow problems employ the Boussinesq approximation. This is the ¢rst topic
that is addressed in this chapter. The balance of the chapter is devoted to a
presentation of some of the solutions of the governing equations, as de¢ned
by the Boussinesq approximation.

10.1 THE BOUSSINESQ APPROXIMATION

The equations governing the £ow of an incompressible £uid inwhich gravity
provides the only signi¢cant body force are written below.

= · u ¼ 0

r
@u
@t

þ rðu ·=Þu ¼ �=pþ mH2u� rgez

Here, ez is the unit vector acting in the positive z direction, and it is assumed
that gravity acts in the negative z direction. In the absence of any motion,
these equations reduce to the following form:

0 ¼ �=p0 � r0gez ð10:1Þ
where p0 and r0 are, respectively, the pressure and the density distributions
which exist under static equilibrium. Then we may adopt the following
notation for the pressure, density, and velocity distributions in the £uid dur-
ing convective motion,

p ¼ p0 þ p�

r ¼ r0 þ r�

u ¼ 0þ u�

where p� is the pressure in the £uid relative to the static value, r� is the density
measured relative to the static value, and u� is the velocity of the £uid during
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the convective motion. Substituting these values into the equations quoted
above yields the following result:

= · u� ¼ 0

ðr0 þ r�Þ @u
�

@t
þ ðr0 þ r�Þðu� ·=Þu� ¼ �=p� þ mH2u� � r�gez

In the above, the equation of static equilibrium, Eq. (10.1), has been
subtracted.

The equations presented above are exact for an incompressible £uid
that has a density variation, or strati¢cation, throughout it.The Boussinesq
approximation consists of neglecting any variation of density except in the
gravitational term.The latter term is of prime importance since it represents
the force that causes the motion which is being represented. However, the
variation of density is assumed to have only a minor e¡ect on the inertia
force.Thismay be considered to be reasonable where relatively small density
di¡erences exist over moderate distances. Then, considering r to be con-
stant, the Boussinesq approximation to the governing equations is

= · u ¼ 0 ð10:2aÞ

r
@u
@t

þ rðu ·=Þu ¼ �=pþ mH2u� Dr gez ð10:2bÞ

In Eqs. (10.2a) and (10.2b) it is understood that the pressure p is measured
relative to the static pressure distribution. The quantity Dr is the density
di¡erence relative to the static distribution, and it is positive when the den-
sity is greater than the static value.

Strictly speaking, the equations presented above are valid only for a
£uid in which the density varies, but which is incompressible. However, the
idea behind the Boussinesq approximation may be extended to include
compressible £uids too.Provided that the variation in density is small, it may
be assumed that in buoyancy-driven £ows the variation in density is negli-
gible in all of the terms in the governing equations except the gravitational
term. This means that the variation in density may be neglected in the con-
tinuity equation as well as in the equations of dynamics.

10.2 THERMAL CONVECTION

In thermal convection the density variation is caused by temperature varia-
tions in the £uid.This is to be contrasted with the case of density variations
caused by such e¡ects as salinity variations in water. In thermal convection
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the density is usually expressed in terms of the temperature by the following
relationship,

r ¼ r0½1� bðT � T0Þ� ð10:3Þ

where b is the coe⁄cient of thermal expansion of the £uid and T0 is the tem-
perature of the £uid which exists at static equilibrium.

The representation of the density given by Eq. (10.3) is valid for mod-
erate departures of the temperatureT from the static value T0 for an incom-
pressible £uid. In general, the thermal equation of state may be written in the
form r ¼ rðp;T Þ. Hence it follows, without invoking the condition of
incompressibility, that

r ¼ r0 þ ðp� p0Þ @r
@p

ðp0; T0Þ þ ðT � T0Þ @r
@T

ðp0;T0Þ

In the above, only the linear terms in the pressure di¡erence and the tem-
perature di¡erencehave been retained in thisTaylor series expansion.Now if
it is assumed that compressible e¡ects are negligible, the second term on the
right-hand side of this equationwill be negligible.This is equivalent to saying
that the density is a function of the temperature only, rather than being a
function of both the pressure and the density. The third term on the right-
hand side of the equation abovemay be evaluated for the case of an ideal gas,
for which r ¼ p=RT , giving the result

r ¼ r0 þ ðT � T0Þ �p
RT 2

0

� �

¼ r0 � r0
ðT � T0Þ

T0

This is the same form as Eq. (10.3), and it shows that for an ideal gas the
thermal expansion coe⁄cient assumes the value b ¼ 1=T0. In general, the
value of b is determined experimentally, and it is a property of the £uid in
the same sense as the viscosity is a property.

From Eq. (10.3) it follows that Dr ¼ �r0bðT � T0Þ ¼ �rbðT � T0Þ,
where the density r is assumed to be constant and equal to the value that
exists when there is no motion.Then, substituting this value into Eq. (10.2b)
yields the following form of the equations governing the motion that results
when thermal convection occurs:

= · u ¼ 0 ð10:4Þ

r
@u
@t

þ rðu ·=Þu ¼ �=pþ mH2uþ rgbðT � T0Þez ð10:5Þ
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Equations (10.4) and (10.5) constitute four scalar equations for ¢ve
unknown quantities. The unknown quantities are the velocity vector u,
the pressure p, and the temperature T. Then, in order to achieve a closed
mathematical system, the thermal energy equation must be employed. This
means that the dynamics of the system, and its thermodynamics, are no
longer independent of each other.That is, permitting the density of the £uid
to vary with its temperature in the buoyancy term has coupled the system’s
dynamics and thermodynamics.

The appropriate form of the equation of conservation of energy was
derived in Prob. (3.1), and it is given by Eq. (3.6),which is rewritten below.

r
@h
@t

þ rðu ·=Þh ¼ @p
@t

þ ðu ·=Þpþ = · ðk=T Þ þ F ð10:6Þ

where
h ¼ hðr;T Þ ð10:7Þ

In the foregoing equations, h is the enthalpy of the £uid and F is the dissipa-
tion function. In accordancewith the Boussinesq approximation, the density
is assumed to be constant.

In general, the enthalpy h is a function of the pressure p and the tem-
perature T. However, if we restrict our discussion to ideal gases, it follows
that h may be considered to be a function of Tonly. Then for cases where h
may be considered to be a function of T only, including all £uids that are
ideal gases, Eqs. (10.4)^(10.7) may be rewritten in the following form:

= · u ¼ 0 ð10:8Þ

r
@u
@t

þ rðu ·=Þu ¼ �=pþ mH2uþ rgbðT � T0Þez ð10:9Þ

rCp
@T
@t

þ rCpðu ·=ÞT ¼ @p
@t

þ ðu ·=Þpþ = · ðk=T Þ þ F ð10:10Þ

In the foregoing equations, the density r is assumed to be constant, the
pressure p is measured relative to the static value.The quantity Cp is the spe-
ci¢c heat at constant pressure andF is the dissipation function.

10.3 BOUNDARY-LAYER APPROXIMATIONS

Buoyancy-driven £ows that comply with the general Boussinesq approx-
imation are governed by Eqs. (10.4)^(10.7). For the case of thermal con-
vection in which the density may be considered to be a function of
the temperature only, the simpli¢ed form of the governing equations
is given by Eqs. (10.8)^(10.10). In this section we further simplify the
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governing equations by applying the boundary-layer approximation to the
latter set of equations and by assuming that the £uid properties remain
constant.

In the interests of consistency with Chap. 9, we consider two-dimen-
sional, steady £ow in the x-y plane, in which the main £ow is in the x direc-
tion. Since the £ow is buoyancy driven, this requires that we adopt the
con¢guration illustrated in Fig.10.1.This is the same situation as depicted in
Fig. 9.3 except that there is no externally driven £ow and the coordinate
system has been rotated through an angle of 90�. In Fig.10.1, the quantity dT
is the thermal boundary-layer thickness, which is assumed to be of the same
order of magnitude as the boundary-layer thickness d.

For boundary-layer-like £ows, the dynamic equations are approxi-
mated in the same way that they were in the previous chapter. That is, the

FIGURE10.1 Development of thermal and momentum boundary layers on a verti-

cal heated surface.
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equations of the dynamics are the same as those derived in Chap. 9, and
given by Eqs. (9.2a) and (9.2b), except that the buoyancy term that
appears in Eq. (10.9) acts in the x direction. Then it remains to arrive at a
consistent version of the energy equation [Eq. (10.10)]. Writing this equa-
tion explicitly for steady, two-dimensional £ows for which the viscosity
coe⁄cient and the thermal conductivity are constant yields the following
result:

rCp u
@T
@x

þ v
@T
@y

� �
¼ u

@p
@x

þ v
@p
@y

� �
þ k

@2T
@x2

þ @2T
@y2

� �
þ F

where

F ¼ 2m
@u
@x

� �2

þ @v

@y

� �2
" #

þ m
@u
@y

þ @v

@x

� �2

The following observations may be made regarding the various terms that
appear in this equation.

1. The convective terms on the left-hand side of this equation are both
of the sameorder ofmagnitude�aswas the case for the convection
of momentum in the boundary-layer equations.

2. In the first bracketed term on the right-hand side, the pressure
gradient across the boundary layer is negligibly small. This fact is
verified by the y component of the momentum equation in the
boundary-layer equations.

3. In the heat conduction term, the component involving the second
derivative with respect to y is considerably larger than that with
respect to x.This is the same approximation as was made with the
viscous terms in the boundary-layer equations.

4. For moderate velocities induced by thermal convection, the dis-
sipation of energy by the action of viscosity is negligibly small.
That is,Fmay be neglected.

Applying these observations and assumptions to the energy equation, as
written above, results in the following reduced form:

rCp u
@T
@x

þ v
@T
@y

� �
¼ u

@p
@x

þ k
@2T
@y2

Combining this result with the continuity and momentum equations results
in the following set of equations for buoyancy-driven thermal convection
according to the boundary layer approximation:
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@u
@x

þ @v

@y
¼ 0 ð10:11aÞ

u
@u
@x

þ v
@u
@y

¼ � 1
r
dp
dx

þ n
@2u
@y2

þ gbðT � T0Þ ð10:11bÞ

u
@T
@x

þ v
@T
@y

¼ 1
rCp

u
dp
dx

� �
þ k

@2T
@y2

ð10:11cÞ

In Eq. (10.11c) the quantity k ¼ k=rCp is the thermal di¡usivity of the £uid.
Equations (10.11a) and (10.11b) are the same as Eqs. (9.2a) and (9.2b),

except that the buoyancy term exists in Eq. (10.11b). This additional term
involves the local value of the temperature of the £uid,which, in general, is
unknown.This requires the inclusion of the energy equation in order to yield
a closed set of equations. Equations (10.11c) is the form of the energy equa-
tion that is consistent with the boundary-layer approximation and that is
valid for moderate temperature di¡erentials from the ambient value. Equa-
tions (10.11a), (10.11b), and (10.11c) are to be solved subject to the no-slip
boundary condition on the surface y ¼ 0, and subject to the condition that
the velocity should be zero far from the heated surface. In addition,either the
temperature of the heated surface or the heat £ux on its surface must be
speci¢ed.

10.4 VERTICAL ISOTHERMAL SURFACE

In this section we apply the equations derived above to the £ow induced by a
vertical surface that is isothermal at a temperature that is elevated relative to
the ambient.The situation is as depicted in Fig.10.1inwhich the temperature
of the vertical surface is everywhere Ts while that far from the surface is T0,
both of which are constants. For such a con¢guration there is negligible
pressure gradient in the x direction. Then, from Eqs. (10.11), the mathema-
tical problem to be solved becomes

@u
@x

þ @v

@y
¼ 0 ð10:12aÞ

u
@u
@x

þ v
@u
@y

¼ n
@2u
@y2

þ gbðT � T0Þ ð10:12bÞ

u
@T
@x

þ v
@T
@y

¼ k
@2T
@y2

ð10:12cÞ
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The boundary conditions that accompany these di¡erential equations are

uðx; 0Þ ¼ 0 ð10:13aÞ
vðx; 0Þ ¼ 0 ð10:13bÞ
uðx; yÞ ! 0 as y ! 1 ð10:13cÞ
T ðx; 0Þ ¼ Ts ð10:13dÞ
T ðx; yÞ ! T0 as y ! 1 ð10:13eÞ

The ¢rst two of these conditions are the usual no-slip boundary condition,
while the third condition ensures that the e¡ect of the heated surface does
not extend far from the surface. The last two conditions specify that the
temperature in the £uid is Ts at the vertical surface and T0 far from the
surface.

In order to facilitate the solution to Eqs. (10.12), two changes will be
made. First, the stream function cðx; yÞ will be introduced as was done in
Chapter 9. This will permit Eqs. (10.12a) and (10.12b) to be replaced by a
single equation involving the stream function. Second, the temperature
T ðx; yÞ will be replaced by a dimensionless temperature di¡erence yðx; yÞ,
de¢ned as follows:

yðx; yÞ ¼ T ðx; yÞ � T0

Ts � T0

This dimensionless temperature varies in value between zero, far from the
surface, to unity at the surface. This makes it preferable to the alternate
dimensionless temperature de¢ned by the quantity bðT � T0Þ. In terms of
these new variables, Eqs. (10.12) become

@c
@y

@2c
@x@y

� @c
@x

@2c
@y2

¼ n
@3c
@y3

þ gbðTs � T0Þy ð10:14aÞ

@c
@y

@y
@x

� @c
@x

@y
@y

¼ k
@2y
@y2

ð10:14bÞ

Following the methods employed in Chapter 9,we now look for a similarity
solution to this problem of the following form:

cðx; yÞ ¼ C1xmf ðZÞ

and yðx; yÞ ¼ FðZÞ
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where

Zðx; yÞ ¼ C2
y
xn

where m and n are undetermined exponents, although not necessarily
integers, and C1 and C2 are constants whose values will render the func-
tions f, F, and Z dimensionless. From the de¢nitions of these quantities, the
various derivatives that appear in the di¡erential equations are evaluated
as follows:

@c
@x

¼ C1xm�1ðmf � nZ f 0Þ
@c
@y

¼ C1C2xm�nf 0

@2c
@x @y

¼ C1C2xm�n�1fðm� nÞf 0 � nZ f 00g

@2c
@y2

¼ C1C2
2x

m�2nf 00

@3c
@y3

¼ C1C3
2x

m�3nf 000

@y
@x

¼ �nx�1ZF 0

@y
@y

¼ C2x�nF 0

@2y
@y2

¼ C2
2x

�2nF 00

The primes in the expressions above represent derivativeswith respect
to the similarity variable Z. Substituting these expressions into Eqs. (10.14a)
and (10.14b) produces the following equations:

C2
1C

2
2x

2m�2n�1fðm� nÞð f 0Þ2 �mff 00g ¼ nC1C3
2x

m�3nf 000 þ gbðTs � T0ÞF
�mC1xm�n�1f F 0 ¼ kC2x�2nF 00

If these equations are to be reduced to a pair of ordinary di¡erential equa-
tions, the powers of x in the ¢rst equationmust be zero,and the powers of xon
each side of the second equation must be equal. That is, the following rela-
tions must exist:
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2m� 2n� 1 ¼ 0

m� 3n ¼ 0

m� n� 1 ¼ �2n

Although it is generally not possible to satisfy three conditionswith only two
quantities, the three equations above are satis¢ed by the values

m ¼ 3
4

n ¼ 1
4

Using these values, the ordinary di¡erential equations derived above sim-
plify to the following form:

f 000 þ C1

4nC2
½3ff 00 � 2ð f 0Þ2� þ gbðTs � T0Þ

nC1C3
2

F ¼ 0

F 00 þ 3
4
C1

kC2
fF 0 ¼ 0

Having selected the values for the exponents m and n in order to produce a
similarity solution, it is now possible to de¢ne explicitly the constantsC1 and
C2 in such a way that the functions f, F, and Z are dimensionless. The quan-
tities available for this purpose and n, g, and k. Then it is su⁄cient, from
dimensionality considerations, to de¢ne C1 and C2 as follows:

C1 � n
g
n2


 �1=4
C2 � g

n2


 �1=4
However, including dimensionless constants of proportionality in the de¢-
nitions of these two quantities permits two of the coe⁄cients that appear in
the di¡erential equations to be normalized to unity. Noting that the quan-
tity bðTs � T0Þ is dimensionless, we de¢ne the constants C1 and C2 as fol-
lows:

C1 ¼ n
4

4gbðTs � T0Þ
n2

� �1=4

C2 ¼ 4gbðTs � T0Þ
n2

� �1=4

With this choice of values for the constants C1 and C2 the di¡erential equa-
tions for the functions f and F become
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f 000 þ 3ff 00 � 2ðf 0Þ2 þ F ¼ 0 ð10:15aÞ
F 00 þ 3PrfF 0 ¼ 0 ð10:15bÞ

In the above, the parameter Pr ¼ n=k is the Prandtl number. Numerically, the
Prandtl number is about 0.7 for air and about 7.0 for water. In terms of the
functions f and F the boundary conditions de¢ned by Eqs. (10.13) become

f ð0Þ ¼ f 0ð0Þ ¼ 0 ð10:15cÞ
f 0ðZÞ ! 0 as Z ! 1 ð10:15dÞ
gð0Þ ¼ 1 ð10:15eÞ
gðZÞ ! 0 as Z ! 1 ð10:15f Þ

Once the solution to the ordinary di¡erential system de¢ned by Eqs.
(10.15) has been obtained,the corresponding solution for the stream function
and the dimensionless temperature are given by the following relations:

cðx; yÞ ¼ n
4

4gbðTs � T0Þ
n2

� �1=4

x3=4f ðZÞ ð10:16aÞ

yðx; yÞ ¼ FðZÞ ð10:16bÞ

where

Zðx; yÞ ¼ 4gbðTs � T0Þ
n2

� �1=4 y
x1=4

ð10:16cÞ

The problem de¢ned by Eqs. (10.15) was solved by Pohlhausen for
Pr ¼ 0:733. The physical result of greatest interest is the rate at which con-
vective heat transfer takes place between the vertical surface and the ambi-
ent £uid. The result so obtained is usually quoted in the following
nondimensional form:

Nu ¼ 0:359ðGrÞ1=4 ð10:17Þ

where

Nu ¼ hl
k

and

Gr ¼ gl3ðTs � T0Þ
n2T0
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The parameters in Eq. (10.17) are the Nusselt number Nu, which is the non-
dimensional heat transfer rate, and theGrashof number Gr ,which is the non-
dimensional temperature di¡erential that drives the convection. In these
quantities, h is the rate of heat transfer per unit area per unit time, k is the
thermal conductivity of the ambient £uid, and l is the length of surface over
which the heat transfer takes place.

10.5 LINE SOURCE OF HEAT

Figure10.2 shows the physical situation that existswhen a line source of heat
is immersed in an otherwise stationary £uid.The situation is similar to that

FIGURE10.2 Thermal convection from a line source of heat.
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of the vertical surface, except that there is no physical surface involved, and
no characteristic temperature di¡erential.

The equations governing the motion that is induced in this situation
will be the same as those of Sec. 10.4, and they are given by Eqs. (10.12).
However, the boundary conditions are di¡erent in this case.Since there is no
physical surface in the present case, the conditions (10.13a) and (10.13d) are
no longer relevant.The ¢rst of these conditions must be replaced by a state-
ment that the x axis is a line of symmetry and the second condition by a
statement ensuring that the total heat rising from the source is the same at all
streamwise locations. These new conditions are expressed by the following
equations:

@u
@y

ðx; 0Þ ¼ 0

Z 1

�1
ruCpðT � T0Þdy ¼ Q

whereQ is the value of the total amount of heat that leaves the source per unit
time per unit length of source.

With the changes noted above, the problem to be solved consists of the
di¡erential system de¢ned by Eqs. (10.12), subject to the following boundary
conditions:

@u
@y

ðx; 0Þ ¼ 0 ð10:18aÞ

vðx; 0Þ ¼ 0 ð10:18bÞZ 1

�1
ruCpðT � T0Þ dy ¼ Q ð10:18cÞ

@T
@y

ðx; 0Þ ¼ 0 ð10:18dÞ

T ðx; yÞ !0 as y ! 	1 ð10:18eÞ

As in the case of the isothermal surface,we recast the di¡erential equations
in terms of the stream function and a dimensionless temperature.The former
is de¢ned to satisfy the continuity equation as before, but the dimensionless
temperature has to be rede¢ned. The surface temperature no longer needs
normalizing to unity, so the appropriate de¢nition of the dimensionless
temperature in this case is

yðx; yÞ ¼ bfT ðx; yÞ � T0g
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In terms of the stream function and the new dimensionless temperature,
Eqs. (10.12) reduce to the following form:

@c
@y

@2c
@x@y

� @c
@x

@2c
@y2

¼ n
n3c
@y3

þ gy ð10:19aÞ

@c
@y

@y
@x

� @c
@x

@y
@y

¼ k
@2y
@y2

ð10:19bÞ

In order to obtain solutions to these equations we seek a similarity solution
which is suggested by that found in the previous section, but in which the
dimensionless temperature also has a coe⁄cient that is a function of x. The
form of the solution that is sought is

cðx; yÞ ¼ C1xmf ðZÞ

where

Zðx; yÞ ¼ C2
y
xn

and

yðx; yÞ ¼ C3xrFðZÞ

In these expressions,m, n, and r are undetermined exponents and the quan-
titiesC1,C2, andC3 are constants that render the functions f,F, and Z dimen-
sionless. It is not to be assumed that any of these quantities have the same
values as they did in Sec. 10.4.The derivatives of the stream function are the
same in Sec.10.4, and the derivatives of the dimensionless temperature are

@y
@x

¼ C3xr�1ðrF � nZF 0Þ
@y
@y

¼ C2C3xr�nF 0

@2y
@y2

¼ C2
2C3xr�2nF 00

Using these results for the di¡erentials, Eqs. (10.19) reduce to the following
form:

C2
1C

2
2x

2m�2n�1fðm� nÞð f 0Þ2 �mff 00g ¼ nC1C3
2x

m�3nf 000 þ gC3xrF

C1C2C3xm�nþr�1ðrf 0F �mfF 0Þ ¼ kC2
2C3xr�2nF 00
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For a similarity solution to exist, the x dependence in these equations must
cancel.This leads to the followingequationsrelating theexponentsm,n,and r,

2m� 2n� 1 ¼ m� 3n

2m� 2n� 1 ¼ r

m� nþ r � 1 ¼ r � 2n

The ¢rst two of these relations come from themomentumequation,while the
last relation comes from the energy equation. It will be seen that the ¢rst and
the last equations are the same, so that the requirement of reducing the par-
tial di¡erential equations to ordinary di¡erential equations is met by satis-
fying the ¢rst two of the equations presented above. Rewriting these
equations shows that the similarity condition is met provided

m ¼ 1
4
ð3þ rÞ n ¼ 1

4
ð1� rÞ

It will be noted that for the special case r ¼ 0, the solution obtained in Sec.
10.4 is recovered. In order to determine the value of r for the case under
consideration, the condition given by Eq. (10.18c) must be invoked. This
condition speci¢es the following:

Q ¼
Z 1

�1
ruCpðT � T0Þ dy

¼
Z 1

�1
r
@c
@y

Cp
y
b
xn

C2
dZ

In the above, it has been noted that

dy ¼ xn

C2
dZþ nxn�1 1

C2
Z dx

However, the integration indicated above is carried out in a plane
x¼ constant, so that dy will be proportional to xndZ. Substituting the values
established for the quantities in the integrand produces the result,

Q ¼ C1C3
rCp

b
xmþr

Z 1

�1
f 0F dZ ð10:20Þ

Since the quantity Q should be independent of x, it follows that ðmþ rÞ
should be zero. This additional requirement, coupled with the results
obtained above, leads to the following values for the exponentsm,n, and r.
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m ¼ 3
5

n ¼ 2
5

r ¼ � 3
5

For these values of the exponents, the di¡erential equations for the functions
f and F become

f 000 þ C1

5nC2
3ff 00 � ðf 0Þ2
h i

þ gC3

nC1C3
2
F ¼ 0 ð10:21aÞ

F 00 þ 3C1

5kC2

d
dZ

ðfFÞ ¼ 0 ð10:21bÞ

In order to render the functions f,F, and Z dimensionless,we choose

C1 � n
g
n2


 �1=5
C2 � g

n2


 �1=5
C3 � g

n2


 ��1=5

As was the case in the previous section,we may include dimensionless con-
stants of proportionality in the de¢nitions of the preceding quantities.
The purpose of doing this is to simplify the parameters that appear in the
resulting di¡erential equations and boundary conditions. The di¡erential
equations are given above, and the conditon, which may be considerably
simpli¢ed through normalization, is given by Eq. (10.20). In the latter con-
text, it is noted that the following quantity is dimensionless,

rnCp

bQ

With this observation, the following de¢nitions of the constants C1;C2 and
C3 are adopted in order to simplify the coe⁄cients in the resulting problem,

C1 ¼ n
bQ
rnCp

g
n2

� �1=5

C2 ¼ 1
5

bQ
rnCp

g
n2

� �1=5

C3 ¼
r4n4C4

p

b4Q4

g
n2

 !�1=5
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Using these de¢nitions, the di¡erential equations, as given by Eqs. (10.21),
reduce to the following form:

ð f 000 þ 3ff 00 � ð f 0Þ2 þ F ¼ 0 ð10:22aÞ

F 00 þ 3Pr
d
dZ

ð fFÞ ¼ 0 ð10:22bÞ

The boundary conditions that accompany this di¡erential system are given
by Eqs. (10.18). In terms of the new variables and parameters these equations
become

f ð0Þ ¼ f 00ð0Þ ¼ 0 ð10:23aÞZ 1

�1
f 0FdZ ¼ 1 ð10:23bÞ

F 0ð0Þ ¼ 0 ð10:23cÞ
FðZÞ�! 0 as Z�! 	 1 ð10:23dÞ

The solutions to Eqs. (10.22) are of the form

f ðZÞ ¼ A tanh aZ

FðZÞ ¼ B sech2 aZ

This form of solution satis¢es Eqs. (10.23a), (10.23c), and (10.23d) for all
¢nite values of the constants A, B, and a. Then, substitution of the assumed
form of solutions into Eqs. (10.22a), (10.22b), and (10.23b) produces restric-
tions on the values ofA,B, and a.These restrictions are, respectively,

a ¼ 5
6
A and B ¼ 50

27
A4

a ¼ 3PrA

B ¼ 3
4
A

These four conditions cannot be satis¢ed by the constants A, B, and a alone,
and the solution only exists for a particular value of the Prandtl number Pr.
The solution to the preceding equations is

A ¼ 81
200

� �1=5
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B ¼ 3
4

200
81

� �1=5

a ¼ 5
6

81
200

� �1=5

Pr ¼ 5
18

In summary, a similarity solution has been found for a particular value of the
Prandtl number only, and the solution is as follows:

cðx; yÞ ¼ 6a
5
n

bQ
rnCp

g
n2

� �1=5

x3=5 tanh aZ ð10:24aÞ

yðx; yÞ ¼ 5
8a

b4Q4

r4n4C4
p

n2

g

 !1=5

x�3=5sech2aZ ð10:24bÞ

where

Zðx; yÞ ¼ 1
5

bQ
rnCp

g
n2

� �1=5 y
x2=5

ð10:24cÞ

and

a ¼ 5
6

81
200

� �1=5

ð10:24dÞ

The above solution is valid for a Prandtl number of Pr ¼ 5=18. It shows that
the centerline temperature ðT ðx; 0Þ � T0Þ varies as x�3=5.

10.6 POINT SOURCE OF HEAT

A solution analogous to that obtained in Sec. 10.5 may be obtained for the
case of a point source of heat. The physical situation that will exist is illu-
strated in Fig. 10.2, it being understood that in the present case there will be
angular symmetry about the x axis. In recognition of this fact, the preferred
coordinate system involves circular cylindrical coordinates in which
the coordinates y and z are replaced by R and y. Under these circum-
stances, the coordinate system will be ðR; y; xÞ, which is di¡erent from the
usual situation in which the axis of symmetry is the z axis.
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Noting that there will be no y dependence due to the symmetry already
noted, the governing equations,which are described by Eqs. (10.12), may be
rewritten in terms of the preferred coordinate system as follows:

@

@x
ðRuÞ þ @

@R
ðRuRÞ ¼ 0

u
@u
@x

þ uR
@u
@R

¼ n
R

@

@R
R
@u
@R

� �
þ gbðT � T0Þ

u
@T
@x

þ uR
@T
@R

¼ k
1
R

@

@R
R
@T
@R

� �

where u is the velocity in the x direction and uR is the velocity in the radial
direction, perpendicular to the x axis. In order to facilitate obtaining a solu-
tion to this set of di¡erential equations, a Stokes stream function and a
dimensionless temperature are introduced as follows:

Ru ¼ @c
@R

and RuR ¼ � @c
@x

y ¼ bðT � T0Þ

In terms of these new dependent variables, the di¡erential equations quoted
above assume the following form:

1
R
@c
@R

@

@x
1
R
@c
@R

� �
� 1
R
@c
@x

@

@R
1
R
@c
@R

� �

¼ n
R

@

@R
R

@

@R
1
R
@c
@R

� �� �
þ gbðT � T0Þ

@c
@R

@T
@x

� @c
@x

@T
@R

¼ k
@

@R
R
@T
@R

� �

The boundary conditions that accompany these di¡erential equations are
the following:

@u
@R

ðx; 0Þ ¼ @

@R
1
R
@c
@R

� �
R¼0

¼ 0 ð10:25aÞ

uRðx; 0Þ ¼ � 1
R

@c
@x

� �
R¼0

¼ 0 ð10:25bÞ
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Z 1

0
ruCpðT � T0Þ2pRdR ¼

Z 1

0
r
@c
@R

Cp
y
b
2p dR ¼ Q ð10:25cÞ

@T
@R

ðx; 0Þ ¼ 1
b

@y
@R

� �
R¼0

¼ 0 ð10:25dÞ

T ðx; 0Þ�!0 and yðx; 0Þ �! 0 as R�! 	1 ð10:25eÞ

Solutions to the di¡erential system are sought of the following form:

cðx;RÞ ¼ C1xmf ðZÞ

where

Zðx;RÞ ¼ C2
R
xn

and

yðx;RÞ ¼ C3xrFðZÞ

Substitution of these assumed forms of solution into the di¡erential system
shows that a similarity solution exists for the following values of the expo-
nentsm,n, and r,

m ¼ 1 and 4nþ r ¼ 1

The third equation that is required to de¢ne the solution is obtained from the
condition de¢ned by Eq. (10.25c). In terms of the new variables, this condi-
tion becomes

2prC1C3
Cp

b
xmþr

Z 1

0
f 0F dZ ¼ Q ð10:26Þ

Since the quantity Q, the heat leaving the source per unit time, must be
independent of x, the additional requirements is that ðmþ rÞ ¼ 0. This
results in the following values of the exponents for a similarity solution to
exist:

m ¼ 1 n ¼ 1
2

r ¼ �1

For these values of the exponentsm,n, and r, the di¡erential equations for the
stream function and the dimensionless temperature become
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f 000 � 1� C1

n
f

� �
d
dZ

f 0

Z

� �
þ gC3

nC1C4
2
ZF ¼ 0

F 0 þ C1

kZ
fF ¼ 0

Also, the values of the constants C1, C2, and C3 that preserve the correct
dimensions of the stream function and the dimensionless temperature are

C1 � n

C2 � g
n2


 �1=6
C3 � g

n2


 ��1=3

For a point source, as we have here, the quantity Q has the dimensions
of quantity of heat per unit time. Then a dimensionless parameter for this
case is

rnCp

bQ
n2

g

� �1=3

Then, in order to simplify the coe⁄cients in the di¡erential equations and in
Eq. (10.26) we choose the following values for the constants:

C1 ¼ n

C2 ¼ bQ
rnCp

� �1=4 g
n2


 �1=4

C3 ¼ bQ
rnCp

Using these values for the constants of proportionality in the expressions for
the stream function and the dimensionless temperature, the system reduces
to the following ordinary di¡erential system:

f 000 � ð1� f Þ d
dZ

1
Z
f 0

� �
þ ZF ¼ 0 ð10:27aÞ

F 0 þ Pr
1
Z
fF ¼ 0 ð10:27bÞ
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In arriving at Eq. (10.27b), the energy equation has been integrated once and
the boundary condition (10.25d) has been employed. The boundary condi-
tions that accompany these two di¡erential equations are

f ð0Þ ¼ f 0ð0Þ ¼ F 0ð0Þ ¼ 0 ð10:28aÞZ 1

0
f 0F dZ ¼ 1

2p
ð10:28bÞ

Closed-form solutions to the problem posed above exist, and they will be
explored in the problems at the end of the chapter.

10.7 STABILITY OF HORIZONTAL LAYERS

When a horizontal layer of £uid is heated frombelow,or cooled fromabove, a
buoyancy force exists that can result in convective motion. However, if the
buoyancy force is not su⁄ciently large, nomotion occurs.This situation may
be qualitatively explained as follows.

Consider a horizontal layer of £uid as shown in Fig.10.3.The £uid is at
rest, and heat is passing through the £uid by conduction from the lower sur-
face to the upper surface. For simplicity, the two horizontal surfaces are
considered to be isothermal, although they have di¡erent temperatures.
Under these circumstances, the buoyancy force will tend to cause the £uid to
rise from the lower surface, resulting in natural convection.

x

y

h

T

T1

2

FIGURE10.3 Horizontal layer of fluid heated from below.

Buoyancy-Driven Flows 385



Suppose that while the £uid is still at rest, a small-amplitude dis-
turbance is introduced. It may be that the viscous forces that act on the
disturbing motion exceed the buoyancy force,which causes any convection
thatmay arise.Under these circumstances the disturbancewill decay and the
motion will cease. On the other hand, if the buoyancy force exceeds the
viscous forces, the disturbance will grow and convective motion will result.
These observations suggest that a stability analysis of the situation depicted
could identify the existence of a minimumvalue of the buoyancy force below
which no motion will exist. The situation described above may be analyzed
quantitatively in a manner similar to that used in Sec. 9.12 which dealt with
the stability of boundary layers. However, the governing equations will be
di¡erent in the current case, because of the existence of heat addition. The
relevant equations are also di¡erent from those used in the previous few
sections since the disturbance mentioned above will not, in general, satisfy
the assumptions of the boundary layer approximation.

The situation depicted in Fig. 10.3 involves heat conduction in a
stationary £uid. A small-amplitude disturbance is assumed to be introduced
into this situation. The equations that govern the motion involved in this
disturbance will be unsteady and three-dimensional. Following the Boussi-
nesq approximation,we consider variations in density to be important only
in the gravitational term.We further consider the £uid properties to be con-
stant, and in the energy equationwe neglect the viscous dissipation of energy
and the e¡ects of pressure variations in the transfer of energy.Then,using the
density variation de¢ned by Eq. (10.3), the equations governing the motion
associated with the disturbance will be

= · u ¼ 0

@u
@t

þ ðu ·=Þu ¼ � 1
r
=pþ nH2u� g½1� bðT � T0Þ�ex

@T
@t

þ ðu ·=ÞT ¼ kH2T

In the preceding equations, the pressure is measured relative to its absolute
value; that is, it is no longer measured relative to the static value. But, from
Fig.10.3, the static temperature distribution, TsðxÞ, is represented by

TsðxÞ ¼ T1 � ðT1 � T2Þ xh
Before the disturbance is introduced, the velocity vector u in the preceding
equations will be zero. Then, using the temperature distribution speci¢ed
above, the equations reduce to the following form:
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0 ¼ � 1
r
dps
dx

� g 1� b ðT1 � T0Þ � ðT1 � T2Þ xh
h in o

The pressure distribution that exists in the stationary state has been labeled
ps and, as before, the density is understood to be evaluated at the reference
temperature T0.

When the disturbance is introduced, the ¢eld variables are assumed to
be perturbed in the following manner:

uðx; y; z; tÞ ¼ 0þ u0ðx; y; z; tÞ
pðx; y; z; tÞ ¼ p0ðxÞ þ p0ðx; y; z; tÞ
T ðx; y; z; tÞ ¼ TsðxÞ þ T 0ðx; y; z; tÞ

Here, the primed quantities are, by assumption, small perturbations caused
by the disturbance. Then products of primed quantities may be neglected.
Thus the linearized form of these equations is

H � u0 ¼ 0

@u0

@t
¼ � 1

r
=p0 þ nH2u0 þ gbT 0ex

@T 0

@t
� u0

ðT1 � T2Þ
h

¼ kH2T 0

The pressure may be eliminated from this system of equations by taking the
curl of the momentum equation. Then, it is proposed to take the curl of the
resulting equation and to use the identity

=�ð=� u0Þ ¼ =ð= · u0Þ � H2u0 ¼ �H2u0

in which the continuity equation has been utilized. In this way the momen-
tum equation becomes

H2 � 1
n
@

@t

� �
H2u0 ¼ � gb

n
exH2 � =

@

@x

� �
T 0

The y and z components of velocity may now be eliminated by taking the dot
product of this equation with the unit vector ex.Thus the problem reduces to
the following two equations:

=2 � 1
n
@

@t

� �
H2u0 ¼ � gb

n
H2 � @

@x2

� �
T 0
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H2 � 1
k
@

@t

� �
T 0 ¼ � ðT1 � T2Þ

kh
u0

The disturbance that is represented by the perturbation quantities u0 and T 0

is arbitrary in its form.Therefore, it may be represented by Fourier integrals
in the y and z directions. Thus we represent the velocity and temperature
perturbations by the following expressions:

u0ðx; y; z; tÞ ¼
Z 1

�1

Z 1

�1
U 0ðx; tÞeiðkyyþkzzÞdky dkz

T 0ðx; y; z; tÞ ¼
Z 1

�1

Z 1

�1
y0ðx; tÞeiðkyyþkzzÞdky dkz

Substituting these expressions into the equations that govern the dis-
turbance and using the fact that the result must be valid for all wavelengths of
disturbance results in the following two di¡erential equations:

@2

@x2
� k2 � 1

n
@

@t

� �
@2

@x2
� k2

� �
U 0 ¼ gb

n
k2y0

@2

@x2
� k2 � 1

k
@

@t

� �
y0 ¼ � ðT1 � T2Þ

kh
U 0

where

k2 ¼ k2
y þ k2

z

Wenext use the fact that the coe⁄cients in the equations above are constants.
Then we can seek solutions to the di¡erential equations of the following
form:

U 0ðx; tÞ ¼ U ðxÞesðk=h2Þt

y0ðx; tÞ ¼ yðxÞesðk=h2Þt

In the above, the parameter s has been made dimensionless by dividing the
time by the quantity h2=k,which is the time required for heat to di¡use across
the £uid layer. Substituting this representation of the disturbance into the
two governing equations gives

D2 � a2 � s
Pr

� �
ðD2 � a2ÞU ¼ gb

nh2
a2y ð10:29aÞ
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ðD2 � a2 � sÞy ¼ �ðT1 � T2Þ
kh

U ð10:29bÞ

where
a ¼ hk

and

D ¼ h
d
dx

In these equations, a is a dimensionless wave number and D is the dimen-
sionless derivative with respect to x. Eliminating the temperature y between
these two equations yields the following stability equation,

ðD2 � a2ÞðD2 � a2 � sÞ D2 � a2 � 1
Pr

s
� �

þ a2Ra

� �
U ¼ 0 ð10:30Þ

where

Ra ¼ gh3bðT1 � T2Þ
kn

The parameter Ra ¼ PrGr is the Rayleigh number, where Pr is the Prandtl
number and Gr is the Grashof number. It is a measure of the strength of the
buoyancy force,which tries to initiate convective motion.

For the con¢guration depicted in Fig. 10.3, the boundary conditions
require that the velocity and the temperature perturbations vanish at the
boundaries, x ¼ 0 and x ¼ h. The ¢rst of these conditions requires that
U ¼ 0,while the second condition requires that

D2 D2 � 2a2 � s
Pr

� �
U ¼ 0

This latter result follows fromEq. (10.29a) and the fact theU itself vanishes at
the boundaries. In addition, the no-slip condition at the boundaries requires
that not only u0 but also v0 and w0 must vanish on the boundaries.With refer-
ence to the continuity equation, this conditionwill be satis¢ed ifDU vanishes
on the boundaries.Putting these boundary conditions together produces the
following set of conditions that are to be satis¢ed:

U ¼ DU ¼ D2 D2 � 2a2 � s
Pr

� �
U ¼ 0 on

x
h
¼ 0; 1 ð10:31Þ
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The problem posed by Eqs. (10.30) and (10.31) represents an eigenvalue pro-
blem. For given values of the Rayleigh number Ra, the wave number of the
disturbance a, and the Prandtl number Pr, the eigenvalue will be the time
coe⁄cient s.That is, for given values of Ra, a, and Pr , there will be a value of
the quantity s that satis¢es the conditions speci¢ed above.As the value of the
wave number is varied, di¡erent values of swill be obtained.The largest real
value of s will de¢ne the Fourier component of the disturbance that is the
fastest growing.

It was stated earlier that there was qualitative reason to expect that
there was a minimum value of the buoyancy force for convection to start. If
this is so, there will be aminimumvalue of theRayleigh number below which
no convection will take place. In order to identify this minimum value, we
note that the situation that will exist in such a case will correspond to the
wavelength of the fastest-growing component have s ¼ 0. All other compo-
nentswill be decaying.Then, at the onset of instability the time coe⁄cient in
the preceding equations will be zero. For this situation Eqs. (10.30) and
(10.31) become

ðD2 � a2Þ3 þ a2Ra

h i
U ¼ 0 ð10:32aÞ

U ¼ DU ¼ ðD2 � a2Þ2U ¼ 0 on
x
h
¼ 0; 1 ð10:32bÞ

The eigenvalue is now the Rayleigh number Ra, which can be determined
from the equations above for any given value of the wave number a.Then, the
minimum value of Ra, with respect to a, will be the critical Rayleigh number.
This corresponds to the magnitude of smallest temperature gradient for
which all disturbances, that is all possible wave numbers,will decay in time
rather than grow in time and produce convective motion.

The problem posed by Eqs. (10.32) has a solution that yields a value of
1707.8 for the critical Rayleigh number.When one of the boundaries is free,
the appropriate boundary condition is that the surface be free of stress. In
this case the value of 1100.7 is obtained for the critical Rayleigh number. For
two free boundaries, the value of the critical Rayleigh number is 657.5.

PROBLEMS

10.1 A similarity solution exists to the problem posed by a point source of
heat.The solution is of the following form:

cðx;RÞ ¼ C1xmf ðZÞ
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Zðx;RÞ ¼ C2
R
xn

yðx;RÞ ¼ C3xrFðZÞ
Carry out the analysis of this solution by substituting the assumed
formof solution into the differential equations for the stream function
and the temperature to verify that a similarity solution to the equa-
tions exists provided that

m ¼ 1 4nþ r ¼ 1

The total amount of heat leaving the point source per unit time at any x
location is given by the following relation:

2prC1C3
Cp

b
xmþr

Z 1

0
f 0F dZ

Use this result and the fact that the total amount of heat leaving the
point source is a constant to determine the values of the parametersm,
n, and r.

10.2 The problem posed by convection from a point source of heat was
shown, after using similarity methods, to reduce to the following pro-
blem:

f 000 � ð1� f Þ d
dZ

1
Z
f 0

� �
þ ZF ¼ 0 ð10:27aÞ

F 0 þ Pr
1
Z
fF ¼ 0 ð10:27bÞ

where
f ð0Þ ¼ f 0ð0Þ ¼ F 0ð0Þ ¼ 0 ð10:28aÞ

and Z 1

0
f 0F dZ ¼ 1

2p
ð10:28bÞ

Look for a solution to this problem of the following form for the case
Pr ¼ 1:

f ðZÞ ¼ A
Z

aþ Z2

FðZÞ ¼ B
1

ðaþ Z2Þ3
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where the quantities A,B, and a, are unspecified constants.

(a) Show that the assumed form of solution satisfies Eq. (10.27b) pro-
vided A ¼ 0.

(b) Show that it also satisfies Eqs. (10.27a) and (10.28b) provided

a ¼ 6
ffiffiffiffiffiffi
2p

p
and B ¼ 6

ffiffiffiffiffiffi
2p

p

3p

10.3 Show that for a point source of heat in a fluid for which Pr ¼ 2,
a solution exists in the following form:

f ðZÞ ¼ A
Z2

aþ Z2

FðZÞ ¼ B
1

ðaþ Z2Þ4

Find the values of the constants A, B, and a that satisfy Eqs. (10.27a),
(10.27b) and (10.28b).

10.4 The problemof marginal stability of a layer of fluid that is heated from
below is represented by the following equations:

ðD2 � a2Þ3 þ a2Ra

h i
U ¼ 0 ð10:32aÞ

U ¼ DU ¼ ðD2 � a2Þ2U ¼ 0 on
x
h
¼ 0; 1 ð10:32bÞ

The general solution to these equations is of the following form:

U ðxÞ ¼ C1e�g1x þ C2e�g2x þ C3e�g3x þ C4e�g4x þ C5e�g5x þ C6e�g6x

(a) Find the values of the constants gi that satisfy the differential
equation, Eq. (10.32a).

(b) The existence of a nontrivial solution that satisfies the
boundary conditions (10.32b) leads to a certain determinant
being zero. Find this determinant, but do not attempt to
solve the problem of setting this determinant equal to zero.

10.5 Replace the boundary conditions defined by Eqs. (10.32b) for the case
of two free surfaces at x ¼ 0 and x ¼ h. That is, find the equivalent of
Eqs. (10.32b) for the case of two free surfaces.
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FURTHER READING�PART III

The topic of laminar viscous £ows is fairly well covered in texts, especially
the boundary layer section of the material. The following books cover and
extend the material treated in Part III of this book.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press,
London,1967.

Gebhart, Benjamin,Yogesh Jaluria, Roop L.Mahajan, and Bahgat Sammakia: Buo-
vancy-Induced Flows and Transport, Hemisphere Publishing Corporation, New
York,1988.

Rosenhead, L. (ed.): Laminar Boundary Layers, Oxford University Press, London,
1963.

Schlichting, Hermann: Boundary-Layer Theory, 6th ed., McGraw-Hill Book Com-
pany, NewYork,1968.

Van Dyke, Milton: Perturbation Methods in Fluid Dyanmics, Academic press, New
York,1964.

Yih,Chia-Shun:Fluid Mechanics,McGraw-Hill Book Company, NewYork, 1969.
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IV

COMPRESSIBLE FLOW
OF INVISCID FLUIDS

In this part of the book some phenomena associatedwith the compressibility
of £uids will be uncovered, and some methods of solving the governing
equationswill be established. In order to do this, the viscosity of the £uidwill
again be neglected, but owing to the high speeds associated with most com-
pressible e¡ects, the inertia of the £uid will be retained. That is, the £uids
under consideration and the £ow ¢elds associated with them will be con-
sidered to be such that viscous e¡ects are negligible but such that compres-
sible e¡ects are important.

Part IVof the book encompasses Chaps.11,12, and13.Chapter11deals
with the propagation of disturbances in compressible £uids and shows how
shock waves are formed.This is followed by a treatment of both normal and
oblique shock waves.Chapter 12 deals with one-dimensional £ow situations
and shows how pressure signals react upon reaching interfaces between dif-
ferent £uids and also solid boundaries. Nonadiabatic £ows, including heat
addition and friction, are also included. The ¢nal chapter, Chap. 13, deals
with multidimensional £ow ¢elds, both subsonic and supersonic. These
include the Prandtl-Glauert rule for subsonic £ow and Ackeret’s theory for
supersonic £ow.
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Governing Equations and Boundary Conditions

When the density of the £uid is not constant, the equations of continuity and
momentum conservation are no longer su⁄cient to permit a solution for the
velocity and pressure ¢elds to be obtained.This is because the density,which
is now a dependent variable, appears in these equations.To close the system
of equations, the conservationof thermal energymust be utilized.Thus, from
Eqs. (1.3a), (1.9a), and (1.11), the equations governing the motion of an invis-
cid £uid in which there are no body forces are

@r
@t

þ = � ðruÞ ¼ 0 ðIV:1Þ

r
@u
@t

þ rðu · =Þu ¼ �=p ðIV:2Þ

r
@e
@t

þ rðu � =Þe ¼ �p= · uþ = · ðk=T Þ ðIV:3aÞ

In addition, equations of state must be included. These equations will be of
the general form

p ¼ pðr;T Þ

e ¼ eðr;T Þ

The foregoing set of equations represents seven scalar equations for the
seven unknowns u, p, r, e, and T .

Two useful alternative forms of the thermal-energy equation exist.One
of these was derived in the problems at the end of Chap. 3 and is given by
Eq. (3.6). This equation,which introduces the enthalpy h of the £uid in pre-
ference to the internal energy e, is

r
@h
@t

þ rðu � =Þh ¼ @p
@t

þ ðu � =Þpþ = � ðk=T Þ ðIV:3bÞ

It should be noted that Eq. (IV.3b) follows directly from Eq. (IV.3a) without
further approximation. If the form (IV.3b) is employed, the caloric equa-
tion of state for e should be replaced by the following caloric equation of
state for h:

h ¼ hðp;T Þ
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The second alternative form of the thermal-energy equation is
obtained form Eq. (IV.3a) as a special case. For situations in which heat
conduction is negligible, Eq. (IV.3a) may be written in the form

r
De
Dt

¼ �p= · u

If, in addition, the £uid is a perfect gas, it follows from the results of thermo-
dynamics that

e ¼ eðT Þ
de
dT

¼ Cv

and

p ¼ rRT

Thus, the thermal-energy equation may be written in the following form:

rCv

DT
Dt

¼ �p= · u

It should be noted that De=Dt ¼ ðde=dT ÞDT=Dt ¼ CvDT=Dt, so that
the result above is valid even if Cv is not constant.

Using the continuity equation, =�umay be replaced by�ðDr=DtÞ=r in
the equation above. Also, T may be replaced by p=ðrRÞ from the thermal
equation of state.Thus, the energy equation may be rewritten as follows:

rCv

D
Dt

p
rR

� �
¼ p

r
Dr
Dt

rCv

R
1
r
Dp
Dt

� p
r2

Dr
Dt

� �
¼ p

r
Dr
Dt

1
p
Dp
Dt

¼ R þ Cv

Cv

� �
1
r
Dr
Dt

¼ g
r
Dr
Dt

The last result follows from the thermodynamic relations

Cp � Cv ¼ R
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and g ¼ Cp=Cv. The thermal-energy equation is now in the form of logarith-
mic derivatives that may be combined as follows:

D
Dt

ðlog pÞ ¼ D
Dt

ðlog rgÞ
D
Dt

log
p
rg

� �
¼ 0

;
p
rg

¼ constant along each streamline ðIV:3cÞ

The foregoing result will be recognized as the isentropic law for ther-
modynamic processes.This is compatible with the assumptions of an invis-
cid £uid inwhich heat conduction is negligible.The latter assumption means
that the £ow is adiabatic, and the absence of viscosity eliminates any irre-
versible losses. Equation (IV.3c) states that the quantity p=rg is constant
along each streamline,which means that the entropy is constant along each
streamline.But if the £oworiginates in a regionwhere the entropy is constant
everywhere, then the constant in Eq. (IV.3c) will be the same from streamline
to streamline.That is, p=rgwill be constant everywhere for adiabatic £owof a
perfect gas that originates in an isentropic-£ow ¢eld or reservoir.

The boundary conditions that accompany the foregoing equationsmay
specify the velocity and the temperature or the heat £ux.Since inviscid £uids
are again being considered, the no-slip boundary condition cannot be
imposed at rigid boundaries as was the case in Part III. Rather, the condi-
tions u · n ¼ U , which was used in Part II, must again be employed, for the
same reason as before.
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11

Shock Waves

This chapter establishes the relationships for shock waves that occur in
supersonic £ow. First, the propagation of in¢nitesimal internal waves is
studied,which establishes the speed of sound in a gas. It is then shown how
this acoustical result ismodi¢ed in the case of ¢nite-amplitude disturbances.
That is, it is shown how nonlinear e¡ects grow to cause a shock wave to form.
The remainder of the chapter is devoted to the study of steady £ows involving
standing shock waves.

The famous Rankine-Hugoniot relations for a normal shock wave are
¢rst derived.These relations show, among other things, that the £ow through
a shock wave is nonisentropic. From the second law of thermodynamics it is
then shown that shock waves can occur only in supersonic £ow and that, in
the case of a normal shock wave, the downstreamMach number will be less
than unity. This is followed by derivation of the working equations for both
normal shock waves and oblique shock waves. That is, relationships are
established that permit the conditions downstream of a shock wave to be
calculated if the upstream conditions are known and, in the case of oblique
shock waves, the angle of the boundary that is inducing the shock wave,
relative to the £ow direction.
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11.1 PROPAGATIONOF INFINITESIMAL
DISTURBANCES

By studying the equations of motion for a small-amplitude internal dis-
turbance in a gas, the speed at which such disturbances propagate may be
established. This speed is, of course, the speed of sound, since sound is a
small-amplitude disturbance.Then consider a perfect gas that is originally at
rest and through which a one-dimensional or plane disturbance is traveling.
It will be assumed that this disturbance travels at a su⁄ciently fast speed that
heat conduction may be neglected. That is, it is assumed that the £ow is
adiabatic.Then, from Eqs. (IV.1), (IV.2), and (IV.3c), the £uid variables must
satisfy the following conditions:

@r
@t

þ @

@x
ðruÞ ¼ 0

@u
@t

þ u
@u
@x

¼ � 1
r
@p
@x

p
rg

¼ constant

The £ow ¢eld under consideration is isentropic, so that the pressure may be
considered to be a function of one thermodynamic variable only, say the
density. That is, p may be considered to be pðrÞ only where the particular
function that applies is de¢ned by the energy equation written above. Then
the pressure term in the Euler equation may be rewritten as follows:

@p
@x

¼ dp
dr

@r
@x

Using this relation, the continuity and momentum equations may be rewrit-
ten as follows:

@r
@t

þ u
@r
@x

þ r
@u
@x

¼ 0

@u
@t

þ u
@u
@x

þ 1
r
dp
dr

@r
@x

¼ 0

So far, the preceding equations are exact within the assumptions of
one-dimensional motion of an inviscid £uid in which the £ow is adiabatic.
In order to utilize the assumption of a small-amplitude disturbance, the
¢eld variables will now be written in terms of their undisturbed values
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plus a perturbation that is caused by the passage of the disturbance. The
undisturbed velocity is zero, and the undisturbed pressure and density will
be denoted by the constants p0 and r0, respectively. Then the instantaneous
¢eld variables may be written as follows:

p ¼ p0 þ p0

r ¼ r0 þ r0

u ¼ 0þ u0

Substituting these expressions into the two equations derived above gives

@r0

@t
þ u0

@r0

@x
þ ðr0 þ r0Þ @u

0

@x
¼ 0

@u0

@t
þ u0

@u0

@x
þ 1
ðr0 þ r0Þ

dp
dr

@r0

@x
¼ 0

The quantities r0=r0; p
0=p0, and u0 will be small for a small-amplitude dis-

turbance, and so products of all primed quantities may be neglected as be-
ing quadratically small. The meaning of the statement u0 is small will be
clari¢ed later.Thus the linearized form of the foregoing equations is

@r0

@t
þ r0

@u0

@x
¼ 0

@u0

@t
þ 1
r0

dp
dr

� �
0

@r0

@x
¼ 0

It has been considered that the quantity dp=dr has been expanded in aTaylor
series and the quantity ðdp=drÞ0 is the leading term in such an expansion.
The meaning of the subscript zero is that the quantity dp=dr should be eval-
uated in the undisturbed gas.

From these equations it follows that:

r0
@2u0

@x @t
¼ � @2r0

@t2
¼ � dp

dr

� �
0

@2r0

@x2

so that the equation to be satis¢ed by the density perturbation is

@2r0

@t2
� dp

dr

� �
0

@2r0

@x2
¼ 0
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Likewise,by eliminating r0, the equation governing the velocity perturbation
is found to be

@2u0

@t2
� dp

dr

� �
0

@2u0

@x2
¼ 0

Thus both the density perturbation and the velocity perturbation will have
the same functional form, so that u0 may be considered to be a function of r0

only.That is,whatever the dependence of r0 is on x and t; u0will have the same
form of dependence, so that a simple relationship must exist between u0 and
r0. The foregoing partial di¡erential equations will be recognized as being
one-dimensional wave equations.Thus the solution for r0 will be of the form

r0ðx; tÞ ¼ f x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp
dr

� �s
0

t

 !
þ g x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp
dr

� �s
0

t

 !

where f and g are any di¡erentiable functions of their arguments. The ¢rst
term in this expression represents a wave traveling in the positive x direction
with velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdp=drÞp
0 and the second term represents a wave traveling in

the negative xdirectionwith the same velocity.Thus the speedwithwhich the
density perturbation travels, and also that with which the velocity perturba-
tion travels, is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdp=drÞp
0. Then, since the disturbance was assumed to be

small and since sound is a small disturbance, this will be the speed with
which sound travels. That is, if a0 denotes the speed of sound in a quiescent
gas, it follows that

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp
dr

� �s
0

The foregoing result may be put in a di¡erent form by evaluating the
indicated derivative through use of the isentropic relationship and the ideal-
gas law. From Eq. (IV.3c),

p
rg

¼ p0
rg0

dp
dr

¼ grg�1 p0
rg0

¼ g
p
r

Hence, employing the gas law p ¼ rRT gives

dp
dr

¼ gRT
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Thus the speed of sound in a quiescent gas may be written

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
gRT0

p
¼

ffiffiffiffiffiffiffiffi
g
p0
r0

r
ð11:1aÞ

where T0 is the temperature in the undisturbed gas. This familiar result
shows that the speed of sound in a gas may be considered to be a function
of the temperature of the gas only and that the speed increases as the square
root of the temperature of the gas.

It is now possible to be more precise concerning the assumption made
earlier that the perturbation velocity u0 is small. A quantitative interpreta-
tion of this assumption may be obtained from our original linearized form of
the momentum equation together with the solution just obtained. The line-
arized form of the momentum equation that was used above is

@u0

@t
þ a20
r0

@r0

@x
¼ 0

But it was shown that for a wave traveling in the positive x direction, the
solution for u0 was f ðx � a0tÞ, so that

@u0

@t
¼ �a0 f 0ðx � a0tÞ ¼ �a0

@u0

@x

where f 0 is the derivative of f with respect to its argument.Thus the lineari-
zed form of the momentum equation may be written in the form

� a0
@u0

@x
þ a20
r0

@r0

@x
¼ 0

or
@u0

@x
¼ a0

r0

@r0

@x

Integrating this equationwith respect to x and noting that u0 ¼ 0when r0 ¼ 0
gives the following algebraic relation between the velocity and the density
perturbations:

u0

a0
¼ r0

r0
ð11:1bÞ

Equation (11.1b) shows that the meaning of the assumption u0 is small is
that u0=a0 � 1, since it was already assumed that r0=r0 � 1. This result
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also exposes the simple relationship between u0 and r0 that was deduced
to exist.

Another result that may be deduced from Eq. (11.1b) concerns a fun-
damental di¡erence between compression waves and expansion waves. For
compression waves, the density perturbation r0 will be positive. Then
Eq. (11.1b) shows that the velocity perturbation u0 will also be positive.That
is, the £uid velocity behind a compression wave will be such that the £uid
particles tend to follow the wave, as shown in Fig.11.1a.On the other hand, r0

will be negative for an expansionwave, so Eq. (11.1b) shows that u0will alsobe
negative.That is, the £uid behind an expansion wave will tend to move away
from the wave front, as shown in Fig. 11.1b. This fundamental di¡erence
between compression waves and expansion waves will be discussed further
in later sections.

11.2 PROPAGATIONOF FINITE DISTURBANCES

Consider, again, the passage of a plane wave through an otherwise quiescent
£uid,but this time no assumptionwill bemade about the in¢nitesimal nature

FIGURE 11.1 Fluid velocity induced by (a) a compression wave front, and (b) an

expansion wave front.
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of the wave amplitude. By retaining the e¡ects of ¢nite amplitude, the
phenomena associated with ¢nite-amplitude disturbances may be exposed.
It will be shown that ¢nite-amplitude waves do not propagate undisturbed
but that they form shock waves.

The continuity and momentum equations are the same as those which
were the starting point of the previous section.

@r
@t

þ u
@r
@x

þ r
@u
@x

¼ 0

@u
@t

þ u
@u
@x

¼ � 1
r
@p
@x

In the previous section it was found that, for in¢nitesimal waves, u was a
function of r only and pwas a function of r only. Although the £ow will con-
tain ¢nite-amplitude e¡ects here, it will be assumed that u and pwill again be
functions of r only.Then, from u ¼ uðrÞ, it follows that

@r
@t

¼ dr
du

@u
@t

@r
@x

¼ dr
du

@u
dx

Also, from p ¼ pðrÞ only,
@p
@x

¼ dp
dr

dr
du

@u
@x

Thus the continuity and momentum equations may be rewritten in the fol-
lowing form:

dr
du

@u
@t

þ u
@u
@x

� �
þ r

@u
@x

¼ 0

@u
@t

þ u
@u
@x

¼ � 1
r
dp
dr

dr
du

@u
@x

The bracketed term in the ¢rst equation also appears in the second equation
and so may be readily eliminated between these two equations. The result-
ing relation is

r
du
dr

@u
@x

¼ 1
r
dp
dr

dr
du

@u
@x
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Canceling @u=@x from this equation and solving for du gives

du ¼ 	
ffiffiffiffiffiffi
dp
dr

s
dr
r

For convenience, the quantity dp=dr will be denoted by a2, although no
physical signi¢cance will be attached to the quantity a at this time.However,
it is known that a ! a0 as the amplitude becomes in¢nitesimal. In terms of
this quantity a, the preceding equation becomes

du
a

¼ 	 dr
r

The analogous equation that was obtained in the previous section was
du=a0 ¼ dr=r0 for a forward-running wave. Thus, in order that the result
obtained here may reduce to the linear result for weak waves, the plus
sign must be associated with a forward-running wave and the minus sign
should be associated with a backward-running wave. This gives a £uid-
particle velocity that follows a compression wave and moves away from an
expansion wave as before. The foregoing relation shows that for a forward-
running wave

du
a

¼ dr
r

ð11:2aÞ

This result will be used in the momentum equation as follows:

@u
@t

þ u
@u
@x

¼ � 1
r
@p
@x

¼ � 1
r
dp
dr

dr
du

@u
@x

¼ � 1
r
a2

r
a
@u
@x

That is, the momentum equation for a forward-running wavemay be written
in the following form:

@u
@t

þ ðuþ aÞ @u
@x

¼ 0

Solutions to this equation are of the form

uðx; tÞ ¼ f ½x � ðuþ aÞt� ð11:2bÞ
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where f is any di¡erentiable function. It should be noted that in this instance
both u and a are functions of the two independent variables x and t.

The foregoing solution represents a wave traveling in the positive x
direction with velocity

U ¼ uþ a

The wave speed Umay be related to the speed of an in¢nitesimal wave, that
is, to the speed of sound a0, by use of the isentropic law p=rg ¼ p0=r

g
0. From

the de¢nition of the quantity a, it follows that

a ¼
ffiffiffiffiffiffi
dp
dr

s

¼
ffiffiffiffiffiffiffiffiffiffiffi
grg�1

p p0
rg0

¼
ffiffiffiffiffiffiffiffi
g
p0
r0

r
r
r0

� �ðg�1Þ=2

¼ a0
r
r0

� �ðg�1Þ=2

where the de¢nition of the speed of sound has been employed from
Eq. (11.1a).Using this result and Eq. (11.2a), the local value of the £uid velo-
city may be related to the local speed of sound. From Eq. (11.2a).

du ¼ a
dr
r

¼ a0
rðg�1Þ=2
0

rðg�3Þ=2 dr

where the relation between a and a0 established above has been employed.
This equation may be integrated to give

u ¼ a0
rðg�1Þ=2
0

rðg�1Þ=2

ðg� 1Þ=2þ constant

Using the fact that when u ¼ 0; r ¼ r0 shows the value of the constant
of integration is 2a0=ðg� 1Þ, so that the expression for u becomes

u ¼ 2
g� 1

a0
r
r0

� �ðg�1Þ=2
�a0

" #

¼ 2
g� 1

ða� a0Þ
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Here the relation that was established between a and a0 has again been used.
That is, the quantity a is related to the local £uid velocity u in the following
way:

a ¼ a0 þ g� 1
2

u

This result shows that a > a0 for u > 0 and that the di¡erence between a and
a0 is proportional to the local £uid velocity u.Using this result, the speed of
propagation of a ¢nite-amplitude disturbance may be evaluated. It was
shown from Eq. (10.2b) that such a disturbance travels with velocity

U ðx; tÞ ¼ aþ u

; U ðx; tÞ ¼ a0 þ gþ 1
2

u ð11:2cÞ

where the relation between a and u established above has been used. Equa-
tion (11.2c) shows that the speed of propagation of a ¢nite-amplitude dis-
turbance is greater than the speed of sound for u > 0 and that it is no longer
constant but depends upon the value of the local £uid velocity.

Since the propagation speed de¢ned byEq. (11.2c) depends upon both x
and t, it is not an equilibrium speed. That is, the speed at which a ¢nite-
amplitude signal travels will change continuously according to Eq. (11.2c). It
is instructive to deduce the manner in which a given wave front will change
its characteristics as a result of this fact. In time t, Eq. (11.2c) shows that a
disturbance will travel a distance L that is given by the expression

L ¼ a0 þ gþ 1
2

u
� �

t

Then, relative to an observer who is moving at the speed of sound a0, the
distance traveled by the wave will be

S ¼ gþ 1
2

ut

That is, relative to the observer the wave will travel a distance that is depen-
dent upon the magnitude and the sign of the local £uid velocity in the dis-
turbance.Thus regions of high local velocity will travel faster than regions of
low local velocity.Then a smooth disturbance of arbitrary form will develop
as shown in Fig.11.2.

At time t1 a smooth velocity pro¢le is considered to be traveling in the
positive x direction. Then, at some later time t2 > t1, the regions of higher
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velocity will have advanced further, relative to an observer moving at con-
stant velocity a0, than the regions of lower velocity. At time t3 > t2 the wave
front is shown to be vertical as higher-velocity regions continue to advance
faster than the slower regions. Finally, at time t4 > t3, the higher-velocity
regions are shown as having overtaken the portion of the signal that is mov-
ing at the sonic velocity a0. It is seen that this is an impossible con¢guration,
since three values of u exist at a given location.Thus it is concluded that the
wave front will steepen as indicated until the situation depicted at time t3 is
reached.At this stage a sharp discontinuity in the ¢eld variables exists that is
called a shock wave. For times greater than t3 this sharp wave front or shock
wave will propagate in an equilibrium con¢guration.

To summarize, if a smooth, ¢nite-amplitude compression wave is gen-
erated, it will travel in a nonequilibrium con¢guration.Di¡erent parts of the
wave will travel at di¡erent speeds in such a way that the wave front will
steepen as it progresses. Eventually, the steepening of the wave front will
reach the point where the changes in velocity,pressure,etc., take place across
a very narrow region.That is, a shock wave has been formed, and this shock
wave will continue to travel at an equilibrium speed.

It should be noted that, in the foregoing argument, the £uid velocity u
was taken to be positive, which corresponds to a compression wave. For an
expansion wave u will be negative for a forward-running wave so that,
according to Eq. (11.2c), the wave front will movemore slowly than the speed
of sound. Also, the more intense parts of the wave move the most slowly, so
that the wave front will spread out rather than steepen.That is, compression
waves steepen as they propagate but expansion waves spread out.

11.3 RANKINE-HUGONIOT EQUATIONS

In the previous section it was shown how shock waves develop from ¢nite-
amplitude compression waves. In this section the variation of some of the

FIGURE11.2 Progression of a finite-amplitude disturbance.
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£uid properties across a shock wave will be established. In particular, the
Rankine-Hugoniot equations relate the density ratio across a shock wave to
the pressure ratio and the £uid-velocity ratio.

Shock waves are very thin compared with most macroscopic length
scales, so that they are conveniently approximated as line discontinuities
in the £uid properties. For purposes of analysis it is convenient to adopt a
frame of reference in which the shock wave is stationary and in which
£uid approaches the shock wave in one state and leaves in another state.
Figure 11.3 shows such a situation in which the incoming velocity, pressure,
and density of the £uid are, respectively, u1; p1, and r1. The corresponding
outgoing values are u2; p2, and r2. Since the shock wave is oriented normal to
the velocity vector, it is called a normal shock wave.

The quantities u1; p1; r1; u2; p2, and r2 will be related to each other
through the equations of mass, momentum, and energy conservation. Since
the shock wave represents a discontinuity in the £uid properties, di¡erential
equations cannot be used across it. Thus either the di¡erential equations
must be integrated to yield algebraic equations or the governing equations
must be rederived in algebraic form.

Adopting the latter procedure, the equation of mass conservation may
be readily written down by inspection from Fig.11.3a.

r1u1 ¼ r2u2 ð11:3aÞ

FIGURE 11.3 (a) Shock-wave configuration, and (b) results from the Rankine-
Hugoniot and isentropic relations.
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Multiplying these mass £ow rates by the corresponding velocity magnitudes
gives the change in momentum across the shock wave as r2u

2
2 � r1u

2
1. This

change in momentum must be caused by the pressure force p1 � p2 per unit
area, so that the equation of momentum conservation becomes

r1u
2
1 þ p1 ¼ r2u

2
2 þ p2 ð11:3bÞ

Finally, the energy balance may be established as follows: The enthalpy per
unit mass will be

CpT ¼ Cp
p
rR

¼ g
g� 1

p
r

Here the ideal-gas law has been used together with the identityCp � Cv ¼ R.
The total energy per unit mass will be the sum of the kinetic and internal
components, so that the equation of energy conservation is

1
2
u21 þ

g
g� 1

p1
r1

¼ 1
2
u22 þ

g
g� 1

p2
r2

ð11:3cÞ

In deriving Eq. (11.3c) it has been implicitly assumed that the £ow is adia-
batic, although it has not been assumed that it is isentropic. Since shock
waves involve high speeds and since heat conduction is a slow process, the
adiabatic condition is well justi¢ed.

Equations (11.3a), (11.3b), and (11.3c) represents three equations in
the six quantities u1; p1; r1; u2; p2, and r2.Hence, two of these quantities may
be eliminated, leaving an equation connecting the remaining four quantities.
The quantities u1 and u2 will be eliminated as follows:Dividing Eq. (11.3b) by
Eq. (11.3a) gives

u1 þ p1
r1u1

¼ u2 þ p2
r2u2

; u2 � u1 ¼ p1 � p2
r1u1

where p2=r2u2 has been rewritten p2=r1u1,which follows from the continuity
equation.Multiplying the preceding equation by u2 þ u1 gives

u22 � u21 ¼
p1 � p2

r1
1þ u2

u1

� �
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But, from the continuity equation, u2=u1 ¼ r1=r2, so that

u22 � u21 ¼ ðp1 � p2Þ 1
r1

þ 1
r2

� �

The left-hand side of this equation may be replaced by a function of the
pressures and densities only through use of the energy equation (11.3c). The
resulting equation is

2g
g� 1

p1
r1

� p2
r2

� �
¼ ðp1 � p2Þ 1

r1
þ 1
r2

� �

This is the required equation which relates the pressures and densities only
across the shock wave. Solving this equation for the density ratio results in
the following alternative form of the equation above:

r2
r1

¼ p1 þ ðgþ 1Þ=ðg� 1Þp2
ðgþ 1Þ=ðg� 1Þp1 þ p2

From the continuity equation r2=r1 ¼ u1=u2, so that, combining this result
with the equation above, the following conditions will apply across a normal
shock wave:

r2
r1

¼ 1þ ðgþ 1Þ=ðg� 1Þðp2=p1Þ
ðgþ 1Þ=ðg� 1Þ þ p2=p1

¼ u1
u2

ð11:4Þ

Equations (11.4) are called the Rankine-Hugoniot equations, and they relate
the density ratio across a shock wave to the pressure ratio and the velocity
ratio.

In the derivation of the Rankine-Hugoniot equations it was not
assumed that the £ow was isentropic, and indeed, it will nowbe shown that it
is not isentropic. If the £ow had been isentropic, the density ratio across the
shock wave would have been

r2
r1

¼ p2
p1

� �1=g

Thus in a plot of logðr2=r1Þ versus log ðp2=p1Þ the isentropic law will be a
straight line of slope 1=g.The corresponding curve obtained from Eqs. (11.4)
is a curved line, as shown in Fig.11.3b.

From the foregoing results it may be concluded that shock waves
depart from the isentropic law unless p2=p1 and r2=r1 are close to unity.That
is, unless the shock wave is very weak, it will not be isentropic.
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11.4 CONDITIONS FOR NORMAL SHOCKWAVES

It will be shown in this section that, as a consequence of the second law of
thermodynamics, only that portion of Fig.11.3b that lies in the ¢rst quadrant
has physical signi¢cance. This restriction will be shown to result in the
restriction that the upstreamMach numberM1 must be greater thanunity for
shock waves to occur and the resulting downstreamMach numberM2 will be
less than unity.

Using the results from thermodynamics that are quoted inAppendix E,
the entropy di¡erence across a shock wave s2 � s1 will be given by

s2 � s1 ¼ Cp log
T2

T1

� �
� R log

p2
p1

� �

Using the ideal-gas law, the temperature ratio in the equation above may be
eliminated in favor of the pressure and density ratios. Thus the entropy
change may be rewritten as follows:

s2 � s1 ¼ Cp log
p2
p1

r1
r2

� �
� R log

p2
p1

� �

¼ ðCp � RÞ log p2
p1

� �
� Cp log

r2
r1

� �

But Cp � R ¼ Cv, so that the entropy change across the shock wave, which
will be denoted as Ds, may be evaluated from the following equation:

Ds
Cv

¼ log
p2
p1

� �
� g log

r2
r1

� �

Using the preceding result, the entropy change and the density ratio
will be compared, for a given pressure ratio, for two processes. The ¢rst
process will be a shock wave that must obey the Rankine-Hugoniot equa-
tions and the second process will be a hypothetical isentropic one for the
same pressure ratio as the shock wave. Then, from the equation above, the
entropy changes in each of these processes will be

Ds
Cv

� �
R�H

¼ log
p2
p1

� �
� g log

r2
r1

� �
R�H

0 ¼ log
p2
p1

� �
� g log

r2
r1

� �
I
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where the subscript R-H indicates the entropy change and the density
ratio for a shock wave in which the pressure ratio is p2=p1 and the subscript I
denotes the density ratio for an isentropic process that spans the same pres-
sure ratio. Subtracting these two equations to eliminate the common pres-
sure ratio gives

Ds
Cv

� �
R�H

¼ g log
r2
r1

� �
I
� log

r2
r1

� �
R�H

� �

But the second law of the thermodynamics requires that Ds � 0, so that

log
r2
r1

� �
I
� log

r2
r1

� �
R�H

Figure 11.3b shows that this inequality can be satis¢ed only in the ¢rst
quadrant of the diagram, which corresponds to logðr2=r1Þ > 0 and
logðp2=p1Þ > 0.That is, in order to satisfy the second law of thermodynamics

r2
r1

� 1 ð11:5aÞ

which means that the gas must be compressed as it goes through a shock
wave.The continuity equation then shows that

u1
u2

� 1 ð11:5bÞ

so that the £uid is slowed down as it passes through a shock wave.
The conditions (11.5a) and (11.5b) may be put into themoremeaningful

conditionM1 � 1. In order to achieve this alternative formulation, it is ¢rst
necessary to derive a relationship that is known as the Prandtl or Meyer
relation. In deriving this region, the subscript * will be used to denote the
value of a variable whenM ¼ u=a ¼ 1,where u is the £uid velocity anda is the
local value of the speed of sound.Then it follows that u� ¼ a�.

The starting point in the derivation is the equationobtained bydividing
the momentum equation (11.3b) by the continuity equation (11.3a).

u1 þ p1
r1u1

¼ u2 þ p2
r2u2

Using the de¢nition of the speed of sound to introduce a21 ¼ gp1=r1 and
a22 ¼ gp2=r2 gives

u1 þ a21
gu1

¼ u2 þ a22
gu2
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; u1 � u2 ¼ a22
gu2

� a21
gu1

The right-hand side of this equation may be replaced by an equivalent
expression that is obtained from the energy equation in the form

u21
2
þ a21
g� 1

¼ u22
2
þ a22
g� 1

¼ gþ 1
2ðg� 1Þ a

2
�

where the fact that u1� ¼ u2� ¼ a1� ¼ a2� ¼ a� has been used.Thus the velo-
city di¡erence u1 � u2 may be rewritten in the following form:

u1 � u2 ¼ 1
gu2

gþ 1
2

a2� �
g� 1
2

u22

� �
� 1
gu1

gþ 1
2

a2� �
g� 1
2

u21

� �

This equation simpli¢es considerably to the form

u1u2 ¼ a2� ð11:6Þ

which is the Prandtl orMeyer relation.
The preceding result will be used in the conditions that were estab-

lished for a normal shock wave to obtain an alternative form of these condi-
tions.Multiplying both the numerator and the denominator of the inequality
(11.5b) by u1 gives

u21
u1u2

� 1

Then, using Eq. (11.6),
u21
a2�

� 1

The left-hand side of this inequality may be evaluated from the energy equa-
tion as follows:

u21
2
þ a21
g� 1

¼ gþ 1
2ðg� 1Þ a

2
�

Dividing this equation by u21 gives

1
2
þ 1
g� 1

1
M 2

1
¼ gþ 1

2ðg� 1Þ
a2�
u21

;
u21
a2�

¼ ðgþ 1ÞM 2
1

2þ ðg� 1ÞM 2
1
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Substituting this expression into the condition for a shock wave gives

ðgþ 1ÞM 2
1

2þ ðg� 1ÞM 2
1
� 1

which reduces to

M1 � 1 ð11:7aÞ

That is, a shock wave can occur only if the incoming £ow is supersonic.
Furthermore, in view of the Prandtl or Meyer relation [Eq. (11.6)], the
inequality (11.7a) implies that

M2 � 1 ð11:7bÞ

To summarize, in order that the second law of thermodynamics may
not be violated, a normal shock wave can occur only in supersonic £ow, and
the resulting downstream £ow ¢eld will be subsonic.That is, the £uid will be
compressed as it passes through the shock wave.

11.5 NORMAL-SHOCK-WAVE EQUATIONS

The results of the last two sections were intended to establish the funda-
mental phenomena of shock waves and the principal consequences of the
existence of shock waves. However, the relationships established in these
sections are not suitable for evaluating the conditions downstreamof a shock
wave in terms of the upstream conditions. It will be recalled that the three
conservation equations connect six quantities, three upstream values and
three downstream values.Then, it should be possible to eliminate any two of
the downstream conditions and so obtain an equation that relates the
remaining downstream condition to the three upstream conditions. In this
way equations may be established for each of the downstream quantities in
terms of the upstream conditions,which are presumably known.Rather than
considering the velocity to be one of the quantities, theMach numberM will
be considered. Thus for supersonic £ow in which a shock wave exists, the
knownquantitiesmay be considered to be p1; r1; and M1,while the unknown
downstream quantities will be p2;r2; and M2.

To evaluate the downstream Mach number M2 the energy equation
involving the upstream conditions and the sonic conditions is employed as
follows:

u21
2
þ a21
g� 1

¼ gþ 1
2ðg� 1Þ a

2
�
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hence

a2�
u21

¼ 2
g� 1
gþ 1

1
2
þ 1
ðg� 1ÞM 2

1

� �

Similarly, from the energy equation involving the downstream conditions
and the sonic conditions, it follows that

a2�
u22

¼ 2
g� 1
gþ 1

1
2
þ 1
ðg� 1ÞM 2

2

� �

These expressions will be used in the Prandtl or Meyer equation [Eq. (11.6)]
as follows:

u1u2 ¼ a2�

;
a2�
u21

a2�
u22

¼ 1

g� 1
gþ 1

� �2

1þ 2
ðg� 1ÞM 2

1

� �
1þ 2

ðg� 1ÞM 2
2

� �
¼ 1

Solving this equation forM2 gives

M 2
2 ¼ 1þ ½ðg� 1Þ=2�M 2

1

gM 2
1 � ðg� 1Þ=2 ð11:8aÞ

That is, the downstream Mach number is a function only of the upstream
Mach number and the speci¢c-heat ratio of the gas.The variation ofM2 with
M1, as de¢ned by Eq. (11.8a), is shown schematically in Fig. 11.4a. It will be
seen that as the upstream Mach number increases, the downstream Mach
number decreases. As M1 ! 1, Eq. (11.8a) shows that M 2

2 ! ðg� 1Þ=2g,
which de¢nes the asymptotic limit.

The density ratio across the shock wave will be obtained by ¢rst
evaluating the velocity ratio, then using the continuity equation. From
Eq. (11.6),

u2
u1

¼ a2�
u21

¼ 2
g� 1
gþ 1

1
2
þ 1
ðg� 1ÞM 2

1

� �
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where the last equality was established earlier in this section.Simplifying the
right-hand side of this equation gives

u2
u1

¼ ðg� 1ÞM 2
1 þ 2

ðgþ 1ÞM 2
1

But, from the continuity equation, u2=u1 ¼ r1=r2, so that the expression for
the density ratio across the shock wave is

r2
r1

¼ ðgþ 1ÞM 2
1

ðg� 1ÞM 2
1 þ 2

ð11:8bÞ

The form of the density ratio as a function of the upstream Mach number is
shown in Fig.11.4b.The density ratio is a monotonically increasing function

FIGURE11.4 Conditions downstream of a normal shock wave: (a) the Mach num-
ber (b) the density, and (c) the pressure.
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of M1 and reaches an asymptote that, as shown by Eq. (11.8b), is
ðgþ 1Þ=ðg� 1Þ.

The pressure ratio across a normal shock wave may be readily eval-
uated from the Rankine-Hugoniot equations [Eqs. (11.4)] and the density
ratio as given by Eq. (11.8b).This gives

1þ ½ðgþ 1Þ=ðg� 1Þ�ðp2=p1Þ
ðgþ 1Þ=ðg� 1Þ þ p2=p1

¼ ðgþ 1ÞM 2
1

ðg� 1ÞM 2
1 þ 2

Solving this equation for the pressure ratio gives

p2
p1

¼ 1þ 2g
gþ 1

ðM 2
1 � 1Þ ð11:8cÞ

The form of this result is shown in Fig. 11.4c. It will be seen from this curve,
and it may be veri¢ed from Eq. (11.8c), that the pressure ratio increases
without limit as the upstreamMach number increases.

The foregoing relations [Eqs. (11.8a), (11.8b),and (11.8c)] giveeachof the
principal downstreamquantities in terms of the upstreamMach number and
the speci¢c-heat ratio of the gas.The functional formof these results is shown
qualitatively in Fig. 11.4, and quantitative data may be obtained from tables
and ¢gures that appear in the references at the end of this part of the book.

11.6 OBLIQUE SHOCKWAVES

Oblique shock waves are shock waves that are inclined to the free stream at
an angle di¡erent from p=2.Such a shock wave is shown in Fig.11.5, in which
both the incoming and the outgoing velocity have been decomposed into
components that are perpendicular to the shock wave and those that are
parallel to the shock wave. The shock wave is inclined at an angle b to the
incoming £owdirection, and the velocity vector is de£ected through an angle
d by the shock wave.

The components of the velocity vectors that are normal to the shock
wave are u1 sinb and u2 sinðb� dÞ for the incoming and outgoing £ow,
respectively. These velocity components must obey the normal-shock-wave
equations, so that

u2 sinðb� dÞ � u1 sin b

On the other hand, the tangential-velocity components must be equal, since
there is no pressure di¡erential or other force acting in the tangential direc-
tion. This shrinking of the normal-velocity component and preservation of
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the tangential-velocity component results in the downstream velocity vector
u2 being bent toward the shock wave, as shown in Fig.11.5.

The equations that determine the downstream values of the pressure,
density, and Mach number need not be established from the governing
equations in the same manner as was done in the previous section. Rather,
the observations that have already been made regarding normal- and
tangential-velocity components may be utilized in conjunction with the
normal-shock-wave equations. Since the upstream normal-velocity compo-
nent is now u1 sin b rather than u1, the upstreamMach numberM1 should be
replaced byM1 sin b in Eqs. (11.8a), (11.8b), and (11.8c). Likewise, the down-
stream Mach number M2 should be replaced by M2 sinðb� dÞ. Thus the
equations for the downstreamMach number, density, and pressure become

M 2
2 sin

2ðb� dÞ ¼ 1þ ½ðg� 1Þ=2�M 2
1 sin

2 b

gM 2
1 sin

2 b� ðg� 1Þ=2
r2
r1

¼ ðgþ 1ÞM 2
1 sin

2 b

ðg� 1ÞM 2
1 sin

2 bþ 2

p2
p1

¼ 1þ 2g
gþ 1

ðM 2
1 sin

2 b� 1Þ

The foregoing equations expressM2; r2; and p2 in terms ofM1; b; and d.
Although M1 is usually known, only one of the angles b and d is typically

FIGURE11.5 Configuration of an oblique shock wave.
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known. If the shock wave is generated by the leading edge of a body, the angle
dwill be known, since the downstreamvelocity vector must be tangent to the
surface of the body. Then the angle b is typically the unknown quantity.
However, one more equation exists to close the system of equations. The
conservation equations have been applied only to the normal components of
the upstream and downstream velocity vectors. Since there are no forces
acting along the shock wave, the conservation ofmass andmomentum in that
direction are satis¢ed by equating the components of the velocity vectors in
the tangential direction.This gives

u1 cos b ¼ u2 cos ðb� dÞ

hence
u1
u2

¼ cos ðb� dÞ
cos b

Since this equation is supposed to determine the shock-wave angle
b, the velocity ratio should be eliminated in favor of known quantities.
The continuity equation, which involves the normal-velocity components,
gives

u1
u2

¼ r2
r1

sinðb� dÞ
sin b

Equating these two expressions for the velocity ratio results in the identity

r2
r1

¼ tan b
tan ðb� dÞ

Now the density ratio may be eliminated from the results that were deduced
above from the normal-shock-wave equations.The result is the relation

ðgþ 1ÞM 2
1 sin

2 b

ðg� 1ÞM 2
1 sin

2 bþ 2
¼ tan b

tanðb� dÞ

This equation is su⁄cient to determine the angle b, since bothM1 and d are
known. However, the result is an implicit expression for b rather than an
explicit expression. Although the equation is not readily rearranged to
express b in terms ofM1 and d, it is possible to solve forM1 in terms of band d.
Solving directly forM1 gives

M 2
1 ¼ 2 tan b

sin2 b½ðgþ 1Þ tanðb� dÞ � ðg� 1Þ tanb�
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This result may be simpli¢ed by ¢rst rearranging the numerator and
denominator to give

M 2
1 ¼ 2 cosðb� dÞ

sin b½ðgþ 1Þ sinðb� dÞ cosb� ðg� 1Þ sin b cosðb� dÞ�

Next, the trigonometric identities for multiple-angled functions may be
employed to reduce the expression to the following form:

M 2
1 ¼ 2 cosðb� dÞ

sin b½sinð2b� dÞ � g sin d� ð11:9aÞ

Equation (11.9a) connects three quantities, two of whichwill be known
in any £ow con¢guration.The formof the solution represented by Eq. (11.9a)
is shown in Fig.11.6a.These results show that, for given values ofM1 and the
de£ection angle d, two shock-wave angles b are possible.The limiting values
of bmay be established by recalling the condition for a normal shock wave,
M1 � 1,which here becomesM1 sinb � 1.Then bmust lie in the range

sin�1 1
M1

� �
� b � p

2
ð11:9bÞ

where the upper limit corresponds to a normal shock wave. The lower limit
will be recognized as the angle of aMachwave; that is the angle to the leading
edge of a sound wave that is being continuously emitted by a source of sound
inwhich the source ismoving withMach numberM1.Machwaves,of course,
represent the sonic end of the shock-wave spectrum, so that the pressure
ratio and the density ratio across Mach waves is unity. On the other hand,
normal shock waves exhibit the maximum pressure and density ratio for a
given approach Mach number.These observations lead to the classi¢cation
of oblique shock waves as being either strong (if the value of b is close to p=2)
or weak [if the value of b is close to sin�1ð1=M1Þ]. It will be shown shortly that
the downstream £ow is subsonic for a strong shock wave and supersonic for
weak shock waves.The dotted line in Fig.11.6a corresponds toM2 ¼ 1,which
does not coincide with the minimum value of M1 for ¢xed d, although these
two values do not di¡er substantially.

The value of the downstreamMach number may be obtained from the
equations that were already deduced from the normal-shock-wave equa-
tions.The expression is

M 2
2 ¼ 1þ ½ðg� 1Þ=2�M 2

1 sin
2 b

sin2ðb� dÞ½gM 2
1 sin

2 b� ðg� 1Þ=2� ð11:9cÞ
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SinceM1 and dwill be known from the problemde¢nition and since bwill be
known from Eq. (11.9a), the value ofM2 may be established from Eq. (11.9c).
The resultsof such a solution are shownschematically inFig.11.6b.The¢gure
clearly illustratesthepossibilitiesofhavingeithersubsonicorsupersonic£ow
downstreamof theshockwave.In thecaseof normal shockwaves itwas found
that the downstream £owhad tobe subsonic, but for oblique shock waves the
una¡ected tangential-velocity component,when added to the subsonic nor-
mal component,mayagainbe supersonic,particularly for shallowanglesb.

The expression for the pressure ratio across an oblique shock wave was
also deduced from the normal-shock-wave equations and was shown to be

p2
p1

¼ 1þ 2g
gþ 1

ðM 2
1 sin

2 b� 1Þ ð11:9dÞ

FIGURE 11.6 Oblique-shock-wave relations: (a) shock-wave inclination b, (b)
downstream Mach number M2, and (c) pressure ratio across the shock wave.
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The form of the curves which are generated from this equation is shown in
Fig. 11.6c. This diagram brings out the signi¢cance of the terminology
‘‘strong’’and ‘‘weak’’as applied to shock waves.The strength of a shock wave
is de¢ned by the nondimensional pressure di¡erence ðp2 � p1Þ=p1, which is
seen to be larger for the strong shock waves than for the weak shock waves.

The downstream Mach number and pressure ratio are two quantities
of principal interest in shock-wave £ows. However, the equation for the
density ratio was also deduced from the normal-shock equations and was
shown to be

r2
r1

¼ ðgþ 1ÞM 2
1 sin

2 b

ðg� 1ÞM 2
1 sin

2 bþ 2
ð11:9eÞ

The foregoing equations are su⁄cient to completely determine the
conditions downstream of an oblique shock wave, provided that the type of
shock wave is known (that is, strong or weak).There is no mathematical cri-
terion for determining whether the shock wave will belong to the strong
family or the weak family. The con¢guration that will be adopted by nature
depends on the geometry of the projectile or boundary inducing the shock
wave.

Figure 11.7 shows two di¡erent shapes of leading edge that are con-
sidered to be immersed in the same supersonic £ow ¢eld. The boundary

FIGURE11.7 Supersonic flow approaching a blunt-nosed body and a sharp-nosed

body.
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PLATE 4 Detached shock wave in front of a flat circular disk in flow at a Mach
number of 10.4. (Photograph courtesy of the National Research Council of Canada.)

PLATE5 Shock wave attached to a cone of 15� half angle at 6� angle of attack and a
Mach number of 10.4. (Photograph courtesy of the National Research Council of

Canada.)
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condition on the solid surface requires that the velocity vector be close to the
vertical in the vicinity of the front stagnation point.This boundary condition
may be realized only if a detached shock wave exists in front of the body as
shown. Since the angle b is close to p=2 for this shock wave, it will be of the
strong variety, so that the downstreamMach number will be less than unity.
The corresponding subsonic £ow may then satisfy the required boundary
condition in the usual way. Moving away from the front stagnation point
along the surface of the body, the angle dof the downstreamvelocity vector is
continuously changing. Thus some point is eventually reached where the
value of d is such thatmatching the boundary condition by de£ecting the £ow
through a weak shock wave is possible. The shock wave will therefore bend
back with the £ow far from the body so that the downstream £ow becomes
supersonic. Thus a region of subsonic £ow will exist in the vicinity of the
nose of the body and the rest of the £ow ¢eld will be supersonic.

In the case of a sharp-nosed slender body an attached shock wave will
exist, as shown in Fig. 11.7. With this con¢guration the velocity vector will
be de£ected by the shock wave through just the correct angle to satisfy the
boundary condition that the surface be a streamline. Since the shock wave
will belong to the weak family in this case, the £ow downstream of the
shock wave will remain supersonic.

PROBLEMS

11.1 In general, the enthalpy h depends on both the pressure and the tem-
perature; that is, h ¼ hðp;T Þ. However, if p ¼ rRT , it follows that
h ¼ hðT Þ only.To show this, obtain the first law of thermodynamics in
the form:

T ds ¼ dh� v dp

where v is the specific volume of the gas. Then, by considering
s ¼ sðp;T Þ and h ¼ hðp;T Þ, show that:

@s
@T

¼ 1
T

@h
@T

@s
@T

¼ 1
T

@h
@p

� v

� �

These are the reciprocity relations quoted in Appendix A. By elim-
inating s from these equations and utilizing the gas law p ¼ rRT, show
that @h=@p ¼ 0 so that h ¼ hðT Þ only.
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11.2 In general, the internal energy e depends on both the specific volume
and the temperature, so that e ¼ eðv;T Þ. Show that if p ¼ rRT , it fol-
lows that e ¼ eðT Þ only.

11.3 Show that, for a calorically perfect gas, the entropy change involved in
some event may be related to the temperature ratio and the pressure
ratio,or to the temperature ratio and the density ratio,by the following
expressions:

s � s0 ¼ Cp log
T
T0

� R log
p
p0

¼ Cv log
T
T0

þ R log
r0
r

11.4 The equation governing the fluid velocity induced by a finite-ampli-
tude forward-running disturbance was shown to be

@u
@t

þ ðuþ aÞ @u
@x

¼ 0

in which both u and a depend on both x and t. Show, by direct sub-
stitution, that

u ¼ f ½x � ðuþ aÞt�
is the general solution to this equation, where f is any differentiable
function.

11.5 The equation to be solved for u in Prob.11.4 is

Du
Dt

¼ 0

where
D
Dt

¼ @

@t
þ ðuþ aÞ @

@x

and a2 ¼ dp
dr

Show that the steepness of the wave @u=@x satisfies a relationship of
the form:

D
Dt

@u
@x

� �
� @u

@x

� �2
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and find the constant of proportionality. If the steepness of the wave
front at time t ¼ 0 is denoted by

@u
@x

����
0
¼ S

find the time required for @u=@x to become infinite, and thus show
that Smust be negative for a shock wave to form.

11.6 The entropy increase across a shock wave may be calculated from the
following expression:

Ds
Cv

¼ log
p2
p1

r1
r2

� �g� �

Using the normal-shock-wave equations, express Ds=Cv as a function
ofM1 and g only.Denoting ðM1

2 � 1Þ by e, express Ds=Cv as the sum of
three terms each of which has the form ð1þ aeÞ,where a is a function
of g only. Expand the result for small values of e, and hence show that
Ds=Cv � e3,which shows that weak shock waves are almost isentropic.

11.7 A normal shock wave occurs in a fluid that is not a perfect gas and for
which the pressure and the density are related by the following
expression:

r
dp
dr

¼ c

where c is a constant.
(a) Using the continuity and momentum equations, together with the
foregoing relation and the general expression for the speed of sound,
show that the upstream and downstreamMach numbers are related as
follows:

log
M1

2

M2
2 ¼ M1

2 �M2
2

(b) The pressure across the shock wave ðp2 � p1Þ can, in principle, be
expressed in terms of M1 and c. The relation is implicit rather than
explicit, but it can be solved for M 2

1 as a function of (p2 � p1) and c.
Find this expression.

11.8 The equation to be solved in the propagation of sound waves is the
same as that to be solved for shallow-liquid waves. This leads to an
analogy between sound waves in a gaseous medium and waves on the
surface of a liquid. Find the corresponding physical quantities in this
analogy, and find the value of g that makes the analogy complete.
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11.9 The equations governing a wave that is approximately one-dimen-
sional are as follows:

@u
@x

þ @v
@y

¼ 0

@u
@t

þ u
@u
@x

þ v
@u
@y

¼ � 1
r
@p
@x

0 ¼ � 1
r
@p
@y

Look for a progressive-wave solution to these equations in which the
pressure pðx; tÞ is dependent on x and t only, and the velocity compo-
nents follow the same x and t dependence as indicated below:

@p
@t

þ c
@p
@x

¼ 0

uðx; y; tÞ ¼ U ðp; yÞ

vðx; y; tÞ ¼ V ðp; yÞ @p
@x

In the above, the wave speed cðpÞ is considered to be a function of the
pressure p.Without linearizing,determine the equations to be satisfied
by the functionsU ðp; yÞ and V ðp; yÞ.

Look for a similarity solution to the equations obtained above in
the following form:

U ðp; yÞ ¼ p1=2U �ðyÞ
V ðp; yÞ ¼ p�1=2V �ðyÞ

cðpÞ ¼ p1=2C�

where C� is a constant. Find the equations to be satisfied by U �ðp; yÞ
and V �ðp; yÞ.
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12

One-Dimensional Flows

This chapter deals with £ow ¢elds that are essentially one-dimensional and
that are compressible, either subsonic or supersonic. Most of the topics
considered involve sonic £ow and so constitute a continuation of the topics
treated in the previous chapter.

The topic of weak shock waves or sonic waves is treated from a general
viewpoint by means of Riemann invariants. In this way the manner in which
acoustic waves react in various situations is established. Particular situa-
tions that are treated include the release of waves in a shock tube, the re£ec-
tion of waves at a solid boundary, re£ection and refraction of waves at the
interface of two gases, and waves generated by a moving piston. In order to
show the quantitative di¡erences due to ¢nite-strength waves, the unlinear-
ized shock-tube problem is also treated. Nonadiabatic £ows are also treated
through the technique of in£uence coe⁄cients. This allows not only heat
addition but also friction and area changes to be handled. Finally, the £ow
through convergent-divergent nozzles is treated.

12.1 WEAKWAVES

The topic of weak shock waves or acoustic waveswill be further investigated
in this section.The Riemann invariants for the governing equations will be
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established, which permits the treatment of general problems involving
weak waves.

It was shown in Chap. 11 that weak waves are isentropic, so that pmay
be considered to be a function of r only.Thus

@p
@x

¼ dp
dr

@r
@x

¼ a2
@r
@x

The continuity and momentum equations for a plane wave may therefore be
written in the following form:

@r
@t

þ r
@u
@x

þ u
@r
@x

¼ 0

r
@u
@t

þ u
@u
@x

¼ �a2
@r
@x

For a £uid that is originally at rest before the wave passes through it, the
density, pressure, and velocity may bewritten as their quiescent values plus a
perturbation.That is,

r ¼ r0 þ r0

p ¼ p0 þ p0

u ¼ 0þ u0

where, for a weak wave, r0=r0 � 1; p0=p0 � 1, and u0=a0 � 1,where a0 is the
speed of sound in the undisturbed gas. Thus the linearized form of these
equations,which will describe weak waves, is

@r0

@t
þ r0

@u0

@x
¼ 0

r0
@u0

@t
þ a20

@r0

@x
¼ 0

Since r0 is a constant, it may be added to r0 when it appears inside
a derivative. Thus the equations above may be rewritten in the follow-
ing form:

@

@t
ðr0 þ r0Þ þ r0

@

@x
ð0þ u0Þ ¼ 0

r0
@

@t
ð0þ u0Þ þ a20

@

@x
ðr0 þ r0Þ ¼ 0
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Using, again, the expansions for r and u shows that

@r
@t

þ r0
@u
@x

¼ 0

r0
@u
@t

þ a20
@r
@x

¼ 0

The quantities inside the di¡erential operators will now be non-
dimensionalized by dividing the ¢rst equation by r0 and the second equation
by r0a0.This gives

@

@t
r
r0

� �
þ a0

@

@x
u
a0

� �
¼ 0

@

@t
u
a0

� �
þ a0

@

@x
r
r0

� �
¼ 0

Finally, the desired form of the governing equations for weak waves is
obtained by ¢rst adding, then subtracting, these two equations.

@

@t
u
a0

þ r
r0

� �
þ a0

@

@x
u
a0

þ r
r0

� �
¼ 0

@

@t
u
a0

� r
r0

� �
� a0

@

@x
u
a0

� r
r0

� �
¼ 0

Both these equations are of the form of a material derivative of some
quantity being zero. The material derivative is one in which the convection
velocity is the speedof sound, and in the ¢rst equation the convection is in the
positive x direction.Then, integrating these two equations gives

u
a0

þ r
r0

¼ constant along x � a0t ¼ constant ð12:1aÞ

u
a0

� r
r0

¼ constant along x þ a0t ¼ constant ð12:1bÞ

The lines x � a0t and x þ a0t are called the characteristics, and the quantities
u=a0 þ r=r0 and u=a0 � r=r0, which are constant along the characteristic
lines, are called Riemann invariants. Figure 12.1a shows the characteristics
that pass through a typical x location and the Riemann invariants for these
characteristics. It will be noted that one of the characteristics is forward-
running and the other is backward-running.

The Riemann invariants may be expressed in terms of the pressure
and the velocity rather than the density and the velocity. Depending on
the problembeing considered, this alternative formulation may be desirable.
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To obtain the alternative formulation, the density ratio is replaced by the
pressure ratio through use of the isentropic gas law as follows:

p
rg

¼ p0
rg0

:::
p
p0

¼ r
r0

� �g

¼ 1þ r0

r0

� �g

Since r0=r0 � 1, this expression may be linearized to give

p
p0

¼ 1þ g
r0

r0

FIGURE 12.1 (a) Characteristics and Riemann invariants in the xt plane, and
(b) basis of evaluating the field variables at an arbitrary point P.
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In order to eliminate the density ratio from the Riemann invariants, this
expression must be rearranged to yield the density ratio in the form r=r0.
This may be done as follows:

r0

r0
¼ 1

g
p
p0

� 1
� �

but

r
r0

¼ 1þ r0

r0

hence

r
r0

¼ 1þ 1
g

p
p0

� 1
� �

¼ 1
g
p
p0

þ g� 1
g

That is, the density ratio r=r0 may be replaced by the pressure ratio as indi-
cated so that, from Eqs. (12.1a) and (12.1b), the Riemann invariants may be
written in the form

u
a0

þ 1
g
p
p0

¼ constant along x � a0t ¼ constant ð12:1cÞ

u
a0

� 1
g
p
p0

¼ constant along x þ a0t ¼ constant ð12:1dÞ

Figure 12.1a shows the two characteristics that pass through a typical point
(x, 0) in the xt plane and the alternative Riemann invariants along these
characteritics.

Equations (12.1) may be used to evaluate the velocity, the density, and
the pressure at any value of x and any value of t if the values of u, r, and p
are known as functions of x at some time such as t ¼ 0. The manner in
which this is done may be explained with reference to Fig. 12.1b. A typical
point Pðx; tÞ is shown in the xt plane together with the two characteristics
that originate along the t ¼ 0 axis and that pass through the point P.
Associated with these two characteristics are Riemann invariants whose
constants may be evaluated from the known conditions at t ¼ 0. Then at
the point P the Riemann invariants for u and r provide two algebraic
equations for the two unknowns. Alternatively, the Riemann invariants for
u and p provide two algebraic equations for these two unknowns. The fol-
lowing sections will utilize this approach to obtain solutions for particular
£ow situations.
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12.2 WEAK SHOCK TUBES

The ¢rst application of the foregoing theory will be made to a shock tube in
which a weak wave is released. A shock tube is a relatively long tube ¢tted
with a diaphragm, as shown in Fig. 12.2a. The gas on one side of the dia-
phragm is maintained at a pressure di¡erent from that on the other side. In
general, the gases on either side of the diaphragm may be di¡erent and so
may have di¡erent properties and states. In this instance, the gases will be
considered to be the same, and only the states are assumed to di¡er. The
initial pressure distribution, which is taken to be an equilibrium state, is
shown in Fig. 12.2b. The diaphragm may be designed to burst at some pre-
determined value of the pressure p1. A pressure wave is thus released from
the vicinity of the diaphragm as the two regions tend to equalize their pres-
sures.The problem is to determine the pressure and the velocity in the gas at
any location and at any time.

FIGURE 12.2 (a) Shock tube, (b) initial pressure distribution, (c) xt diagram, and
(d) typical pressure distribution for t < 0.
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The xt diagram for the shock tube is shown in Fig. 12.2c. The time
at which the diaphragm bursts is taken to be t ¼ 0 for convenience, and the
location of the diaphragm is chosen to be x ¼ 0. Then a compression wave
will emanate from the origin and will travel into the lower-pressure region
while an expansion wave will emanate from the origin and travel into the
region of higher pressure as indicated. Since weak waves are being con-
sidered, the two waves mentioned will travel at the speed of sound a0. Then
the slopes of the waves in the xt plane are a0 and �a0 for the compression
wave and the expansion wave, respectively. The xt diagram in Fig. 12.2c is
divided into three regions that are de¢ned by the waves emanating from the
origin of the diagram. Region 1 is that portion of the positive x axis that has
not yet been a¡ected by the oncoming compression wave. In this region the
velocity is zero and the pressure is p0. Region 2 is de¢ned as that portion of
the negative x axis that has not been in£uenced by the expansionwave.Here,
u ¼ 0 and p ¼ p1.The third region, denoted region 3, is that part of the x axis
that has been in£uenced by the compression wave and the expansion wave.
Since the pressure and the velocity must be continuous across x ¼ 0,both the
positive and the negative portions of the x axis in region 3will experience the
same pressure and velocity.

In order to determine the pressure and the velocity in region 3, an
arbitrary point P is considered, as shown in Fig. 12.2c. The two character-
istics that originate on the x axis at t ¼ 0 and pass through the point P are
indicated and are denoted by x ¼ constant and Z ¼ constant. The values of
the Riemann invariants along these characteristics may be determined from
the known distributions along the x axis at t ¼ 0.Thus, along the character-
istic x ¼ constant, Eq. (12.1c) shows that

u
a0

þ 1
g
p
p0

¼ 1
g
p1
p0

Here, the fact that u ¼ 0 and p ¼ p1 at t ¼ 0 for x < 0 has been used. From
Z ¼ constant.

u
a0

� 1
g
p
p0

¼ � 1
g

The fact that u ¼ 0 and p ¼ p0 at t ¼ 0 along the positive x axis has been
used here. The solution to these two algebraic equations shows that the
velocity and the pressure behind the compression and expansion waves are

u
a0

¼ 1
2g

p1
p0

� 1
� �

ð12:2aÞ

p
p0

¼ 1
2

p1
p0

þ 1
� �

ð12:2bÞ
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Equation (12.2a) shows that for p1=p0 > 1, u=a0 > 0, so that the £uid
moves along the positive x axis.This agreeswith our previous ¢nding that the
£uid particles tend to follow compression waves and move away from
expansion waves. Equation (12.2b) shows that the pressure in region 3 is the
arithmeticmean of the pressures in regions1and 3.The pressure distribution
along the tube is shown for some time t > 0 in Fig. 12.2d. This ¢gure illus-
trates that a compression wave of amplitude ð p1 � p0Þ=2 moves along the
positive x axis with speed a0 while an expansion wave of the same amplitude
moves along the negative x axis at the same speed.The expansionwaves may
be considered to be a discontinuity, since only weak waves are being con-
sidered.The analogous problem for ¢nite-strength waves will be considered
in a later section.

12.3 WALL REFLECTIONOFWAVES

Thebehavior of aweak pressurewavewhen it strikes a solid boundary will be
established in this section.This will be done by considering a shock tube that
has a closed end so that the wave which travels along the tube will impinge
upon it. In this way it will be shown that a compressionwave is re£ected by a
wall as a compression wave of the same strength, and an expansion wave is
likewise re£ected as an identical expansion wave.

Figure 12.3a shows a shock tube similar to that which was considered
in the previous section except that the tube is closed at one end. The xt dia-
gram for the gas conditions that result from bursting the diaphragm at time
t ¼ 0 is shown in Fig. 12.3b. As in the previous section, the outgoing waves
divide this diagram into distinct regions numbered1, 2, and 3.Upon striking
the closed end of the shock tube, the wave that was traveling in the positive x
direction will be re£ected as a wave of some form. It is known that this
re£ected wave will travel at the speed of sound a0, but it is not known a priori
whether it will be an expansion wave or a compression wave and what the
strength of this wave will be in relation to that of the incident wave.Thus the
properties of the gas in region 4, which is that region that has been
in£uenced by both the incident and the re£ected waves, is not known.

Region1of Fig.12.3b has not yet been in£uenced by the outgoing wave
from the origin and so maintains its initial conditions of u ¼ 0, p ¼ p0. Like-
wise, region 2maintains its undisturbed condition of u ¼ 0, p ¼ p1.Region 3
has been in£uenced by the outgoing waves, and so the velocity and the pres-
sure there will be given by Eqs. (12.2a) and (12.2b). In order to determine the
state of the gas in region 4, an arbitrary point Pðx; tÞ and its two character-
istics are indicated in Fig.12.3b.The x ¼ constant characteristic comes from
region 3, where the velocity and the pressure are known. Hence this char-
acteristic may be terminated at any point in region 3 where the value of the
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Riemann invariantmay be established.The Z ¼ constant characteristic runs
parallel to the line of the re£ected wave and eventually reaches the x location
of the closed tube end.Since the pressure here is unknown,the x1 ¼ constant
characteristic from this point is drawn into region 3,where the velocity and
the pressure are known. This permits the Riemann invariant to be estab-
lished for the Z ¼ constant characteristics.

Denoting the pressure at the wall or closed end in region 4 by pw, the
Riemann invariant along the Z ¼ constant characteristic gives

u
a0

� 1
g
p
p0

¼ � 1
g
pw
p0

Here the fact that u ¼ 0 and p ¼ pw on the wall has been used.To evaluate pw,
theRiemann invariant for the x1 ¼ constant characteristic will be used.This
gives

u
a0

þ 1
g
p
p0

¼ 1
g
pw
p0

¼ 1
2g

p1
p0

� 1
� �

þ 1
2g

p1
p0

þ 1
� �

FIGURE12.3 (a) Shock tube, (b) xt diagram; pressure distribution at (c) some time
and (d) a later time.
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where the values of the velocity and the pressure in region 3, as given by
Eqs. (12.2a) and (12.2b), and at the wall in region 4 have been used.The last
equality is satis¢ed by

pw ¼ p1

Then the equation along the Z ¼ constant characteristic becomes

u
a0

� 1
g
p
p0

¼ � 1
g
p1
p0

A second equation is obtained from the x ¼ constant characteristic.

u
a0

þ 1
g
p
p0

¼ 1
g
p1
p0

Here the constant for the Riemann invariant has been evaluated in region 3
by again using Eqs. (12.2a) and (12.2b).The solution to the last two algebraic
equations is

u ¼ 0 ð12:3aÞ

p ¼ p1 ð12:3bÞ
Equation (12.3a) shows that the velocity of the gas in region 4 is zero.

This result is due to the fact that region 4 includes the closed end of the tube
and the boundary condition there requires zero velocity. Equation (12.3b)
shows that the pressure in region 4 equals the pressure in region 2. This
means that the pressure at any value of x > 0 varies as follows: Initially, the
pressure is p0, and as the ¢rst wave passes toward the closed end, the pressure
jumps to ð p1 þ p0Þ=2. Finally, as the re£ected wave passes, the pressure
jumpts to p1 as shown in Figs. 12.3a and 12.3b. That is, the pressure di¡er-
ential across the incident wave is ð p1 � p0Þ=2,which is also the pressure dif-
ferential across the re£ected wave. Since this result is valid for either p1 > p0
or p1 < p0, it follows that compression waves are re£ected as compression
waves of the same strength by solid boundaries and expansion waves are
re£ected as expansion waves of the same strength.

12.4 REFLECTION ANDREFRACTION
ATAN INTERFACE

When awave encounters an interfacebetween two di¡erent gases,part of the
wave is transmitted through the interface and part of it is re£ected by the
interface. This conclusion may be reached by considering a shock tube in
which an interface between two di¡erent gases exists part way down the
tube.Such a con¢guration is shown in Fig.12.4a. Initially, the velocity is zero
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everywhere while the pressure is p1 for x < 0 and p0 for x > 0. Partway down
the positive x axis the physical properties of the gas are assumed to change
abruptly because there are two di¡erent gases in the tube, or the same gas
may have two regions that are at di¡erent temperatures. In either case, the
speed of sound is taken to be a01 to the left of the interface and a02 to the right
of the interface.Likewise, the speci¢c-heat ratio is denoted by g1 to the left of
the interface and g2 to the right.

The xt diagram describing the sequence of events that results from
bursting the diaphragmat time t ¼ 0 is shown in Fig.12.4b. It is assumed that
the wave that emerges from the burst diaphragm and that travels in the
positive x direction toward the gaseous interface is partially transmitted and
partially re£ected at the interface.That is, in general it is assumed that part of
the incident wave passes through the gaseous interface and is refractedwhile
the other part of the wave is re£ected by the interface. Thus Fig. 12.4b is
divided into four distinct regions as indicated.Region1represents the initial

FIGURE12.4 Shock tube with gas interface and xt diagram subsequent to bursting
the diaphragm.
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state of the gas located to the right of the diaphragm, and although the phy-
sical properties of the gas will be discontinuous at the gaseous interface, the
velocity will be everywhere zero and the pressure will be everywhere p0 in
this region. In region 2 the velocity will be zero and the pressure will be p1. In
the regions marked 3, the gas will be in£uenced by passage of the waves that
result from bursting the diaphragm, and the velocity and pressure there will
be given by Eqs. (12.2a) and (12.2b).

In order to determine the velocity and the pressure in the regions
marked 4, an arbitrary point Pðx; tÞ that lies on the interface between the two
gases is considered. From this point the x ¼ constant and Z ¼ constant
characteristics are drawn, and by virtue of the fact that the point P lies on the
interface, each of these characteristics lies entirely in the domain of one gas
only.The x ¼ constant characteristic may be terminated anywhere in region
3 where the velocity and pressure are known, while the Z ¼ constant char-
acteristic may be terminated anywhere in region1.Since the velocity and the
pressuremust be continuous across the interface at all times, the two regions
labeled 4must have the same velocity and pressure.Since it is realized that, in
general, the interface may move after being struck by the incident wave, the
line that represents the interface in the regions 4 does not necessarily corre-
spond to x ¼ constant.

Using the Riemann invariant along the x ¼ constant characteri-
stic shows that the velocity and the pressure in region 4 must satisfy the
condition

u
a01

þ 1
g1

p
p0

¼ 1
2g1

p1
p0

� 1
� �

þ 1
2g1

p1
p0

þ 1
� �

¼ 1
g1

p1
p0

where the known conditions for region 3 have been employed from
Eqs. (12.2a) and (12.2b). Along the Z ¼ constant characteristic we get

u
a02

� 1
g2

p
p0

¼ � 1
g2

where the undisturbed conditions for region 1 have been used.The solution
to these two equations is

u
a01

¼ p1=p0 � 1
g1 þ g2a01=a02

ð12:4aÞ

p
p0

¼ p1=p0 þ ðg1=g2Þða02=a01Þ
1þ ðg1=g2Þða02=a01Þ

ð12:4bÞ
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Equation (12.4a) shows that for p1=p0 > 1 the velocity u in region 4 will
be positive, so that the interface will move to the right in the positive x
direction. As in the previous section, this con¢rms the result that the £ow
tends to follow compression waves, since for p1=p0 > 1 not only will the
incident wave be a compression wave but so will the re£ected wave. It was
shown in the previous section that, for a solid interface, the re£ected wave
was of the same strength as the incident wave. In the present case it may be
anticipated that the gaseous interface is not as e⁄cient in re£ecting waves as
the solid interface. The actual strength of the re£ected wave may be calcu-
lated from the solution given by Eq. (12.4b). If the pressure di¡erential across
the re£ected wave is denoted by Dpr, it follows that

Dpr
p0

¼ p
p0

� 1
2

p1
p0

þ 1
� �

where the solution for the pressure in region 3 has been used.Then,using the
pressure given by Eq. (12.4b) for the value in region 4, the pressure di¡er-
ential across the re£ected wave becomes

Dpr
p0

¼ ½1� ðg1=g2Þða02=a01Þ�ð p1=p0 � 1Þ
2½1þ ðg1=g2Þða02=a01Þ�

ð12:5aÞ

If the speed of sound a02 becomes very small compared with a01,which cor-
responds to a high-density gasbeyond the interface, this result reduces toEq.
(12.3b) for a solid boundary.That is, as the density di¡erence at the interface
increases, the foregoing result reduces to that for an impermeable boundary
corresponding to perfect re£ection.

If the pressure di¡erential across the transmitted or refracted wave is
denoted by Dpt, it follows that

Dpt
p0

¼ p
p0

� 1

where the fact that p ¼ p0 in region1has been used.Then, from Eq. (12.4b),

Dpt
p0

¼ ð p1=p0 � 1Þ
1þ ðg1=g2Þða02=a01Þ

ð12:5bÞ

Equations (12.5a) and (12.5b) show that the strengthof the re£ectedwave and
that of the refracted wave depend on the nature of the interface between the
two gases. For g2 ¼ g1 ¼ g and a02 ¼ a01 ¼ a0. Eqs. (12.5a) and (12.5b) show
that there is no re£ected wave and that the transmitted wave is identical to
the incident wave. For a02=a01 ! 0 the re£ection becomes total, as was dis-
cussed earlier. Intermediate to these two limiting cases both a re£ected wave
and a transmitted wave will exist.
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12.5 PISTON PROBLEM

The so-called piston problem is a classical one and may be stated as
follows: Figure 12.5a shows a cylinder or a tube inside which a piston
slides. Initially the piston and the gas ahead of it are stationary, when the
piston is suddenly jerked intomotion at some constant velocity.The problem
is to ¢nd the velocity and the pressure ahead of the piston after the motion
has started.

The xt diagram for such a situation is shown in Fig. 12.5b. One of
the two lines on this diagram corresponds to a wave front that is genera-
ted by the impulsive acceleration of the piston and that travels down the
cylinder ahead of the piston with velocity a0. The second line represents
the instantaneous location of the piston, which is moving with constant
velocity U for t > 0. Since, according to our linear theory, U=a0 � 1 so that
the piston will always be close to x ¼ 0, compared with the location of the
wave front, the boundary condition that u ¼ U on the piston face may be
imposed on x ¼ 0 rather than x ¼ Ut. This yields the modi¢ed xt diagram
shown in Fig.12.5c.

The xt diagram shown in Fig. 12.5c is divided into two distinct regions
by the wave that leaves the piston face. Region 1 contains the undisturbed

FIGURE 12.5 (a) Piston and cylinder, (b) actual xt diagram, and (c) linearized xt
diagram.
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gas, which is stationary and whose pressure is p0. In order to determine the
velocity and pressure in region 2, a typical point Pðx; tÞ is considered.
The Z¼ constant characteristic from this point enters region 1, where
the values of u and p are known. The x¼ constant characteristic runs
parallel to the wave front and eventually encounters the position of the
piston face at x ¼ 0. Although the velocity there is known, the pressure
is not; hence the Z1¼constant characteristic is drawn from the point
where the x¼ constant characteristic terminates. These three character-
istics permit the values of the velocity and the pressure at the point P to
be evaluated.

Denoting the value of the pressure at the piston face by pp, the Riemann
invariant along x¼ constant gives

u
a0

þ 1
g
p
p0

¼ U
a0

þ 1
g
pp
p0

The pressure at the piston may be evaluated from the Riemann invariant for
the Z1¼constant characteristic, which is evaluated ¢rst on the piston face,
then in region1.The resulting equation is

u
a0

� 1
g
p
p0

¼ U
a0

� 1
g
pp
p0

¼ 1
g

Using the last equality to evaluate pp, the equation for the x¼ constant char-
acteristic becomes

u
a0

þ 1
g
p
p0

¼ 2
U
a0

þ 1
g

Another equation connecting u and p may be obtained from the Riemann
invariant for the Z¼ constant characteristic,which yields

u
a0

� 1
g
p
p0

¼ � 1
g

The solution to the last two equations is

u ¼ U ð12:6aÞ
p
p0

¼ g
U
a0

þ 1 ð12:6bÞ

Equation (12.6a) shows that the gas velocity in region 2 is everywhere
the same as that of the piston.Equation (12.6b) shows that the pressure ahead
of the piston but behind the outgoing wave is greater than the initial value by
an amount that is proportional to the piston speedU.

444 Chapter12



12.6 FINITE-STRENGTH SHOCK TUBES

In the previous four sections some properties of internal waves have been
exposed through reference to weak shock tubes. In reality ¢nite-strength
waves exist and their properties may be established through reference to
¢nite-strength shock tubes. Although the qualitative behavior of strong
waves is the same as that for weak waves, the quantitative results are di¡er-
ent. The nature of these di¡erences will be established in this section by
carrying out an analysis for the problem that is analogous to that treated in
Sec.12.2 for a weak shock tube.

Figure 12.6a shows a shock tube in which the initial velocity is every-
where zero and in which the initial pressure distribution is p1 to the right of
the diaphragm and p4 to the left of the diaphragm. The initial pressure dis-
tribution is shown inFig.12.6b,and it is assumed that thepressuredi¡erential
p4 � p1 is substantial so that a linear theory is no longer valid. Because of the
substantial pressure di¡erential and=or the fact that the gases may di¡er, the
speci¢c-heat ratio and the speed of sound will be di¡erent on either side of
the diaphragm and are denoted by g1; a1 and g4; a4, as indicated in Fig.12.6a.

FIGURE 12.6 (a) Shock tube configuration, (b) initial pressure distribution, (c) xt
diagram, and (d) typical pressure distribution for t > 0.
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The form of the pressure distribution for some t > 0, corresponding to
the diaphragm bursting at t ¼ 0, is shown in Fig. 12.6c. A compression wave
of ¢nite strength will travel down the tube in the positive x direction. It is
known fromSec.11.2 that thiswave will steepen as it travels andwill develop
into a shock wave, as shown inFig.12.6c.Anexpansionwavewill travel in the
negative x direction, and it is known that such waves tend to smooth out as
they propagate.The xt diagram for this situation is shown in Fig. 12.6d.The
shock wave may be represented by a single-line discontinuity, but the
expansionwavewill extend over a substantial portion of the x axis and is thus
represented by an expansion fan.This consists of a series of lines that ema-
nate from the origin of the xt diagram and may be thought of as a very large
number of weak waves.

The location of the interface between the two bodies of gas is also
shown in Fig. 12.6d so that the possibility of two di¡erent gases may be cov-
ered. Thus the xt diagram is seen to be divided into four distinct regions.
Region 2 consists of gas 2 and represents those locations that have been
a¡ected by the passage of the compressionwave.Region 3 consists of gas 4 in
those locations that have been a¡ected by the expansion wave.The principal
quantities of interest are the strength of the shock wave that results from
bursting the diaphragm, for given values of p4 and p1, and the speed with
which the shock wave moves along the tube.

The boundary conditions at the interface between regions 3 and 2 are
u3 ¼ u2 and p3 ¼ p2. These conditions guarantee continuity of the velocity
and the pressure, and theymay be used to determine the strength of the shock
wave as follows. By employing a galilean transformation to a stationary nor-
mal shock wave, the results obtained in Chap. 11 may be used to obtain an
expression for u2 in terms of p2=p1. By an analogous procedure, the velocity
u3 may be expressed in terms of the pressure ratio across the expansionwave
p4=p3. The matching conditions at the interface will then give an equation
that relates the pressure ratio p2=p1 across the shock wave to the initial pres-
sure ratio p4=p1 across the diaphragm.

Considering ¢rst the compression wave, let u1n and u2n be the gas velo-
cities u2 and u1, respectively, expressed in a frame of reference in which the
shock wave is stationary.Then, in order that u1 may be zero here, a galilean
transformation of magnitude u2n must be made on the velocities. The rela-
tionships between the normal shock velocities u2n and u1n, which refer to
Fig.11.3a, and the present velocities u1 and u2,which refer to Fig.12.6d, are

u1 ¼ u2n � u2n ¼ 0

u2 ¼ u1n � u2n ¼ u1n 1� u2n
u1n

� �
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This now represents a shock wave that is moving with velocity u2n through a
stationary gas inwhich the velocity of the gasbehind the shock wave is u2.But
u2n=u1n may be evaluated from the Rankine-Hugoniot relation [Eq. (11.4)],
which gives

u2 ¼ u1n 1� ðg1 þ 1Þ=ðg1 � 1Þ þ p1=p2
1þ ðg1 þ 1Þ=ðg1 � 1Þð p1=p2Þ

� �

where p1 and p2 now refer to Fig. 12.6d. But u1n ¼ a1M1n, where M1n is the
Mach number of the £ow approaching a stationary shock wave. From
Eq. (11.8c)

M 2
1n ¼

g1 þ 1
2g1

p1
p2

� 1
� �

þ 1

where, again, the pressures now refer to Fig. 12.6c. The expression for the
velocity in region 2 then becomes

u2 ¼ a1
g1 þ 1
2g1

p1
p2

� 1
� �

þ 1
� �1=2

1� ðg1 þ 1Þ=ðg1 � 1Þ þ p1=p2
1þ ðg1 þ 1Þ=ðg1 � 1Þð p1=p2Þ

� �

This result may be simpli¢ed to give

u2 ¼ a1
2ð p1=p2 � 1Þ2

g1½ðg1 � 1Þ þ ðg1 þ 1Þð p1=p2Þ�

( )1=2

Consider next, the expansion wave. It was established in Chap. 11
that expansion waves, contrary to compression waves, tend to smooth out
and spread themselves over substantial distances. Thus the expansion from
p4 to p3 takes place in a continuous manner that may be thought of as con-
sisting of a very large number of weak expansion waves, each of which is
isentropic. Thus, from Eq. (11.2a), it follows that at any point in the expan-
sion wave

du
a

¼ � dr
r

where the minus sign denotes that the wave is traveling in the negative x
direction. But

a2 ¼ g4
p
r
¼ g4

r
p4rg4

pg44

¼ a24
r
r4

� �g4�1
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where the isentropic law has been used to relate p to r. Thus the expression
for du becomes

du ¼ � a4
rðg4�1Þ=2
4

rðg4�3Þ=2 dr

Integrating this expression and noting that u ¼ 0 when r ¼ r4 yields the
following expression for the local value of the velocity u in the expansion
wave:

u ¼ � 2a4
g4 � 1

r
r4

� �ðg4�1Þ=2
�1

" #

The local density rmay be replaced by the local pressure p through use of the
isentropic law.This gives

u ¼ 2a4
g4 � 1

1� p
p4

� �ðg4�1Þ=2g4
" #

In particular, at the trailing edge of the expansion wave p ¼ p3 and u ¼ u3,
so that

u3 ¼ 2a4
g4 � 1

1� p3
p4

� �ðg4�1Þ=2g4
" #

The expressions obtained above for u2, from the compressionwave, and
u3, from the expansion wave,will now be used in conjunction with the inter-
face matching conditions.Thus setting u3 ¼ u2 and at the same time replac-
ing p3 by p2 yields the following identity:

2a4
g4 � 1

1� p2
p4

� �ðg4�1Þ=2g4
" #

¼ a1
2ð p1=p2 � 1Þ2

g1½ðg1 � 1Þ þ ðg1 þ 1Þð p1=p2Þ�

( )1=2

Although this equation cannot be solved to yield an explicit expression for
the shock-wave pressure ratio p2=p1 in terms of the initial diaphragm pres-
sure ratio p4=p1, the converse is not true. Thus, solving this equation for p4
gives

p4
p1

¼ p2
p1

1� ðg4 � 1Þða1=a4Þð p1=p2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g1½ðg1 � 1Þ þ ðg1 þ 1Þð p1=p2Þ�

p
( )�2g4=ðg4�1Þ

ð12:7aÞ

If p1=p2 is replaced by 1� e , Eq. (12.7a) shows that p4=p1 ¼ 1þ 2e to the
¢rst order in e. That is, for weak waves the result obtained in Sec. 12.2 is
recovered.
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It was shown earlier in this section that the results for normal shock
waves could be related to those of a shock wavemoving with velocity u2n into
a stationary gas in which the gas velocity behind the shock wave is u1n � u2n.
Thus, ifMs denotes theMach number withwhich the shock wave propagates
through £uid1, it follows that

Ms ¼ M1n

Then, from Eq. (11.8a),

Ms ¼ 1þ ½ðg1 � 1Þ=2�M 2
1n

g1M 2
1n � ðg1 � 1Þ=2

� �1=2

But, from Eq. (11.8c),

M 2
1n ¼ 1þ g1 þ 1

2g1

p1
p2

� 1
� �

where p1 and p2 refer to the problem at hand. Thus the expression for the
Mach number of the compression wave becomes

Ms ¼ 1þ ðg1 � 1Þ=2þ ½ðg1 � 1Þðg1 þ 1Þ=4g1�ð p1=p2 � 1Þ
g1 þ ½ðg1 þ 1Þ=2�ð p1=p2 � 1Þ � ðg1 � 1Þ=2

� �1=2

This result may be simpli¢ed to yield the following equation:

Ms ¼ ðg1 � 1Þ þ ðg1 þ 1Þð p2=p1Þ
2g1

� �1=2
ð12:7bÞ

As p2=p1 approaches unity,Ms also approaches unity.That is, for weak shock
waves the front travels at the speed of sound, which con¢rms the results of
Chap. 11. Equation (12.7b) also shows that the Mach number of the shock
wave can be considerably greater than unity for strong shock waves.

12.7 NONADIABATIC FLOWS

The physical situations to be treated here di¡er from those of the previous
sections in several ways. As the heading suggests, the most signi¢cant
di¡erence is that £ows in which heat is being added to the gas, or removed
from it, will be covered. In addition, external body forces such as fric-
tional forces may be included. Another di¡erence from previous treat-
ments is that variations in the £ow area may be included, provided that
the £ow may be considered to be essentially one-dimensional. In the pre-
vious sections of this chapter the £ow con¢gurations have been exactly
one-dimensional. Here, converging and diverging boundaries will be
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permitted, and the velocity that exists at any streamwise location will be
considered to be the average value at that location. Finally, the £ow situa-
tions considered here di¡er from those of the previous sections in the
sense that the £ow varies continuously rather than abruptly through
either Mach waves or shock waves. That is, the heat addition, external
forces, and area changes will be assumed to be such that they vary the
£ow properties continuously rather than abruptly, so that the use of deri-
vatives will be valid.

Figure 12.7a shows a typical £ow con¢guration of the type to be con-
sidered here.At the location de¢ned by x the £ow area isA and at the location
x þ dx the £ow area is Aþ dA. The element of length dx is subjected to an
external force df ðxÞ, and an amount of heat dqðxÞ is added to it.

The equations of motion for the gas may be readily derived in di¡er-
ential form as follows:The continuity equation requires that ruA ¼ constant
where r and u are, respectively, the average density and velocity of the gas at
the location x.Then

dðruAÞ ¼ 0

so that performing the indicated di¡erentiation and dividing by ruA gives

dr
r

þ du
u

¼ � dA
A

ð12:8aÞ

FIGURE 12.7 (a) Element of one-dimensional flow field, and (b) flow through a
typical nozzle.
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Equation (12.8a) supplies one equation connecting three of the variables.
The momentum balance for the element shown in Fig.12.7a is

ru du ¼ �dpþ df

Dividing this equation by p and using the fact that a2 ¼ gp=r reduces it to the
form

gM 2 du
u

þ dp
p

¼ df
p

ð12:8bÞ

where the local Mach number M ¼ u=a has been introduced. The thermal-
energy balance for the case of a perfect gas may be written in the form

Cp dT þ u du ¼ dq

where T is the local temperature of the gas. Dividing this equation by CpT
gives

dT
T

þ u du
CpT

¼ dq
CpT

ButTmay be replaced by p=rR for a perfect gas and RCp ¼ ðg� 1Þ=g, so the
energy equation may be written in the form

dT
T

þ ðg� 1ÞM 2 du
u

¼ dq
CpT

ð12:8cÞ

Here, again, the expression for the speed of sound and the de¢nition of
the Mach number have been employed. Finally, the equation of state for an
ideal gas gives

p
rT

¼ R ð12:8dÞ

hence

dp
p
� dr

r
� dT

T
¼ 0

Equations (12.8a), (12.8b), (12.8c), and (12.8d ) represent four algebraic
equations for the di¡erentials du; dr; dp; and dT in terms of the local values
of the variables u; r; p;T ;M ; f ; q; and A.Then these equations may be solved
to yield expressions for each of the di¡erentials separately. To obtain the
expression for du, for example, use Eq. (12.8d) and eliminate dp=p by using
Eq. (12.8b) and dT=T by using Eq. (12.8c).This gives

�gM 2 du
u

þ df
p

� �
� dr

r
þ ðg� 1ÞM 2 du

u
� dq
CpT

� �
¼ 0
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Adding Eq. (12.8a) to this result to eliminate dr=r results in the following
expression:

du
u

¼ 1
M 2 � 1

dA
A

þ df
p
� dq
CpT

� �
ð12:9aÞ

Equation (12.9a) gives the change in speed du that is associated with
a change in area dA, application of an external force df , and the addition
of an amount of heat dq. The coe⁄cients of the quantities dA=A; df =p;
and dq=CpT are called in£uence coe⁄cients, since they represent the in£u-
ence of some external process, such as heat addition, on some £ow vari-
able, such as the gas velocity. Thus with respect to the normalized velocity
du=u, the in£uence coe⁄cient for dA=A and that for df =p is 1=ðM 2 � 1Þ,
while the in£uence coe⁄cient for dq=CpT is �1=ðM 2 � 1Þ. As a special
case, consider adiabatic £ow without external forces. Then Eq. (12.9a)
becomes

du
u

¼ 1
M 2 � 1

dA
A

This equation expresses the familiar result that in order to accelerate
ðdu > 0Þ subsonic ðM < 1Þ £ow, the £ow area should be decreased ðdA < 0Þ.
On the other hand, for supersonic £ow the area should be increased to
accelerate the£ow.This leads tonozzle shapesof the formshown inFig.12.7b
where the throat,which corresponds to dA ¼ 0, has sonic conditions.

An expression similar to Eq. (12.9a) may be obtained for dp=p by using
Eq. (12.8a) and by eliminating du=u from it through use of Eq. (12.9a). This
gives

dp
p

¼ � gM 2

M 2 � 1
dA
A

� 1þ ðg� 1ÞM 2

M 2 � 1
df
p
þ gM 2

M 2 � 1
dq
CpT

ð12:9bÞ

For adiabatic £ow without external forces, Eq. (12.9b) becomes

dp
p

¼ � gM 2

M 2 � 1
dA
A

This result shows that in order to expand a gas in a nozzle continuously, the
£ow area should decrease when the £ow in subsonic and increase when the
£ow is supersonic. This agrees with our conclusion regarding accelerating
gases in nozzles. For £ow in a constant-area channel in which there are no
external forces acting on the gas, Eq. (12.9b) becomes

dp
p

¼ gM 2

M 2 � 1
dq
CpT
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This equation shows that in order to expand a gas in a pipeby thermalmeans,
heat should be added if the £ow is subsonic,whereas heat should be removed
if the £ow is supersonic.

The variation of the temperature may be obtained by using Eq. (12.8a)
to eliminate du=u from Eq. (12.8c).This gives

dT
T

¼ �ðg� 1ÞM 2

M 2 � 1
dA
A

� ðg� 1ÞM 2

M 2 � 1
df
p
þ gM 2 � 1

M 2 � 1
dq
CpT

ð12:9cÞ

For adiabatic £ow without external forces Eq. (12.9c) reduces to

dT
T

¼ �ðg� 1ÞM 2

M 2 � 1
dA
A

Hence, for g > 1, the temperature will drop in a converging-£ow area if the
£ow is subsonic or in a diverging-£ow area if the £ow is supersonic. For £ow
in a constant-area channel in which there are no external forces, Eq. (12.9c)
becomes

dT
T

¼ gM 2 � 1
M 2 � 1

dq
CpT

The in£uence coe⁄cient here changes sign at M ¼ 1=
ffiffiffi
g

p
and at M ¼ 1.

Then, for g > 1, the e¡ect of heat additionwill be to increase the temperature
forM < 1=

ffiffiffi
g

p
and forM > 1, but the temperature will decrease in the range

1=
ffiffiffi
g

p
< M < 1. For adiabatic £ow in a constant-area duct, Eq. (12.9c)

becomes

dT
T

¼ �ðg� 1ÞM 2

M 2 � 1
df
p

Hence for g > 1 the e¡ect of an external force such as wall friction is to
increase the temperature of subsonic £owand to decrease the temperature of
supersonic £ow.

Two well-known results that may be established in this way are the
Fanno line and the Rayleigh line. In each case, the variation of temperature or
enthalpy is considered as a function of the entropy. The resulting curve for
the case of adiabatic £ow in a constant-area duct is called a Fanno line,while
the curve for the case of a constant-area duct without external forces is called
a Rayleigh line. That is, the Fanno line shows the e¡ect of friction in a con-
stant-area duct,while theRayleigh line shows the e¡ect of heat addition.One
of the most practical and signi¢cant results that may be deduced from these
diagrams, or from the equations established above, is that choking takes
place at M ¼ 1. Thus, adding heat to a constant-area £ow will accelerate it
until M ¼ 1, and no more heat can be added beyond this point. For long
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pipelines the e¡ect of friction is similar, so that a point may be reached
beyond which no more gas can be pumped through the pipe without remov-
ing some heat.

12.8 ISENTROPIC-FLOW RELATIONS

For isentropic £ows, simple and useful relations exist between the local
value of some variable, such as the temperature or pressure, and the local
Mach number. These relations may be obtained from the thermal-energy
equation as follows.

For steady, isentropic £ow the thermal-energy equation (IV.3b)
becomes

rðu �=Þh ¼ ðu �=Þp
But, forming the scalar product of u and the Euler equation [Eq. (IV.2)]
shows that

ðu �=Þp ¼ �u � ½rðu �=Þu�
¼ �rðu �=Þ 1

2u � u� �
Hence, the energy equation may be written in the form

rðu �=Þ hþ 1
2u � u

� � ¼ 0

Thismeans that the quantity hþ u � u=2 is constant along each streamline, so
that

hþ 1
2u � u ¼ h0

along each streamline.The quantity h0 is called the stagnation enthalpy, and it
corresponds to the enthalpy the £uid would have at zero velocity.Of course,
it may be known that in some part of the £ow ¢eld the stagnation enthalpy is
constant, which is usually the case, so that h0 will become the constant for
every streamline.

The foregoing result for the enthalpy may be recast in terms of the
temperature, the pressure, or the density. For a perfect gas whose physical
properties are constant, h ¼ CpT, so that

CpT þ 1
2
u2 ¼ CpT0

Here, the fact that we are dealing with one-dimensional £ows only has been
used, so that u � u ¼ u2.The quantity T0 that has been introduced here is the
stagnation temperature and corresponds to the temperature the £uid would
have if it were brought to rest.Solving this equation for the temperature ratio
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shows that

T0

T
¼ 1þ u2

2CpT

The quantity u2=T may be rewritten as gRu2=ðgRT Þ ¼ gRM 2, since gRT is
the square of the local value of the speed of sound. Then, since
R=Cp ¼ ðg� 1Þ=g, the expression for the temperature may be written in the
following form:

T0

T
¼ 1þ g� 1

2
M 2 ð12:10aÞ

The following relations are known from thermodynamics to be valid for
isentropic £ows:

T0

T
¼ p0

p

� �ðg�1Þ=g
¼ r0

r

� �g�1

Using these identities and Eq. (12.10a) shows that the following relations
hold:

p0
p
¼ 1þ g� 1

2
M 2

� �g=ðg�1Þ
ð12:10bÞ

r0
r

¼ 1þ g� 1
2

M 2
� �1=ðg�1Þ

ð12:10cÞ

Here, p0 and r0 are, respectively, the stagnation pressure and the stagnation
density, andM is the local Mach number.

12.9 FLOW THROUGH NOZZLES

It was shown is Sec.12.7 that if a nozzle is required to expand a subsonic £ow
to supersonic speeds, its shape should be of the form shown in Fig. 12.7b.
Such a £ow con¢guration will be considered here in which the £ow reaches
sonic conditions at the throat and is supersonic downstream of the throat.
Since the £ow is adiabatic and frictional losses may be considered to be
negligible, the £ow will be isentropic.This means that the results of the pre-
vious section may be employed.

The notation that was introduced in Sec. 11.4 to indicate sonic condi-
tions will again be used here. Thus the temperature, pressure, and density
corresponding to M ¼ 1 will be denoted by T�; p�; and r�, respectively.
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Then, from Eqs. (12.10a), (12.10b), and (12.10c),

T0

T�
¼ gþ 1

2
ð12:11aÞ

p0
p�

¼ gþ 1
2

� �g=ðg�1Þ
ð12:11bÞ

r0
r�

¼ gþ 1
2

� �1=ðg�1Þ
ð12:11cÞ

That is, the temperature, pressure, and density at the throat of the nozzle
may de determined if the stagnation values are known.The stagnation con-
ditionswill be known directly if the £oworiginates in a large reservoir where
the £uid speed is zero and its other properties are known. If the £uid prop-
erties and speed are given at the inlet to the nozzle, then the stagnation
properties may be calculated from Eqs. (12.10).

The variation of the Mach number of the £ow with the £ow area of
the nozzle may be established as follows. The continuity equation written
for an arbitrary section and for the throat of the nozzle gives ruA ¼ r�u�A� ;
hence

A
A�

¼ r�
r
M�a�
Ma

ButM� ¼ 1 by de¢nition and a�=a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
T�=T

p
, so that

A
A�

¼ r�r0
r0r

1
M

ffiffiffiffiffiffiffiffiffiffiffi
T�T0

T0T

r

Now r�=r0 is given by Eq. (12.11c), while r0=r is given in terms of the local
Mach number by Eq. (12.10c). Likewise, T�=T0 is given by Eq. (12.11a) and
T0=T is given by Eq. (12.10a). Thus the expression for the area ratio may be
written in the form

A
A�

¼ 2
gþ 1

� �1=ðg�1Þ
1þ g� 1

2
M 2

� �1=ðg�1Þ 1
M

2
gþ 1

� �1=2

� 1þ g� 1
2

M 2
� �1=2

This result may be simpli¢ed to yield the following expression for the ratio
of the local £ow area, for which the Mach number is M, to the area of the
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nozzle throat:

A
A�

¼ 1
M

2
gþ 1

1þ g� 1
2

M 2
� �� �ðgþ1Þ=2ðg�1Þ

ð12:12aÞ

Equation (12.12a) relates the local £ow area to that of the throat, so it is
of interest to obtain an expression that relates the throat area A� to the mass
£ow rate through the nozzle.Denoting this quantity by _m, it follows that

_m ¼ r�u�A�

¼ r�r0
r0

ðM�a�ÞA�

Using Eq. (12.11c) again together with the facts that M� ¼ 1 and
a ¼ ffiffiffiffiffiffiffiffiffiffiffi

gRT�
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gRT0T�=T0
p

, this equation becomes

_m ¼ 2
gþ 1

� �1=ðg�1Þ
r0

ffiffiffiffiffiffiffiffiffiffiffi
gRT0

p 2
gþ 1

� �1=2

A�

where Eq. (12.11a) has been used for T�=T0.Using the ideal-gas law to write
r0 ¼ p0=ðRT0Þ, the ¢nal form of the expression for the mass £ow through the
nozzle becomes

_m ¼ p0A�ffiffiffiffiffiffi
T0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
R

2
gþ 1

� �ðgþ1Þ=ðg�1Þ
s

ð12:12bÞ

As might be expected, the mass £ow rate through the nozzle is proportional
to the throat area A�. Equation (12.12b) further shows that the mass £ow rate
is proportional to the stagnation pressure of the gas and inversely propor-
tional to the stagnation temperature of the gas.

The foregoing expressions are su⁄cient to design convergent-
divergent nozzles. Typically, the conditions in the gas at the entrance to the
nozzle are given together with the mass £ow rate (or inlet area) and the exit
pressure to which the gas must be expanded. From the inlet conditions the
stagnation properties may be evaluated from Eqs. (12.10). The required
throat area for the nozzle may then be calculated fromEq. (12.12b). Since the
stagnation properties of the gas are constant through the nozzle, Eq. (12.10b)
permits the exit Mach number to be determined. Equation (12.12a ) then
determines the exit £ow area of the nozzle.

PROBLEMS

12.1 Consider a weak shock tube that has a ¢nite length in the positive x
direction downstream of the diaphragm. The end of the shock tube
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that is downstreamof the diaphragm is open to the atmosphere.Draw
the xt diagram for the wave that will result from bursting the dia-
phragm.If the pressure at the openendof the shock tube ismaintained
at the value p0, obtain expressions for the velocity and the pressure
behind the wave that is re£ected from the open end of the tube, back
toward the burst diaphragm.

12.2 Figure 12.8 shows a piston located at x¼ 0 in a cylinder of length L.
Two di¡erent gases occupy the space between the piston and the
cylinder head, and these two gases meet at a free interface that is
located at x¼ aL. At the time t¼ 0 the piston is impulsively set into
motion with constant velocity U, which may be assumed to be small
compared with the acoustic velocities a01 and a02. At the interface
between the two gases, part of the resulting wave is re£ected and part
of it is refracted. If the re£ected wave reaches the piston at time t¼ t
and the transmitted wave reaches the end of the cylinder at the same
instant, draw the xt and use linear theory to ¢nd the following:

(a) The temperature ratio T02=T01 in terms of a.
(b) The velocity and the pressure for 0 < x < L and for 0 < t < t in

terms ofU ; p0; g; a01, and a.
(c) The ratio of the strength of the reflected wave to that of the trans-

mitted wave.
12.3 Show that, for a ¢nite-strength shock tube, the Mach number of the

£ow behind the shock wave is given by the following expression:

M2 ¼ 1
g1

p2
p1

� 1
� �

1þ g1 � 1
2g1

p2
p1

� 1
� �� �

p2
p1

� ��1=2

where the subscript 1 corresponds to the region ahead of the shock
wave, and the subscript 2 corresponds to the region immediately
behind the shock wave.

FIGURE 12.8 Piston in a cylinder containing a gas consisting of two isothermal
regions.
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12.4 Heat is being added to a perfect gas that is £owing in a constant-area
channel. Neglecting all external forces, determine the in£uence coef-
¢cient b in the equation:

dM
M

¼ b
dq
CpT

Use the resulting equation together with the following equation:

dp
p

¼ gM 2

M 2 � 1
dq
CpT

to establish a di¡erential relation between p and M. Integrate this
relation to obtain an expression for the pressure ratio p2=p1 in terms of
theMach numbersM2 andM1 at any two locations.

12.5 Use the results of Prob.12.4 and the isentropic £ow relations to obtain
the temperature ratioT2=T1 and the density ratio r2=r1 in terms of the
Mach numbersM2 andM1.

12.6 The entropy change between two £ow conditions of a perfect gas may
be determined from the following relation:

s � s1 ¼ Cn log
p
p1

r1
r

� �g� �
where the subscript 1 denotes inlet conditions for the £ow. Apply this
to the case of steady, adiabatic £ow in a channel of constant cross-
sectional area to establish the equation of the Fanno line. To do this,
use the following formsof the continuity and energy equations, and the
equations of state:

ru A ¼ _m

hþ u2

2
¼ h0

p ¼ rRT

h ¼ CpT

Here _m is the mass £ow rate of the gas and h0 is the stagnation
enthalpy.Hence show that the equation of the Fanno line is

s � s1
Cp

¼ log hðh0 � hÞðg�1Þ=2
h i

þ log
rg1
p1

R
Cp

2A2

_m2

� �ðg�1Þ=2" #

From this last result show that the entropy reaches a maximum when
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M ¼ 1.
12.7 To obtain the equation of the Rayleigh line, use the same equations

that were used in the previous problem except, since heat addition is
involved here, replace the energy equation with the following form of
the momentum equation:

ru2 þ p ¼ p0

Hence obtain the equation of the Rayleigh line. From the result, show
that the entropy reaches a maximum where M ¼ 1 and that the
enthalpy reaches a maximumwhenM ¼ 1=

ffiffiffi
g

p
.
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13

Multidimensional Flows

This chapter deals with some steady two-dimensional and three-
dimensional £ow problems, both supersonic and subsonic. The governing
equations are ¢rst established for irrotational motion, and then solutions to
these equations are sought. The Janzen-Rayleigh expansion is discussed
¢rst.This expansion is a parameter expansion in powers of theMach number
squared, and so it is valid only for Mach numbers somewhat less than unity.
Small-perturbation theory is next discussed. This approximation assumes
that the body about which the £ow is sought disturbs the free stream in a
minor way only. Sincemany real £ow situations satisfy this condition, small-
perturbation theory is widely used.

Small-perturbation theory is used to study some speci¢c subsonic and
supersonic £ows. The Prandtl-Glauert rule for subsonic £ows is then cov-
ered. This rule relates subsonic compressible £ows to the corresponding
incompressible £ows. Ackeret’s theory for supersonic £ows, which is also
based on small-perturbation theory, is then discussed.

Leaving the topic of small-perturbation theory, the chapter endswith a
discussion of an exact solution. The £ow treated is that of supersonic £ow
turning around a corner that bends away from the free stream. This £ow is
known as Prandtl-Meyer £ow.
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13.1 IRROTATIONAL MOTION

As was the case for incompressible £ows, many of the £ow ¢elds of interest
are irrotational because they originate in a uniform £ow. According to
Crocco’s equation, the £ow will then also be isentropic. Then the pressure
term in the momentum equation may be rewritten as follows:

=p ¼ dp
dr

=r ¼ a2 =r

where the fact that p is a function of r only, owing to the isentropic nature of
the £ow, has been used.Then the momentum equation (IV.2) becomes

@u
@t

þ ðu ·=Þu ¼ � a2

r
=r

Forming this scalar product of uwith this vector equation gives

1
2
@

@t
ðu · uÞ þ u · ½ðu ·=Þu� ¼ � a2

r
u ·=r

The term on the right-hand side of this equation may be recast by use of the
continuity equation in the form

u ·=r ¼ � @r
@t

� r= · u

Thus the foregoing form of the momentum equation becomes

1
2
@

@t
ðu · uÞ þ u · ½ðu ·=Þu� ¼ a2

r
@r
@t

þ a2 = · u

The density may be completely eliminated from this equation by taking the
time derivative of the Bernoulli equation.Thus

@2f

@t2
þ 1
2
@

@t
ðu · uÞ ¼ � @

@t

Z
dp
r

� �

¼ � @

@t

Z
dp
dr

dr
r

� �

¼ � @

@t

Z
a2

r
dr

� �

¼ � d
dr

Z
a2

r
dr

� �
@r
@t
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Now the two inverse operations, di¡erentiation with respect to r and inte-
gration with respect to r, cancel one another, so that the Bernoulli equation
becomes

@2f
@t2

þ 1
2
@

@t
ðu · uÞ ¼ � a2

r
@r
@t

Using this equation to rewrite the nonsteady term on the right-hand side of
the momentum gives

1
2
@

@t
ðu · uÞ þ u · ½ðu ·=Þu� ¼ � @2f

@t2
� 1
2
@

@t
ðu · uÞ þ a2 = · u

Solving this equation for = · u yields the following equation governing the
irrotational motion of a compressible £uid:

= · u ¼ 1
a2

u · ½ðu ·=Þu� þ @

@t
@f
@t

þ u · u
� �� �

In terms of the velocity potential f this equation becomes

H2f ¼ 1
a2

=f · ½ð=f ·=Þ=f� þ @

@t
@f
@t

þ =f ·=f
� �� �

ð13:1Þ

Equation (13.1) is the di¡erential equation to be satis¢ed by the velocity
potential f for irrotational motion of a compressible £uid.The equation dif-
fers drastically from the Laplace equation, which was shown to be the gov-
erning equation for incompressible £ow. In fact, Eq. (13.1) becomes H2f ¼ 0
as a2 ! 1, which corresponds to r ¼ constant. This may be veri¢ed by
nothing that

a2 ¼ dp
dr

where the derivative is evaluated at constant entropy. But for r ¼ constant,
dr ¼ 0, so that a2 ! 1. Thus it may be concluded that for constant density
the governing equation for irrotational motion is linear but for variable
density the governing equation becomes nonlinear. It should also be noted
that the nonlinearity must be dealt with directly here, since the equations of
kinematics and dynamics are no longer separable.

Cleary, Eq. (13.1) represents a formidable analytic problem for any
speci¢c £ow problem that is to be solved. The di⁄culty of obtaining exact
solutions has led to the development of approximate methods, and two of
these will be discussed in the following sections.
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13.2 JANZEN-RAYLEIGH EXPANSION

The Janzez-Rayleigh expansion is an expansion of the steady-state form of
Eq. (13.1), which is valid for any shape of body but only for Mach numbers
less than about 0.5. For steady £ow, Eq. (13.1) becomes

H2f ¼ 1
a2

=f · ½ð=f ·=Þ=f�

In tensor notation this equation is

@2f
@xi @xi

¼ 1
a2

@f
@xi

@f
@xj

@2f
@xj @xi

ð13:2aÞ

As the speed of sound becomes in¢nite, that is, as theMach number tends to
zero, this equation reduces to the Laplace equation. That is, the right-hand
side of the foregoing equation represents compressible e¡ects, so that these
e¡ects vary as a�2. It seems reasonable, then, that an approximate solution
for slightly compressible £ows could be sought in which the ¢rst correction
due to compressibility varies as theMach number squared.

The foregoing remarks form the basis of an expansion for f of the fol-
lowing form:

f ðx; y; zÞ ¼ U
X1
n¼0

M 2n
1 fnðx; y; zÞ ð13:2bÞ

It is assumed here that a uniform £ow of magnitude U approaches the body
under consideration andM1 ¼ U=a1 is theMach number far from thebody,
where a1 is the speed of sound there.Substituting Eq. (13.2b) into Eq. (13.2a)
gives

U
X
n

M 2n
1

@2fn

@xi @xi
¼ U 3

a2
X
n

M 2n
1

@fn

@xi

X
n

M 2n
1

@fn

@xj

X
n

M 2n
1

@2fn

@xi @xj

The signi¢cance of the coe⁄cient U in Eq. (13.2b) is now apparent; the
coe⁄cient of the series may be made dimensionless, yielding the following
equation:

X
n

M 2n
1

@2fn

@xi @xi
¼ a21

a2
M 2

1
X
n

M 2n
1

@fn

@xi

X
n

M 2n
1

@fn

@xj

X
n

M 2n
1

@2fn

@xi @xj

Although the coe⁄cients are all dimensionless, the quantity a21=a2 is not
constant and should also be expressed as a series inM 2

1.Thismay be done by
using the energy equation in the form
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1
2
u · uþ a2

g� 1
¼ 1

2
U 2 þ a21

g� 1

where the constant has been evaluated far from the body. Solving this equa-
tion for the ratio of the local value of the speed of sound to that far from the
origin gives

a2

a21
¼ 1þ g� 1

2
M 2

1 � u · u
a21

� �

Substituting u ¼ =f and inserting the expansion for f yields the following
expansion for a2 :

a2

a21
¼ 1þ g� 1

2
M 2

1 1�
X
n

M 2n
1

@fn

@xi

 !2
2
4

3
5

¼ 1þ g� 1
2

M 2
1 1� @f0

@xi

� �2
" #

þ O M 4
1

� �

Inverting this expression de¢nes the quantity which appears in the govern-
ing equation:

a21
a2

¼ 1� g� 1
2

M 2
1 1� @f0

@xi

� �2
" #

þ OðM 4
1Þ

Substituting this result into the expanded formof the governing equation for
f yields

X
n

M 2n @2fn

@xi@xi
¼ M 2

1 1� g� 1
2

M 2
1 1� @f0

@xi

� �2
" #

þ OðM 4
1Þ

( )

�
X
n

M 2n
1

@fn

@xi

X
n

M 2n
1

@fn

@xj

X
n

M 2n
1

@2fn

@xi@xj

The expansion (13.2b) is assumed to be uniformly valid in M 2
1. This

means that the coe⁄cients of like powers of this quantity must balance on
each side of the foregoing equation. This gives the following sequence of
equations which represents the coe⁄cients ofM 0

1,M 2
1,M

4
1, etc.:

@2fn

@xi@xi
¼ 0 ð13:2cÞ
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@2f1

@xi@xi
¼ @f0

@xi

@f0

@xj

@2f0

@xi@xj
ð13:2dÞ

@2f2

@xi@xi
¼ � g� 1

2
1� @f0

@xi

� �2
" #

@f0

@xi

@f0

@xj

@2f0

@xi@xj
þ @f1

@xi

@f0

@xj

@2f0

@xi@xj

þ @f0

@xi

@f1

@xj

@2f0

@xi@xj
þ @f0

@xi

@f0

@xj

@2f1

@xi@xj
ð13:2eÞ

etc.
The equation to be solved for f0 [Eq. (13.2c)] represents the incom-

pressible-£ow problem corresponding to M1 ! 0. The problem for f1,
represented by Eq. (13.2d), is a linear one, although the di¡erential equation
is nonhomogeneous.Having solved the problem forf0, the right-hand side of
Eq. (13.2d) will become an explicit function of the spatial coordinates. Like-
wise, having obtained expressions for f0 and f1, Eq. (13.2e) represents a
linear, nonhomogeneous equation for f2. In this way solutions for f0,f1, f2,
etc., may be obtained sequentially, and each of these solutions represents a
term in the perturbation solution (13.2b). It may be seen from the equations
forf1 andf2 that the di¡erential equation to be solved becomes complicated
rapidly, and it is not practical to carry out the solution beyond the ¢rst two or
three terms. This means that the solution so obtained will be valid only for
Mach numbers that are of the order of 0.5 or smaller. The advantage of the
Janzen-Rayleigh expansion,on the other hand, it that is valid for any shape of
body, not just slender bodies.

13.3 SMALL-PERTURBATION THEORY

An alternative approximate method of solution to the equation for com-
pressible potential £ows is small-perturbation theory.This approximation is
valid for supersonic £ows as well as subsonic £ows, but it is restricted to
relatively slender bodies.

Suppose that a uniform £ow approaches a body which is su⁄ciently
slender that it causes a small perturbation to the free stream.Then the velo-
city potential may be written in the form

f ¼ Ux þ F ð13:3aÞ

where

1
U

@F
@xi

����
����� 1
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Then, for steady £ows, Eq. (13.1) becomes

H2F ¼ 1
a2

ðU ex þ =FÞ · ½ðUex þ =FÞ ·=�ðU ex þ =FÞ

This expression is still exact within the inviscid theory, but now that fact that
the perturbation velocity potential F leads to small-velocity components
will be used to eliminate quadratic and higher terms. Thus the linearized
form of the governing equation is

H2F ¼ U 2

a2
@2F
@x2

This simpli¢ed equation retains only one term out of the compressible
correction terms, and the retained term corresponds to the direction of the
free stream. In its present form the compressible correction term contains a
variable coe⁄cient a, which should also be linearized for consistency. This
may be done by appealing to the energy equation in the form

1
2
u · uþ a2

g� 1
¼ 1

2
U 2 þ a21

g� 1

but u · u ¼ ðU þ u0Þ2 þ ðv0Þ2 þ ðw0Þ2

where u0; v0, and w0 are the velocity perturbations to the free-stream velocity
U.Thus the linearized form of the kinetic-energy term is

u · u ¼ U 2 þ 2Uu0

Using this form, the energy equation becomes

Uu0 þ a2

g� 1
¼ a21

g� 1

or
a2 ¼ a21 1� ðg� 1ÞUu0

a21

� �

Substituting this expression into the simpli¢ed equation for the perturbation
velocity potential gives

H2F ¼ U 2

a21
1� ðg� 1Þ U

a21

@F
@x

� ��1@2F
@x2
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This equation, in turn, may now be linearized to yield the following linear
equation with constant coe⁄cients:

H2F ¼ U 2

a21

@2F
@x2

In cartesian coordinates this equation is

ð1�M 2
1Þ @

2F
@x2

þ @2F
@y2

þ @2F
@z2

¼ 0 ð13:3bÞ

Equation (13.3b) shows that for subsonic £ow the governing equation is
elliptic, and so will have no real characteristics. On the other hand, for
supersonic £ow the governing equation is hyperbolic and so will have real
characteristics.This observation is compatible with our previous result that
shock waves can occur only in supersonic £ow. Equation (13.3b) is valid for
supersonic £ows as well as subsonic £ows, but as will be demonstrated later,
it is invalid nearM1 ¼ 1. Also, by virtue of the linearization, the equation is
valid only for £ows that involve relatively slender bodies.

13.4 PRESSURECOEFFICIENT

The principal quantity that will be of interest in the solution to speci¢c pro-
blems is the pressure in the £uid, since the integral of the pressure around the
surface of a body de¢nes the lift and drag forces acting on the body.The usual
way of expressing the pressure is by means of the dimensionless pressure
coe⁄cient. It is therefore of interest to obtain a linear expression for the
pressure coe⁄cient that will be compatible with the linearized equation
derived in the previous section. Such an expression will be derived in this
section.

The pressure coe⁄cient Cp is de¢ned in the following way:

Cp ¼ p� p1
1
2r1U 2

Here p1, r1, and U are, respectively, the pressure, density, and £uid velocity
far from the body around which the £ow is being studied.The pressure coef-
¢cient may be readily expressed in terms of the pressure ratio as follows:

Cp ¼ 2
p1

r1U 2

p
p1

� 1
� �

¼ 2
gM 21

p
p1

� 1
� �
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In order to relate the pressure ratio to the velocity, the energy equationwill be
employed.

1
2
u · uþ g

g� 1
p
r
¼ 1

2
U 2 þ g

g� 1
p1
r1

Since the £ow is irrotational, it is also isentropic, so the quantity p=rmay be
expressed in terms of p only by use of the isentropic law.Thus

r ¼ r1
p
p1

� �1=g

;
p
r
¼ p

r1

p
p1

� ��1=g

¼ a21
g

p
p1

� �1�1=g

Substituting this expression into the energy equation gives

1
2
u · uþ a21

g� 1
p
p1

� �ðg�1Þ=g
¼ 1

2
U 2 þ a21

g� 1

From this equation the following expression is obtained for the pressure
ratio:

p
p1

¼ 1þ g� 1
2a21

ðU 2 � u · uÞ
� �g=ðg�1Þ

Using this result, our expression for the pressure coe⁄cient becomes

Cp ¼ 2
gM 21

1þ g� 1
2a21

ðU 2 � u · uÞ
� �g=ðg�1Þ

�1

( )
ð13:4aÞ

Equation (13.4a),which expresses the local value of the pressure coef-
¢cient in termsof the local velocity, is still exact within the inviscid, adiabatic
assumptions. In order to obtain an expression for the pressure coe⁄cient
that is compatible with small-perturbation theory, Eq. (13.4a) will now be
linearized in the perturbation velocity. The velocity term in the foregoing
equation may thus be rewritten as follows:

U 2 � u · u ¼ U 2 � ðU þ u0Þ2 þ ðv0Þ2 þ ðw0Þ2
h i

¼ �2Uu0
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Substituting this linearized expression into Eq. (13.4a) yields the following
simpli¢ed expression for the pressure coe⁄cient:

Cp ¼ 2
gM 21

1� ðg� 1ÞUu0

a21

� �g=ðg�1Þ
�1

( )

But, to the ¢rst order in the perturbation velocity,

1� ðg� 1ÞUu0

a21

� �g=ðg�1Þ
¼ 1� g

Uu0

a21

Thus the linearized form of Eq. (13.4a) is

Cp ¼ �2
u0

U
ð13:4bÞ

This simple result will be used in conjunction with approximate solutions
to the compressible-£ow equations that are established through use of
Eq. (13.3b).

13.5 FLOWOVER AWAVE-SHAPEDWALL

The ¢rst application of small-perturbation theory will bemade to £owover a
sinuous wall. This £ow is relatively simple, yet it has the property of illus-
trating clearly the distinctions between subsonic and supersonic £ows.

Figure 13.1a shows a sinusoidal surface over which a uniform £ow of
magnitude U is assumed to £ow such that compressible e¡ects are not negli-
gible.The equation of the wavy surface is taken to be

y ¼ ZðxÞ ¼ e sin
2px
l

where e=l is assumed to be small compared with unity, so that the linear
theory will be valid. The di¡erential equation to be solved is the two-
dimensional form of Eq. (13.3b). The boundary condition to be satis¢ed on
y ¼ ZðxÞ is

v0

U þ u0
¼ dy

dx
¼ 2p

l
e cos

2px
l

In view of our linear theory the quantity v0=ðU þ u0Þmay be reduced to v0=U ,
so that this boundary condition becomes

@F
@y

ðx; ZÞ ¼ U
2p
l
e cos

2px
l
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The left-hand side of this equation may be expanded in aTaylor series and
linearized so that the linear form of this boundary condition is

@F
@y

ðx; 0Þ ¼ U
2p
l
e cos

2px
l

FIGURE13.1 (a) Wave-shaped wall, (b) flow for M1 < 1, and (c) flow for M1 > 1.
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From the foregoing discussion it is evident that, within the small-
perturbation theory, the problem to be solved for the perturbation velocity
potentialFðx; yÞ is the following:

ð1�M 2
1Þ @

2F
@x2

þ @2F
@y2

¼ 0 ð13:5aÞ

@F
@y

ðx; 0Þ ¼ U
2p
l
e cos

2px
l

ð13:5bÞ

@F
@x

ðx; yÞ ¼ finite as y ! 1 ð13:5cÞ

Since Eq. (13.5a) may be either elliptic or hyperbolic, depending on whether
M1 is less than unity or greater than unity, it is convenient to discuss the
solution to Eqs. (13.5) for subsonic £ow and supersonic £ow separately.

Consider, ¢rst, the case of subsonic £ow. It will be found convenient to
replace x by a new coordinate x that is de¢ned by

x ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p
Then, in terms of the coordinates x and y, Eqs. (13.5) become

@2F

@x2
þ @2F

@y2
¼ 0

@F
@y

x; 0ð Þ ¼ U
2p
l
e cos

2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
x

� �

@F
@x

x; yð Þ ¼ finite as y ! 1

The governing equation is now seen to be Laplace’s equation in this new
coordinate system. Solving this equation by separation of variables, the
solution should be trigonometric is x in view of the ¢rst boundary condition.
Then, the y dependence will be either exponential or hyperbolic, and in view
of the semi-in¢nite domain in the y direction, the exponential form will be
used. However, the second boundary condition rules out the possibility of a
positive exponential, so the required solution will be of the form

Fðx; yÞ ¼ ðA cos axþ B sin axÞe�ay

472 Chapter13



But the ¢rst boundary condition has been used only to obtain the function
form ofF.Thus, imposing this boundary condition completely gives

@F
@y

ðx; 0Þ ¼ �aðA cos axþ B sin axÞ ¼ U
2p
l
e cos

2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
x

� �

Equating coe⁄cients and arguments of the two trigonometric terms
involved in the last equality gives

�aA ¼ U
2p
l
e

B ¼ 0

a ¼ 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q

Thus the complete solution for F is

Fðx; yÞ ¼ � U effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p cos
2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
x

� �
exp � 2p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
y

� �

Returning now to the original coordinate system gives the following solution
for the perturbation velocity potential:

Fðx; yÞ ¼ � U effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p cos
2px
l

exp � 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
y

� �
ð13:6aÞ

Equation (13.6a) shows that the perturbation to the free stream is in
phase with the wall, and it leads to a £ow pattern, as shown in Fig. 13.1b.
It is also evident that the perturbation dies exponentially with distance
from the surface. Since it was assumed that the perturbation velocity
should be small compared with the free-stream velocity, Eq. (13.6a) shows
that

Max
u0

U

� �
¼ ð2p=lÞeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M 21
p � 1

Using the expression (13.4b) and the solution (13.6a) yields the follow-
ing expression for the pressure coe⁄cient in the £uid:

Cpðx; yÞ ¼ � ð4p=lÞeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p sin
2px
l

exp � 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
y

� �
ð13:6bÞ
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This result shows that the maximum presure on the wall corresponds to the
bottom of the troughs and the minimum pressure corresponds to the top of
the humps. That is, the pressure is symmetrically distributed about the
humps on the wall, so that there will be no induced drag on the wall. This
result will be further discussed later in this section.

Considering now the case of supersonic £ow, the governing partial
di¡erential equation is

@2F
@x2

� 1
ðM 21 � 1Þ

@2F
@y2

¼ 0

This is the so-called one-dimensional wave equation, whose general solu-
tions will be of the form

Fðx; yÞ ¼ f x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �
þ g x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �

where f and g are any di¡erentiable functions.The ¢rst solution represents a
wave that slopes downstream and away from the wall, so that perturbations
generated by the wall will travel downstreamonly according to this solution.
On the other hand, the second function in the solution above represents sig-
nals that travel upstream as they move away from the wall. Since such a
solution has no physicalmeaning in supersonic £ow, itmust be rejected here,
so that the general solution becomes

Fðx; yÞ ¼ f x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �

The function f may be evaluated by imposing the surface boundary
condition (13.5b).This gives

@F
@y

ðx; 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
f 0ðxÞ ¼ U

2p
l
e cos

2px
l

hence

f ðxÞ ¼ � U effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p sin
2px
l
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Thus the perturbation velocity becomes

Fðx; yÞ ¼ � U effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p sin
2p
l

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �� �
ð13:7aÞ

This solution satis¢es the remaining boundary condition [Eq. (13.5c)]. From
this solution andEq. (13.4b) the value of the pressure coe⁄cient is found tobe

Cp ¼ ð4p=lÞeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p cos
2p
l

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �� �
ð13:7bÞ

The solution represented by Eqs. (13.7a) and (13.7b) shows that the
velocity components and the pressure are constant along the lines

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y ¼ constant

The slope of these lines is given by

dy
dx

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p ¼ tan y

where y is the inclination of the lines with respect to the x axis.Hence

y ¼ sin�1 1
M1

� �

This result shows that the lines along which the £ow parameters are constant
are actually the Mach lines.That is, signals are propagated along the Mach
lines undisturbed.The resulting £ow ¢eld is illustrated in Fig. 13:1c.

Equation (13.7b) shows that the pressure on the wall is proportional to
cosð2px=lÞ, which means that the pressure peaks are 90� out of phase with
the geometric peaks of the wall. It follows, then, that a drag force will exist on
the wall for the case of supersonic £ow.This is quite di¡erent from the result
that was obtained for subsonic £ow. Figure13.2a shows a section of the wall,
while Fig.13.2b and c show, respectively, the pressure distributionon thewall
for subsonic £ow and for supersonic £ow. In this ¢gure the value of the pres-
sure coe⁄cient Cp evaluated on the wall is denoted by Cp. Because of the
symmetrical pressure distribution about each geometric peak, there is no
drag force in subsonic £ow. However, the lack of symmetry in supersonic
£ow leads to a drag that is called the wave drag. Thus the linearized theore-
tical drag on bodies in compressible £ow is as shown in Fig.13.2d.The theo-
retical drag becomes in¢nite for Mach numbers close to, but greater than,
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unity because the linearized theory breaks down in sonic £ow. A transonic
theory exists that shows, as it should, that retaining some important terms
the linear theory neglected by results in a ¢nite drag coe⁄cient. The actual
drag indicated in Fig. 13.2d illustrates this result and also shows that, owing
to viscous e¡ects, a drag force exists even for subsonic £ows. However, this
viscous drag is relatively small for slender bodies when it is compared with
the wave drag.

The foregoing solution for a wave-shaped wall is signi¢cant in its own
right, and it illustrates some important features of subsonic and supersonic
£ows.Also since the theory being used is linear, superposition is valid.Thus,
by use of Fourier integrals, the solution obtained here may be extended to
obtain solutions for compressible £ow over arbitrarily shaped surfaces.

13.6 PRANDTL-GLAUERT RULE FOR SUBSONIC
FLOW

Using small-perturbation theory it is possible, by means of a simple
transformation, to reduce all subsonic-£ow problems to equivalent

FIGURE13.2 (a) Wave-shaped wall, (b) surface pressure coefficient for subsonic
flow and (c) supersonic flow, (d) drag coefficient versus Mach number.
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incompressible-£ow problems. The rule that results from such a transfor-
mation is called the Prandtl-Glauert rule.

For subsonic £ow over a body whose surface is de¢ned by y ¼ f ðxÞ, the
perturbation velocity potential must satisfy the following problem:

@2F
@x2

þ 1
1�M 21

@2F
@y2

¼ 0

@F
@y

ðx; 0Þ ¼ U
df
dx

ðxÞ

@F
@x

ðx; yÞ ¼ finite as y�!1
Introduce a new velocity potentialF0 and a new vertical coordinate Z that are
de¢ned as follows:

F ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p F0

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

q
y

Then the problem to be solved forF0ðx; ZÞ is the following:
@2F0

@x2
þ @2F0

@Z2
¼ 0

@F0

@Z
ðx; 0Þ ¼ U

df
dx

ðxÞ

@F0

@x
ðx; ZÞ ¼ finite as Z �! 1

That is, in the xZ plane the problem to be solved is that of irrotational motion
of an incompressible £uid about a body whose surface is de¢ned by Z ¼ f ðxÞ.
Assuming that the ideal-£uid £ow problem can be solved, the corresponding
pressure coe⁄cient may be evaluated from Eq. (13.4b). Thus, denoting the
incompressible pressure coe⁄cient by C 0

p, it follows that

C 0
p ¼ � 2

U
@F0

@x

But the compressible pressure coe⁄cient is given by

Cp ¼ � 2
U

@F
@x

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p 2
U

@F0

@x
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that is,

Cpðx; yÞ ¼
C 0
pðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p ð13:8Þ

That is, the pressure distribution around a body that is in subsonic
compressible £ow may be obtained from the corresponding incompres-
sible pressure distribution. The rule that connects these two pressure dis-
tributions [Eq. (13.8)] is known as the Prandtl-Glauert rule. It establishes
the e¡ects of compressibility for subsonic £ows and illustrates that,
within the linear theory, any subsonic compressible-£ow problem may be
solved provided that the corresponding incompressible-£ow problem may
be solved.

13.7 ACKERT’S THEORY FOR SUPERSONIC
FLOWS

Small-perturbation theory may also be used to establish a theory for super-
sonic £ows.The resulting theory is known as Ackeret’s theory.The situation
to which this theory applies is shown in Fig. 13.3a. Supersonic £ow approa-
ches a thin, cambered airfoil that is at an angle of attack a to the free stream
whose Mach number is M1. The chord of the airfoil is denoted by c, t is the
maximum thickness, and h is the maximum camber of the airfoil.The equa-
tion of the upper surface of the airfoil is y ¼ ZuðxÞ, while that of the lower
surface is ZlðxÞ.

FIGURE13.3 (a) Parameters for supersonic airfoil, and (b) definitions of the half-

thickness function t(x) and the camber function g(x).

478 Chapter13



According to the linearized theory, the problem to be solved for the
perturbation velocity potential is the following:

@2F
@x2

� 1
M 21 � 1

@2F
@y2

¼ 0

@F
@y

ðx; 0Þ ¼ U
dZ
dx

ðxÞ

@F
@x

ðx; yÞ ¼ finite as y�!1

Since, in general, the surfaces y ¼ ZuðxÞ and y ¼ ZlðxÞ will be di¡erent,
the boundary condition on y ¼ 0 will be di¡erent for the upper and
lower surfaces, so that the corresponding values of F will be di¡erent.
Denoting these solutions by Fu and Fl , it therefore follows that the two
solutions will be

Fuðx; yÞ ¼ f x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �

Flðx; yÞ ¼ g x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

q
y

� �

Here the left-running solution has been omitted from Fu and the right-
running solution has been omitted from Fl . This satis¢es the condition that
signals can travel downstreamonly in supersonic £ow, so that the lines along
which signals travel must slope downstream as they move away from the
airfoil.

The functions f and g may be evaluated by imposing the boundary
conditions at the surface of the airfoil. Thus the boundary conditions at
y ¼ 0þ and y ¼ 0�, together with the corresponding solutions, give

f 0ðxÞ ¼ � Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p dZu
dx

ðxÞ

g 0ðxÞ ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p dZl
dx

ðxÞ

It is not necessary to integrate these expressions in order to evaluate the
pressure coe⁄cient. From Eq. (13.4b),

Cp ¼ � 2
U

@F
@x

Multidimensional Flows 479



Thus, denoting the pressure coe⁄cient on the upper surface by Cpu and that
on the lower surface by Cpl, it follows that

Cpu ¼ � 2
U

f 0ðxÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p dZu
dx

Cpl ¼ � 2
U

g 0ðxÞ ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p dZl
dx

These results show that the local value of the pressure coe⁄cient is propor-
tional to the local slope of the airfoil surface.

Using these values of the surface pressure coe⁄cient, the lift coe⁄cient
of the airfoil may be evaluated as follows:

CL ¼ 1
1
2 r1U 2

R c
0 ðpl � puÞ dx

c

Here r1 is the density of the £uid far from the airfoil and pl ; pu are, respec-
tively, the pressure on the lower surface of the airfoil and the pressure on the
upper surface.Then, from the de¢nition of the pressure coe⁄cient it follows
that

CL ¼ 1
c

Z c

0
ðCpl � CpuÞdx

¼ � 2
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p Z c

0

dZ1
dx

þ dZu
dx

� �
dx

¼ � 2
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p ½Z1 þ Zu�c0

But ZlðcÞ ¼ ZuðcÞ ¼ 0 and Zlð0Þ ¼ Zuð0Þ ¼ ac. Hence the value of the lift
coe⁄cient is

CL ¼ 4affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p ð13:9aÞ

Equation (13.9a) shows that the lift force that acts on a supersonic air-
foil depends only on the Mach number of the £ow and on the angle of attack
of the airfoil.That is, the lift force is independent of the camber and thickness
of the airfoil. This result is quite di¡erent from the corresponding result for
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subsonic £ow. Indeed, Eqs. (4.25b) and (13.8) show that the lift coe⁄cient for
a Joukowski airfoil at subsonic speeds is

CL ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M 21

p 1þ 0:77
t
c


 �
sin aþ 2

h
c

� �

Thus the lift of subsonic airfoils is greatly a¡ected by airfoil thickness and
camber, but the lift of supersonic airfoils is not a¡ected by these parameters.

The drag coe⁄cient for the airfoil may be evaluated in a similar man-
ner as follows:

CD ¼ 1
1
2r1U 2

R ac
0 ð pl � puÞ dy

c

¼ 1
c

Z ac

0
ðCpl � CpuÞ dy

This integral may be converted to one in x by noting that dy ¼ ðdy=dxÞdx,
where dy=dx ¼ dZu=dx on the upper surface and dy=dx ¼ dZ1=dx on the
lower surface of the airfoil. Hence

CD ¼ 1
c

Z 0

c
Cpl

dZl
dx

� Cpu
dZu
dx

� �
dx

Using the expressions that were derived for the pressure coe⁄cient on the
upper and lower surfaces shows that

CD ¼ 2
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p Z c

0

dZl
dx

� �2

þ dZu
dx

� �2
" #

dx

Since the integrand of this integral is positive de¢nite, it is evident that a
nonzero drag will exist for nontrivial airfoil shapes, a result that was
deduced for the wave-shaped wall in Sec.13.5.

Themanner in which airfoil thickness and camber a¡ect the wave drag
may be established by writing the equations of the upper and lower surfaces
of the airfoil in terms of the corresponding parameters. Thus, let the thick-
ness parameter and the camber parameter be de¢ned, respectively, by

d ¼ t
c

e ¼ h
c
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Here, t and h are the maximum thickness and maximum camber, respec-
tively, as shown in Fig. 13.3a. Then a half-thickness function tðxÞ is de¢ned
such that the local value of the airfoil half thickness is dctðxÞ, as shown in
Fig. 13.3b. Likewise, a camber function gðxÞ is de¢ned such that the local
value of the airfoil camber is ecgðxÞ,which is also shown in Fig. 13.3b.Thus,
the upper and lower surfaces of the airfoil may be de¢ned in terms of the
angle of attack, the half-thickness function, and the camber function. From
the de¢nitions of these two functions they must lie in the following range:

0 � tðxÞ � 1
2

0 � gðxÞ � 1

In terms of the functions de¢ned above, the equations of the upper and
lower surfaces of the airfoil are

ZuðxÞ ¼ aðc � xÞ þ ecgðxÞ þ dctðxÞ
ZlðxÞ ¼ aðc � xÞ þ ecgðxÞ � dctðxÞ

That is, the upper and lower surfaces are de¢ned by the line through themean
thickness of the airfoil, plus or minus the half thickness, respectively. Thus,
the integrand of the integral that de¢nes the drag coe⁄cient may be eval-
uated as follows:

dZu
dx

¼ �aþ ecg0 þ dct0

dZl
dx

¼ �aþ ecg0 þ dct0

;
dZu
dx

� �2

þ dZl
dx

� �2

¼ 2a2 þ 2e2c2ðg0Þ2 þ 2d2c2ðt0Þ2 � 4aecg0

In the foregoing equations the primes denote di¡erentiation with respect to
x. Substituting the last result into the expression for the drag coe⁄cient
yields the following result:

CD ¼ 2
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p Z c

0
½2a2 þ 2e2c2ðg0Þ2 þ 2d2c2ðt0Þ2 � 4aecg0� dx

The ¢rst term in the integrand is a constant and may be integrated directly.
The last term in the integrand integrates to zero, since gð0Þ ¼ gðcÞ ¼ 0.Thus
the drag coe⁄cient becomes

CD ¼ 4a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p þ 4e2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 21 � 1

p Z c

0
ðg0Þ2dx þ 4d2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M 21 � 1
p Z c

0
ðt0Þ2dx ð13:9bÞ
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Equation (13.9a) showed that the lift coe⁄cient of supersonic wings is
independent of the camber and the thickness of the airfoil. On the other
hand, Eq. (13.9b) shows that both camber and thickness increase the drag
coe⁄cient of such wings. Hence it may be concluded that supersonic wings
should be as straight as possible and as thin as possible.However, it is evident
that for structural reasons there is a limit to theminimum thickness towhich
such wings may be made. Apart from the general guidelines of minimizing
the camber and thickness of wing sections, application of the foregoing the-
ory to speci¢c airfoils shows that sharp corners are preferable to rounded
corners in supersonic £ight.The investigation of the performance of speci¢c
airfoil sections is deferred to the problems at the end of the chapter.

13.8 PRANDTL-MEYER FLOW

In this section anexact solution to the equations of two-dimensional £owof a
compressible £uid will be derived.The £ow situation to which this solution
refers consists of supersonic £ow approaching a sharp bend in a boundary in
which the boundary bends in such a direction that an expansion, rather than
a compression, is required to turn the £uid.The resulting £ow ¢elds is called
Prandtl-Meyer £ow.

Figure 13.4a shows the £ow con¢guration that is under consideration.
Supersonic £ow whoseMach number isM1 £ows parallel to a boundary that

FIGURE 13.4 (a) Prandtl-Meyer fan, and (b) velocity change through a typical
Mach wave.
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suddenly changes direction as shown. In order to satisfy the boundary con-
dition at the surface, the velocity vector must be de£ected in the direction
indicated. Since this de£ection is opposite in sense to that which was shown
to be necessary for shock waves, it may be concluded that an expansion,
rather than a compression, is required. Although expansions are continuous
processes as opposed to the discrete processes of shock waves, the expansion
is illustrated as consisting of a large number of very weak expansion waves.
This is known as a Prandtl-Meyer fan.

An arbitrary point in the expansion fan is indicated in Fig. 13.4a. The
Mach number at this point is M, and the de£ection of the velocity vector at
this point, relative to its original direction, is denoted by y.The inclination of
theMachwave that passes through the point under consideration is denoted
by b. Then it is known that the leading Mach wave will subtend an angle
de¢ned by

b1 ¼ sin�1 1
M1

� �
Since the pressure gradient will be normal to each of the Mach lines, the
changes in the velocity must also be normal to the Mach lines. Thus if q
denotes the magnitude of the velocity vector as it approaches our reference
Machwave and ifDq denotes the change in the value of q that is caused by the
Mach wave, the velocity diagramwill be as shown in Fig.13.4b.

The velocity vector that emerges from the Mach wave will have a
magnitude q þ dq, and it will have been de£ected through an angle dy. Since
Dq will be in¢nitesimally small as the limit of an in¢nite number of Mach
waves is approached, the de£ection of the velocity vector may be approxi-
mated by

dy ¼ Dq cos ðbþ yÞ
q þ dq

In the limit all second-order terms will vanish identically, so that this
expression may be further reduced to

dy ¼ Dq
q

cosðbþ yÞ

But, from Fig.13.4b,

q þ dq ¼ q þ Dq sin ðbþ yÞ

Using this result to eliminate Dq yields the following equation for dy:

dy ¼ dq
q

cot ðbþ yÞ
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But it is known that the inclination of the Mach wave under consideration is
given by

sinðbþ yÞ ¼ 1
M

hence

cotðbþ yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2 � 1

p

Thus the turning angle of the velocity vector becomes

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2 � 1

p dq
q

In order to complete the solution, this equationmust be integrated to yield an
expression for y in terms of either q orM. Choosing the latter as being more
relevant,qmust be expressed in terms of the localMach numberM.Thismay
be done by use of the de¢nition of theMach number in the form

q ¼ aM

hence

dq
q

¼ da
a

þ dM
M

To eliminate a from this equation, the energy equation will be employed in
the form

1
2
q2 þ a2

g� 1
¼ a20

g� 1

Or, multiplying this equation by ðg� 1Þ=a2 gives

g� 1
2

M 2 þ 1 ¼ a20
a2

; a2 ¼ a20
1þ ½ðg� 1Þ=2�M 2

and

2a da ¼ �a20ðg� 1ÞM dM

f1þ ½ðg� 1Þ=2�M 2g2
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Thus the expression for dq becomes

dq
q

¼ � g� 1
2

M dM
1þ ½ðg� 1Þ=2�M 2 þ

dM
M

¼ 1
1þ ½ðg� 1Þ=2�M 2

dM
M

Using this result to eliminate q from our expression for the element of
turning angle dy gives

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2 � 1

p

1þ ½ðg� 1Þ=2�M 2

dM
M

This equation may now be integrated to give

y ¼ nðM Þ � nðM1Þ ð13:10aÞ

where

nðM Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
gþ 1
g� 1

s
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1
gþ 1

ðM 2 � 1Þ
s !

� tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2 � 1

p
Þ ð13:10bÞ

Equation (13.10b) de¢nes the so-called Prandtl-Meyer function, which is
denoted by nðM Þ. The solution (13.10a) gives y ¼ 0 for M ¼ M1 and repre-
sents a monotonically increasing function ofM for values ofM > M1. Then
the minimum value of y occurs atM1 ¼ 1, the value of y being zero, and the
maximum value of y occurs whenM tends to in¢nity. From Eqs. (13.10a) and
(13.10b), this gives the following maximum:

ymax ¼ p
2

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1
g� 1

s
� 1

 !
ð13:10cÞ

For g ¼ 1:4 this gives a maximum de£ection of about130�.

PROBLEMS

13.1 Show that the equation to be satisfied by the velocity potential for
steady, two-dimensional, irrotational motion of an inviscid fluid is

1� u2

a2

� �
@2f
@x2

� 2
uv
a2

@2f
@x@y

þ 1� u2

a2

� �
@2f
@y2

¼ 0
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13.2 Introduce a stream function that is defined as follows

ru ¼ r0
@c
@y

rv ¼ r0
@c
@x

where r0 is a constant reference value of the density. Show that this
stream function identically satisfies the continuity equation for steady
two-dimensional motion of a compressible fluid, and that for irrota-
tional motion the equation to be satisfied by cðx; yÞ is

1� u2

a2

� �
@2c
@x2

� 2
uv
a2

@2c
@x@y

þ 1� u2

a2

� �
@2c
@y2

¼ 0

13.3 The stream function that is defined in Prob.13.2 may be considered to
be a function of the magnitude of the velocity vector q and its angle y.
That is, we can consider the stream function to be cðq; yÞ where
u ¼ q cos y and v ¼ q sin y. To obtain the differential equation to be
satisfied cðq; yÞ, proceed as follows.
(a) Obtain expressions for df and dc in terms of dx and dy in which

the coefficients are functions of q; y and the density ratio only.
Invert these equations to express dx and dy in terms of df and
dc.

(b) Use the fact that the velocity potential is fðq; yÞ and that the
stream function is cðq; yÞ to eliminate df and dc in the expres-
sion obtained above in terms of their derivativeswith respect to q
and y.

(c) Considering both x and y to be functions of q and y, obtain ex-
pressions from differential calculus for dx and dy. By equating
these expressionswith those obtained in (b) above,obtainexpres-
sions for the partial derivatives of x and y with respect to q and y.

(d) Eliminate both x and y from the results obtained in (c) by forming
the secondmixed derivatives of x and ywith respect to q and y. In
this way obtain expressions for the derivatives

@f
@y

and
@f
@q

in terms of derivatives of the stream function cðq; yÞ. In deriving
this result it should be noted that the density r is a function of the
magnitude of the velocity q, but not of its direction y.

(e) Use the Bernoulli equation for steady flow and the definition of
the speed of sound to obtain the result

d
dq

r0
r

� �
¼ r

r0

q
a2
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From this result, and one of the expression obtaind in (d), show
that

@f
@q

¼ � r0
r
1
q
ð1�M 2Þ @c

@y

Finally, eliminate f from this expression, using a result obtained
in (d), to show that the following equation is to be satisfied by the
stream function

q2
@2c
@q2

þ qð1þM 2Þ @c
@q

þ ð1�M 2Þ @
2c

@y2
¼ 0

13.4 In the Janzen-Rayleigh expansion, find the differential equation to be
satisfied by the function f3 in the series.

13.5 The linearized form of the pressure coefficient is defined by the
equation

Cp ¼ �2
u0

U

Find the next correction term in the expression forCp.That is, find the
approximate expression for the pressure coefficient that is valid to the
second order in small quantities.

13.6 Using the results of the linearized theory for compressible flow over a
wave-shaped wall, integrate the pressure over one wavelength of the
wall and so verify that the drag is zero for subsonic flow.Also calculate
the drag per wavelength per unit width of the wall for supersonic flow
over the wall.

13.7 An infinitely long cylinder of radius aþ e sinð2px=lÞ is exposed to a
uniform axial flow of compressible fluid, as shown in Fig. 13.5. If the
flow is subsonic and if the following conditions apply

e
l
� 1 and

e
a
� 1

then the conditions to be satisfied by the perturbation velocity poten-
tial are as follows:

ð1�M 2
1Þ @

2f
@x2

þ @2f
@r2

þ 1
r
@f
@r

¼ 0

@f
@r

ðx; aÞ ¼ U
dr
dx
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The flow velocity is also subject to the condition that it should be
everywhere finite. In the foregoing expressions, �r is the value of r that
corresponds to the surface of the cylinder.

Using a linearized theory, find an expression for the pressure coef-
ficient on the surface of the cylinder. Form the ratio of this pressure
coefficient to that for a wave-shaped wall, and by expanding this ratio
in powers of l=½að1�M 2

1Þ�, establish the effect of wall curvature.
13.8 Use Ackeret’s theory to find the drag coefficient of the double-wedge

airfoil shown in Fig.13.6 for zero angle of attack in supersonic flow.
13.9 The half-thickness function tðxÞ for the biconvex circular-arc airfoil

shown in Fig.13.7 is given by the expression

tðxÞ ¼ 1
dc

ZðxÞ

FIGURE13.5 Axial flow over a wave-shaped circular cylinder.

FIGURE13.6 Double-wedge airfoil.
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The equation of the upper surface is defined by the equation

ðZþ aÞ2 þ x � c
2


 �2
¼ aþ 1

2
dc

� �2

Using Ackeret’s theory, evaluate the drag coefficient of a biconvex
circular-arc airfoil at zero angle of attack in supersonic flow.Compare
this result with that for the double-wedge airfoil discussed in the pre-
vious problem.

FURTHER READING�PART IV

The compressible-£ow area of £uid mechanics is not as well endowed with
books as the other areas.However, the following materials adequately cover
and extend the material treated in Part IVof this book.

FIGURE13.7 Biconvex circular-arc airfoil.
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Appendix A

VectorAnalysis

The vector relations given in this appendix are particularly useful in the
study of £uid mechanics.The derivation of these relationships may be found
in most books that cover the topic of vector analysis.

VECTOR IDENTITIES

In the following formulas, f is any scalar and a, b, and c are any vectors.

= 3 =f ¼ 0

= · ðfaÞ ¼ f= · aþ a ·=f

= 3 ðfaÞ ¼ =f 3 aþ fð= 3 aÞ
= · ð= 3 aÞ ¼ 0

ða ·=Þa ¼ 1
2=ða · aÞ � a 3 ð= 3 aÞ

= 3 ð= 3 aÞ ¼ =ð= · aÞ � =2a

= 3 ða 3 bÞ ¼ að= · bÞ � bð= · aÞ � ða ·=Þbþ ðb ·=Þa
= · ða 3 bÞ ¼ b · ð= 3 aÞ � a · ð= 3 bÞ
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INTEGRALTHEOREMS

In the following two theorems, which relate surface integrals to volume
integrals, V is any volume and S is the surface that encloses V , the unit nor-
mal on S being denoted by n. f is any scalar and a is any vector.

Gauss’ theorem: (also known as the divergence theorem):

Z
s
a � n ds ¼

Z
V
= � a dV

Green’s theorem:

Z
s
f
@f
@n

dS ¼
Z
V
½=f � =fþ f=2f� dV

Stokes’ theorem: I
^a � dl ¼

Z
A
ð= 3 aÞ�n dA

This theorem relates a line integral to an equivalent surface integral. The
surface A is arbitrary, but it must terminate on the line l.

ORTHOGONAL CURVILINEARCOORDINATES

Let x1; x2; x3 be a set of orthogonal curvilinear coordinates with e1; e2; e3 as
the corresponding unit base vectors.

Position vector:

r ¼ xex þ yey þ zez

where ex; ey, and ez are ¢xed in space.

Base vectors:

ei ¼ @r
@xi

,
@r
@xi

����
����

Metric-scale factors:

hi ¼ @r
@xi

����
����
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Line element:

ðdr � drÞ ¼ h21ðdx1Þ2 þ h22ðdx2Þ2 þ h23ðdx3Þ2

Cartesian coordinates (rectangular coordinates):

x1 ¼ x x2 ¼ y x3 ¼ z

h1 ¼ 1 h2 ¼ 1 h3 ¼ 1

Cylindrical coordinates:

x1 ¼ R x2 ¼ y x3 ¼ z

h1 ¼ 1 h2 ¼ R h3 ¼ 1

x ¼ R cos y y ¼ R sin y z ¼ z

Spherical coordinates:

x1 ¼ r x2 ¼ y x3 ¼ o

h1 ¼ 1 h2 ¼ r h3 ¼ r sin y

x ¼ r cos y y ¼ r sin y coso z ¼ r sin y sino

FIGURE A.1 Relationship between cartesian coordinates and (a) cylindrical coordi-
nates and (b) spherical coordinates.
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Vector operations:

In the following let f be any scalar and let a ¼ a1 e1 þ a2 e2 þ a3 e3 be
any vector.

1. Gradient:

=f ¼ 1
h1

@f
@x1

e1 þ 1
h2

@f
@x2

e2 þ 1
h3

@f
@x3

e3

2. Divergence:

= � a ¼ 1
h1h2h3

@

@x1
ðh2h3a1Þ þ @

@x2
ðh1h3a2Þ þ @

@x3
ðh1h2a3Þ

� �

3. Curl:

= 3 a ¼ 1
h1h2h3

h1e1 h2e2 h3e3
@
@x1

@
@x2

@
@x3

h1a1 h2a2 h3a3

�������
�������

4. Laplacian:

=2f ¼ 1
h1h2h3

@

@x1

h2h3
h1

@f
@x1

� �
þ @

@x2

h3h1
h2

@f
@x2

� �
þ @

@x3

h1h2
h3

@f
@x3

� �� �

=2a ¼ 1
h1

@

@x1
ð= � aÞ þ 1

h2h3

@

@x3

h2
h1h3

@

@x3
ðh1a1Þ � @

@x1
ðh3a3Þ

�� ��� �

� @

@x2

h3
h1h2

@

@x1
ðh2a2Þ � @

@x2
ðh1a1Þ

� �� ���
e1

þ 1
h2

@

@x2
ð= � aÞ þ 1

h1h3

@

@x1

h3
h1h2

@

@x1
ðh2a2Þ � @

@x2
ðh1a1Þ

�� ��� �

� @

@x3

h1
h2h3

@

@x2
ðh3a3Þ � @

@x3
ðh2a2Þ

� �� ���
e2

þ 1
h3

@

@x3
ð= � aÞ þ 1

h1h2

@

@x2

h1
h2h3

@

@x2
ðh3a3Þ � @

@x3
ðh2a2Þ

�� ��� �

� @

@x1

h2
h1h3

@

@x3
ðh1a1Þ � @

@x1
ðh3a3Þ

� �� ���
e3
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5. Lagrangian derivative:

ða �=Þa¼ 1
h1

a1
@a1
@x1

þa2
@a2
@x1

þa3
@a3
@x1

� �
�a2
h2

@

@x1
ðh2a2Þ� @

@x2
ðh1a1Þ

� ��

þa3
h3

@

@x3
ðh1a1Þ� @

@x1
ðh3a3Þ

� ��
e1þ 1

h2
a1

@a1
@x2

þa2
@a2
@x2

þa3
@a3
@x2

� ��

�a3
h3

@

@x2
ðh3a3Þ� @

@x3
ðh2a2Þ

� �
þa1
h1

@

@x1
ðh2a2Þ� @

@x2
ðh1a1Þ

� ��
e2

þ 1
h3

a1
@a1
@x3

þa2
@a2
@x3

þa3
@a3
@x3

� �
�a1
h1

@

@x3
ðh1a1Þ� @

@x1
ðh3a3Þ

� ��

þa2
h2

@

@x2
ðh3a3Þ� @

@x3
ðh2a2Þ

� ��
e3
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Appendix B

Tensors

In this appendix some of the basic properties of tensors are reviewed.
Although much of the material is general, the discussion is restricted to car-
tesian tensors, since curvilinear tensors are not used in this book.

NOTATION ANDDEFINITION

Notation

The following rules of notation will be followed throughout:

1. If a given index appears only once in each term of a tensor equa-
tion, it is a free index and the equation holds for all possible values
of that index.

2. If an index appears twice in any term, it is understood that a sum-
mation is to be made over all possible values of that index.

3. No index may appear more than twice in any term.

De¢nition

A tensor of rank r is a quantity having nr components in n-dimensional
space.The components of a tensor quantity expressed in two di¡erent coor-
dinate system are related as follows:
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T 0
ijk���m ¼ CisCjtCku � � �CmvTstu���v

where the quantities Cmn are the direction cosines between the axes of the
two coordinate systems.

A tensor of rank 2 is sometimes called a dyadic, a tensor of rank 1 is a
vector, and a tensor of rank 0 is a scalar.

TENSOR ALGEBRA

Addition

Two tensors of equal rank may be added to yield a third tensor of the same
rank as follow:

Cij���k ¼ Aij���k þ Bij���k

Multiplication

If tensor A has rank a and tensor B has rank b, the multiplication of these
two tensors yields a third one of rank c.

Cij���krs���t ¼ Aij���kBr���t

Contraction

If any two indices of a tensor of rank r � 2 are set equal, a tensor of rank r � 2
is obtained. For example, if Cij is de¢ned by

Cij ¼ AiBj

then by setting i ¼ j the tensor Cij, which is of rank 2, becomes a tensor of
rank 0 (i.e., a scalar).

Cii ¼ AiBi

Thus contraction is equivalent to taking the scalar product of two vectors in
vector algebra.

Symmetry

If the tensor A has the property that

Ai���j���k���l ¼ Ai���k���j���l

then the tensor A is said to be symmetric in the indices j and k. As a con-
sequence of the relation above, the tensor has only 1

2 nðnþ 1Þ independent
components.
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If the tensor A has the property that

Ai���j���k���l ¼ �Ai���k���j���l

then the tensor A is said to be antisymmetric in the indices j and k. Such ten-
sors have only 1

2 nðn� 1Þ independent components.

TENSOROPERATIONS

Gradient

The gradient of a tensor of rank r is de¢ned by

Tij���kl ¼ @Rij���k
@xt

and yields a tensor of rank ðr þ 1Þ
Divergence

The divergence of a tensor of rank r results in a tensor of rank ðr � 1Þ.

Ti���jl���m ¼ @Ri���jkl���m
@xk

Curl

If R is a tensor of rank r, the curl operation will produce an antisymmetric
tensor of rank ðr þ 1Þ. In general, the operation is de¢ned by

Ti���j���kl ¼ @Ri���j���k
@xl

� @Ri���l���k
@xj

In three dimensions, the curl of a tensor of rank1 (i.e., a vector) may be
written in the form

Ti ¼ �eijk
@Rj

@xk

where eijk is a constant pseudoscalar de¢ned by

e123 ¼ e312 ¼ e231 ¼ 1

e213 ¼ e321 ¼ e132 ¼ �1

eijk ¼ 0 otherwise
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ISOTROPIC TENSORS

De¢nition

An isotropic tensor is one whose components are invariant with respect to
all possible rotations of the coordinate system.That is, there are no preferred
directions, and the quantity represented by the tensor is a function of posi-
tion only and not of orientation.

IsotropicTensors of Rank 0

All tensors of rank 0 (i.e., scalars) are isotropic.

IsotropicTensors of Rank1

There are no isotropic tensors of rank 1. That is, vectors are not isotropic,
since there are preferred directions.

IsotropicTensors of Rank 2

The only isotropic tensors of rank 2 are of the form adij , where a is a scalar
and dij is theKronecker delta,which has the property that

dij ¼
0 when i 6¼ j

1 when i ¼ j

�

IsotropicTensors of Rank 3

The isotropic tensors of rank 3 are of the form aeijk , where a is a scalar and
eijk is a pseudoscalar de¢ned underTensor Operations.

IsotropicTensors of Rank 4

The most general isotropic tensor of rank 4 is of the form

adijdpq þ bðdipdjq þ diqdjpÞ þ gðdipdjp � diqdjpÞ

Where a; b, and g are scalars.

INTEGRALTHEOREMS

The following two theorems were given in vector form in Appendix A, and
they are reproduced here in tensor form.
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Gauss’ theorem (divergence theorem):

Z
s
aini dS ¼

Z
V

@ai
@xi

dV

Stokes’ theorem:

I
^aidli ¼

Z
A
�eijk

@aj
@xk

ni dA
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Appendix C

Governing Equations

This appendix gives the continuity, Navier-Stokes, and energy equations
together with the components of stress in the three most commonly used
coordinate systems: cartesian, cylindrical, and spherical coordinates. The
equations are valid for calorically perfect newtonian £uids inwhich r; m, and
k are all constants.

CARTESIAN COORDINATES

Coordinates r ¼ ðx; y; zÞ
Velocity u ¼ ðu; v;wÞ

@u
@x

þ @v

@y
þ @w

@z
¼ 0

r
@u
@t

þ u
@u
@x

þ v
@u
@y

þ w
@u
@z

� �
¼ � @p

@x
þ mH2uþ rfx

r
@v

@t
þ u

@v

@x
þ v

@v

@y
þ w

@v

@z

� �
¼ � @p

@y
þ mH2vþ rfy
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r
@w
@t

þu
@w
@x

þv
@w
@y

þw
@w
@z

� �
¼�@p

@z
þmH2wþrfz

rCv

@T
@t

þu
@T
@x

þv
@T
@y

þw
@T
@z

� �

¼kH2Tþ2m
@u
@x

� �2

þ @v

@y

� �2

þ @w
@z

� �2
" #

þm
@u
@y

þ@v

@x

� �2

þ @u
@z

þ@w
@x

� �2

þ @v

@z
þ@w
@y

� �2
" #

where

H2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2

txx ¼ 2m
@u
@x

txy ¼ tyx ¼ m
@u
@y

þ @v

@x

� �

tyy ¼ 2m
@v

@y
tyz ¼ tzy ¼ m

@v

@z
þ @w

@y

� �

tzz ¼ 2m
@w
@z

tzx ¼ txz ¼ m
@w
@x

þ @u
@z

� �

CYLINDRICAL COORDINATES

Coordinates r ¼ ðR; y; zÞ
Velocity u ¼ ðuR; uy; uzÞ

1
R

@

@R
ðRuRÞ þ 1

R
@uy
@y

þ @uz
@z

¼ 0

r
@uR
@t

þ uR
@uR
@R

þ uy
R
@uR
@y

� u2y
R

þ uz
@uR
@z

� �

¼ � @p
@R

þ m H2uR � uR
R2 �

2
R2

@uy
@y

� �
þ rfR
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r
@uy
@t

þ uR
@uy
@R

þ uy
R
@uy
@y

þ uRuy
R

þ uz
@uy
@z

� �

¼ � 1
R
@p
@y

þ m H2uy � uy
R2 þ

2
R2

@uR
@y

� �
þ rfy

r
@uz
@t

þ uR
@uz
@R

þ uy
R
@uz
@y

þ uz
@uz
@z

� �
¼ � @p

@z
þ mH2uz þ rfz

rCv

@T
@t

þ uR
@T
@R

þ uy
R
@T
@y

þ uz
@T
@z

� �

¼ kH2T þ 2m
@uR
@R

� �2

þ 1
R

@uy
@y

þ uR

� �� �2
þ @uz

@z

� �2
( )

þ m
@uy
@z

þ 1
R
@uz
@y

� �2

þ @uz
@R

þ @uR
@z

� �2

þ 1
R
@uR
@y

þ R
@

@R
uy
R


 �� �2( )

where

H2 ¼ 1
R

@

@R
R

@

@R

� �
þ 1
R2

@2

@y2
þ @2

@z2

tRR ¼ 2m
@uR
@R

tRy ¼ tyR ¼ m R
@

@R
uy
R


 �
þ 1
R
@uR
@y

� �

tyy ¼ 2m
1
R
@uy
@y

þ uR
R

� �
tyz ¼ tzy ¼ m

@uy
@z

þ 1
R
@uz
@y

� �

tzz ¼ 2m
@uz
@z

tzR ¼ tRz ¼ m
@uz
@R

þ @uR
@z

� �

SPHERICAL COORDINATES

Coordinates r ¼ ðr; y;oÞ
Velocity u ¼ ður ; uy; uoÞ

1
r2

@

@r
ðr2urÞ þ 1

r sin y
@

@y
ðuy sin yÞ þ 1

r sin y
@uo
@o

¼ 0
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r
@ur
@t

þ ur
@ur
@r

þ uy
r
@ur
@y

þ uo
r sin y

@ur
@o

� u2y þ u2o
r

� �

¼ � @p
@r

þ m H2ur � 2
r2
ur � 2

r2
@uy
@y

� 2
r2
uy cot y� 2

r2 sin y
@uo
@o

� �
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@t

þ ur
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@r

þ uy
r
@uy
@y

þ uo
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@o
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r

� u2o
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� �

¼ � 1
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@y
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@o
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þ uruo
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cot y
� �

¼ � 1
r sin y

@p
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þ m H2uo þ 2
r2 sin y

@ur
@o

�

þ 2 cos y
r2 sin2 y

@uy
@o

� uo
r2 sin2 y

�
þ rfo

rCv

@T
@t

þ ur
@T
@r

þ uy
r
@T
@y

þ uo
r sin y

@T
@o

� �

¼ kH2T þ 2m
@ur
@r

� �2

þ 1
r
@uy
@y

þ ur
r

� �2
"

þ 1
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þ uy

r
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� �2
#
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r
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þ r
@

@r
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 �� �2
þ 1
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þ r
@
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@

@y
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 �� �2)

where
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@

@r
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@

@r

� �
þ 1
r2 sin y

@

@y
sin y

@

@y

� �
þ 1
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trr ¼ 2m
@ur
@r

tyy ¼ 2m
1
r
@uy
@y

þ ur
r

� �

too ¼ 2m
1

r sin y
@uo
@o

þ ur
r
þ uy cot y

r

� �

try ¼ tyr ¼ m r
@

@r
uy
r


 �
þ 1

r
@ur
@y

� �

tyo ¼ toy ¼ m
sin y
r

@

@y
uo
sin y


 �
þ 1
r sin y

@uy
@o

� �

tor ¼ tro ¼ m r
@

@r
uo
r


 �
þ 1
r sin y

@ur
@o

� �
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Appendix D

ComplexVariables

This appendix summarizes some of the results of complex-variable theory
that are particularly useful in the study of £uid mechanics.

ANALYTIC FUNCTION

A function FðzÞ of the complex variable z ¼ x þ iy is said to be analytic if the
derivative dF=dz exists at a point z0 and in some neighborhood of z0 and if
the value of dF=dz is independent of the direction in which it is calculated.

SINGULAR POINTS

Asingular point of the function FðzÞis any point at which FðzÞis not analytic.
If FðzÞ is analytic in some neighborhood of the point z0, but not at z0 itself,
then z0 is called an isolated singular point of FðzÞ.

DERIVATIVEOFAN ANALYTIC FUNCTION

If FðzÞis analytic, then dF=dz will exist and may be calculated in any direc-
tion, so that

dF
dz

¼ @F
@x

¼ �i
@F
@y
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CAUCHY-RIEMANN EQUATIONS

If FðzÞ ¼ fðx; yÞ þ icðx; yÞ is an analytic function, the real part and the ima-
ginary part of FðzÞmust satisfy the Cauchy-Riemann equations.

@f
@x

¼ @c
@y

@f
@y

¼ � @c
@x

TheCauchy-Riemann equations are necessary, but not su⁄cient, conditions
for an analytic function. Eliminating ¢rst f, then c, from the Cauchy-Rie-
mannequations shows that bothf andc areharmonic functions; that is, they
must satisfy Laplace’s equation.

MULTIPLE-VALUED FUNCTIONS

Many functions are analytic but assume more than one value at any point
z ¼ Reiy on the complex plane as y increases bymultiples of 2p.This di⁄culty
is overcome by replacing the single complex plane,which is valid for all y, by
a series of Riemann sheets which are connected to each other along a
branch cut which runs (usually along the negative real axis) between two
branch points (frequently z ¼ 0 and z ¼ 1) which are singular points of the
function.

CAUCHY-GOURSAT THEOREM

If FðzÞ is analytic at all points inside and on a closed contour c, thenZ
c
FðzÞ dz ¼ 0

CAUCHY INTEGRAL FORMULA

If FðzÞis analytic at all points inside and on a closed contour c and if z0 is
any point inside c, then

dnF
dzn

ðz0Þ ¼ n!
2pi

Z
c

FðzÞ
ðz � z0Þnþ1 dz for n � 1

and

Fðz0Þ ¼ 1
2pi

Z
c

FðzÞ
ðz � z0Þ dz
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TAYLOR SERIES

If FðzÞis analytic at all points within a circle r < r0 whose center is at z0, then
FðzÞmay be represented by the following series:

FðzÞ ¼ Fðz0Þ þ ðz � z0Þ dFdz ðz0Þ þ
ðz � z0Þ2

2!
d2F
dz2

ðz0Þ þ � � �

where the radius of convergence r0 is the distance from the point z0 to the
nearest singularity.The general form of this series, as given above, is known
as theTaylor series, and the special case z0 ¼ 0 is knownasMaclaurin’s series.

LAURENT SERIES

If FðzÞ is analytic at all points within the annular region r0 < r < r1 whose
center is at z0, then FðzÞmay be represented by the following series:

FðzÞ ¼ � � � þ b2
ðz � z0Þ2

þ b1
z � z0

þ a0 þ a1ðz � z0Þ þ a2ðz � z0Þ2 þ � � �

where

an ¼ 1
2pi

Z
c

FðxÞ
ðx� z0Þnþ1 dx n ¼ 0; 1; 2; . . .

and

bn ¼ 1
2pi

Z
c0

FðxÞ
ðx� z0Þ�nþ1 dx n ¼ 0; 1; 2; . . .

Here the contour c corresponds to r ¼ r0 and the contour c0 corresponds to
r ¼ r1. The series is convergent for the smallest radius r0 and the largest
radius r1 such that there is no singularity in the region r0 < r < r1.The part of
the series that contains the bn coe⁄cients is known as the principal part.The
general form of the series is known as the Laurent series, and in the special
case in which r0 may be extended to zero (that is, there is no principal part),
the series becomes theTaylor series.

RESIDUES

The residue of a function at a point z0 is de¢ned as the coe⁄cient b1 in its
Laurent series about the point z0.That is, the residue at z0 is the coe⁄cient of
the 1=z term in the Laurent series of the function written about the point z0.
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RESIDUE THEOREM

If FðzÞ is analytic within and on a closed curve c, except for a ¢nite number of
singular points z1; z2; . . . ; zn; thenZ

c
FðzÞ dz ¼ 2piðR1 þ R2 þ � � � þ RnÞ

where R1 is the residue of FðzÞ at z1;R2 is the residue at z2, and Rn is the resi-
due at zn.

TYPES OF SINGULAR POINTS

In order to evaluate the residue of a function at some point, it is useful to
know the type of singularity which exists at that point.

BranchPoints

These are the singular points at the end of each branch cut of a multiple-
valued function.The residue theorem does not apply at branch points.

Essential Singular points

If the principal part of the Laurent series of the expansion of a function
about some point contains an in¢nite number of terms, that point is an
essential singular point.

Pole ofOrderm

If the principal part of the Laurent series of expansion of a function about
some point contains only terms up to ðz � z0Þm, that point is a pole of orderm.
That is, if Fðz0Þ is a pole of orderm, then ðz � z0ÞmFðz0Þwill be analytic.

Simple Pole

If the principal part of the Laurent series of the expansion of a function
about some point contains only a term proportional to z � z0, that point is
a simple pole. That is, if Fðz0Þ is a simple pole, then ðz � z0ÞFðz0Þ will be
analytic.

CALCULATIONOF RESIDUES

The following methods may be used to calculate the residue of a function
FðzÞ at a singular point z0:

1. Expand FðzÞ in a series about z0, and so obtain the coefficient
of the term 1=ðz � z0Þ. This fundamental method uses the defini-
tion of the residue and is valid for all types of singularities.
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2. If the point z0 is a pole of orderm, the residue may be calculated by
taking the following limit:

R ¼ lim
z!z0

1
ðm� 1Þ!

dm�1

dzm�1 ½ðz � z0ÞmFðzÞ�

3. If the point z0 is a simple pole, the residue may be calculated by
taking the follow limit:

R ¼ lim
z!z0

ðz � z0ÞFðzÞ

4. If FðzÞmay be put in the form FðzÞ ¼ pðzÞ=qðzÞwhere qðz0Þ ¼ 0but
dq=dzðz0Þ 6¼ 0, and where pðz0Þ 6¼ 0, the residue may be calculated
by taking the following limit:

R ¼ lim
z!z0

p
dq=dz

CONFORMALTRANSFORMATIONS

A conformal transformation is a mapping from the z plane to the z plane of
the form z ¼ f ðzÞ, where f is an analytic function of z. Conformal transfor-
mations preserve angles between small arcs except at points where
df =dz ¼ 0. Such points are called critical points of the transformation, and
smooth curves through such points in the z planemay give angular corners in
the z plane.

SCHWARZ-CHRISTOFFELTRANSFORMATION

Apart from the elementary functions, the Schwarz-Christo¡el transforma-
tion is one of the most common and useful forms of mapping. It maps the
interior of a closed polygon in the z plane onto the upper half of the z plane,
while the boundary of the polygon maps onto the real axis of the z plane.The
transformation is of the form

dz
dz

¼ Kðz� aÞa=p�1ðz� bÞb=p�1ðz� cÞg=p�1 � � �

Here the verticesA;B;C, etc., in the z plane subtend the interior angles a; b; g,
etc., as indicated in Fig.D.1, and a; b; c, etc., are the points on the real axis of
the zplane corresponding to the verticesA;B;C, etc.Since the polygon in the
z plane is closed, the angles a; b; g, etc., must satisfy the relation

aþ bþ gþ � � � ¼ ðn� 2Þp
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where n is the number of vertices in the polygon.The constant K determines
the scale of the polygon and its orientation,while the constant of integration
determines the location of the origin in the z plane. Of the constants a; b; c;
etc., any three may be chosen arbitrarily (typically ^1,0,1)and any remaining
ones will be determined by the shape of the polygon.

FIGURED.1 Coresponding regions in the original plane (z plane) and the mapping
plane (z plane) for the Schwarz-Christoffel transformation.
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Appendix E

Thermodynamics

Thermodynamics is a complete subject in itself. However, in the study of
£uidmechanics only a few fundamental relationships from thermodynamics
are needed, and these arise mainly in the study of compressible £ow. The
following summary contains all the results from thermodynamics that are
required in this book.

ZEROTH LAW

The zeroth law of thermodynamics states that there exists a variable of state,
the temperature T , and that two systems which are in thermal contact are in
equilibrium only if their temperatures are equal.

FIRST LAW

The¢rst lawof thermodynamics states that there exists a variable of state, the
internal energy e. If an amount of work dw is done on a thermodynamic sys-
tem and an amount of heat dq is added to it, the equilibrium states before and
after the process are related by

de ¼ dw þ dq
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That is, the change in the internal energy equals the work done on the system
plus the heat added to it during the process or event.

EQUATIONSOF STATE

There are two commonly used thermal equations of state, one being for ideal
gases and the other for real gases.

Thermally Perfect Gas

The equation of state for a thermally perfect gas is

p ¼ rRT

where R is the gas constant for that particular gas. Frequently this equation
is used to de¢ne a perfect gas. That is, gases that obey the above equation
of state are de¢ned as perfect gases.

Van der Waals Equation

An approximate equation of state for real gases is given by the van derWaals
equation,which is

p ¼ rRT
1

1� br
� ar
RT

� �

where
a
b
¼ 27

8RTc

and
a

b2
¼ 27pc

Here pc and Tc are, respectively, the critical pressure and temperature of
the gas.

ENTHALPY

The enthalpy h of a gas is de¢ned by the following equation:

h ¼ e þ p
r
¼ e þ pv

where v is the volume of the gas per unit mass.
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SPECIFIC HEATS

There are two speci¢c heats in common usage, that at constant volume and
that at constant pressure.

ConstantVolume

The speci¢c heat at constant volume Cv is de¢ned by

Cv � dq
dT

� �
v

¼ @e
@T

¼ @h
@T

þ @h
@p

� v

� �
@p
@T

� �
v

From the de¢ning identity, the other relations follow without approxima-
tion.

Constant pressure:

The speci¢c heat at constant pressure Cp is de¢ned by

Cp � dq
dT

� �
p
¼ @e

@T
þ @e

@v
þ p

� �
@v

@T

� �
p
¼ @h

@T

Perfect gas:

Using the above de¢nitions of the speci¢c heats and considering a per-
fect gas, it follows that

Cp � Cv ¼ R

Under these circumstances it can be shown that e and h are functions of the
temperatureTonly and may be expressed in the form

eðT Þ ¼
Z

CvdT þ constant

hðT Þ ¼
Z

CpdT þ constant

If Cv and Cp are constants, independent of T, the gas is called calorically per-
fect, and it follows that

e ¼ CvT þ constant

h ¼ CpT þ constant
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ADIABATIC, REVERSIBLE PROCESSES

The following relations are valid for adiabatic, reversible processes:

r
r0

¼ T
T0

� �1=ðg�1Þ

p
p0

¼ T
T0

� �g=ðg�1Þ
¼ r

r0

� �g

where g ¼ Cp=Cv and r0;T0; p0 are constants.

ENTROPY

There exists a variable of state, the entropy s. If heat is added to a system, the
change in entropy between the intial and ¢nal equilibrium states will be
given by

sB � sA ¼
Z B

A

dq
T

where the integral is evaluated for a reversible process.

SECOND LAW

The second law of thermodynamics states that for any spontaneous process
the entropy change is positive or zero.That is,

sB � sA �
Z B

A

dq
T

For a calorically perfect gas it follows that

s � s0 ¼ Cp log
T
T0

� R log
p
p0

¼ Cv log
T
T0

þ R log
r0
r
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CANONICAL EQUATIONSOF STATE

The heat-addition term in the ¢rst law may be eliminated in favor of the
entropy, yielding an equation which involves variables of state only. From
this the following identities may be established:

@e
@s

� �
v

¼ T
@e
@v

� �
s
¼ �p

@h
@s

� �
p
¼ T

@h
@p

� �
x
¼ v

RECIPROCITY RELATIONS

By considering s to be a function of p and T, the following reciprocity rela-
tions follow:

@s
@T

¼ 1
T

@h
@T

@s
@p

¼ 1
T

@h
@p

� v

� �

From these reciprocity relations the following equation is obtained which
relates the caloric and thermal equations of state:

@h
@p

¼ v� T
@v

@T

Similarly, by considering s to be a function of v and T, the following recipro-
city relations are obtained:

@s
@T

¼ 1
T

@e
@T

@s
@v

¼ 1
T

@e
@v

þ p
� �

From these, the relation between the caloric and thermal equations of state is
found to be

@e
@v

¼ �pþ T
@p
@T
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INDEX

Ackeret’s theory, 478^483
Airfoil
circular-arc, 126^131
£at plate, 118^121
in subsonic £ow, 476^478
in supersonic £ow, 478^483
Joukowski, 131^133
symmetrical Joukowski, 121^126

Aperture, £ow through,139^146
Apparent mass, 195^196

Beating, 245
Bernoulli constant, 61
Bernoulli equation, 59^61,71
Bessel’s equation, 234
Bessel’s function, 234^236
Blasius’ integral laws, 99^103
Blasius solution, 320^325
Body, blunt nosed,174^176
Boundary conditions, 37^38,70, 398

Boundary layer, 247, 313^359
equations, 316^320, 367^370
separation, 351^354
stability, 354^359
thickness, 315^316, 368

Boussinesq approximation, 364^365
Buoyancy, 363, 385

Camber, 126,131
Capillary waves, 212
Cauchy-Riemann equations,77, 511
Celerity, 210
Channel
convergent, 276^279, 332^334
divergent, 276^279
with 90� bend,157^158
with obstacle, 159
with source, 136^139
with step,159

Characteristics, 432
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Choking, 453
Chord,122^123
Circular-arc airfoil, 126^131
Circulation, 46^47
Complex potential, 77^78, 217^220,

225
Complex velocity,77^80, 108
Conduit
circular, 258^259
elliptic, 259, 283
triangular, 283^284

Constitutive equations, 27^30
Continuity equation,13
Continuum approximation, 4^6
Contraction coe⁄cient, 142
Control volume, 9
Convection
forced, 364
natural, 364
thermal, 365^367

Converging channel, 276^279, 332^334
Couette £ow, 254^257
general, 256
plane, 256

Crocco’s equation, 61^65
Cylinder
circular, 91^98,153^155, 306^309
force acting on,103^104
moment acting on,104^105
rotating, 259^262, 284

elliptic, 113^117
Cylindrical vessels, 232^236

D’Alembert’s paradox,184^188
Deep liquids, 208
Dispersion, 210
Displacement thickness, 315
Dissipation function, 34, 39
Diverging channel, 276^279
Doublet, 88^91,172^174
force due to, 191^192
in Stokes approximation, 291^293

Drag, form,188
Drag coe⁄cient for sphere, 306
Dynamic boundary condition, 203,

205, 211

Edge, £ow around, 87^88
Einstein summation convention, 8
Ellipse, 113^117
Elliptic conduit, 259, 283
Energy

conservation of, 18^22
equation, 22, 33^35, 396^398
internal, 19
kinetic, 19

Enthalpy, 37
stagnation, 454

Entropy, 62, 413, 427
Euler equations, 33, 69
Eulerian coordinates, 6^7
Euler’s theorem, 297
Expansion coe⁄cient, 366

Falkner-Skan solutions, 325^329
Fanno line, 453, 459
Flat plate

airfoil, 118^121
impulsively moved, 262^266
oscillating, 266^269
vertical, 133^136, 370^375

Flow net,77
Force

on circular cylinder, 103^104, 153,
154

produced by singularity, 153, 154
on vertical £at plate, 152

Form drag, 188
Fourier integral, 388

Gauss’ theorem, 496, 504
Grashof number, 375
Gravity waves (seeWaves)

Heat, line source of, 375^381
Heat, point source of, 381^385,

390^392
Helmholtz

theorems, 49, 56
instability, 241

Hiemenz £ow, 271^276
Hodograph plane, 141, 146
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Horizontal layer, 385^390
Hydrodynamics,70
equations of,70

Incompressible £uid, 14^15
In£uence coe⁄cients, 452
Interface
wave re£ection at, 439^442
wave refraction at, 439^442

Inviscid £uid, 33
Irrotational £ow, 48, 462^463
Irrotationality, 74
Isentropic £ow, 65
relations, 454^455

Isothermal surface, 370^375
Isotropy, 28

Janzen-Rayleigh expansion, 464^466
Joukowski airfoil, 131^133
symmetric, 121^126

Ka¤ rma¤ n-Pohlhausen approximation,
342^351

Kelvin’s theorem, 56^61
Kinematic boundary condition, 202,

205, 238
Kinetic energy, 192^195
Kutta condition,118^121
Kutta-Joukowski law, 104

Lagrangian coordinates, 6^7
Laplacian, 498
Legendre polynomials, 167^168
Legendre’s equation,167
Legendre’s function,167
Length scale
macroscopic, 6
microscopic, 6

Lift coe⁄cient, 121
Liquids
deep, 208, 213
shallow, 209, 213^217

Mach
number, 413, 417
wave, 422

Macroscopic length scale, 6
Magnetohydrodynamics, 36
Mass
conservation of, 12^15
apparent, 195^196

Matched asymptotic expansions, 310
Material derivative,7^8
Meyer relation, 415
Microscopic length scale, 6
Momentum
conservation of, 15^18
integral, 337, 339, 340^342
thickness, 316

Natural convection, 364
Navier-Stokes equations, 32^33
Newtonian £uid, 27, 30
Nonadiabatic £ows, 449^454
Nozzles, 455^457
Nusselt number, 375

Orr-Sommerfeld equation, 357
Oseen approximation, 309^310

Particle paths, 220^224, 225^227
Pathlines, 43^45
Perturbation theory, 466^468
Piston problem, 443^444
Pohlhausen, 342
Poiseuille £ow, 257^259
Porous wall, 279^282
Potential
complex,77^78, 217^220, 225
energy, 246
£ows,70^71

Prandtl Glauert rule, 476^478
Prandt-Meyer
fan, 484
£ow, 483^486
function, 486

Prandtl relation, 417
Pressure coe⁄cient, 468^470
Propagation speed
of internal wave, 400^404, 404^409
of surface waves, 206^210, 212, 241

Pulsating £ow, 269^271
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Rankine-Hugoniot equations,409^412
Rankine solids, 182^184
Rayleigh
instability, 241
line, 453, 460
number, 389
critical value, 390

Reciprocity relations, 426
Rectangular vessels, 228^232
Residue theorem, 513
Reynolds’ transport theorem, 9^12
Riemannn invariants, 432
Riemann sheets, 113
Rotating cylinder, 259^262
Rotational £ow, 48
Rotlet, 293^298
moment due to, 297^298

Schwarz-Christo¡el transformation,
133^136

Sector £ow, 85^87
Shallow liquids, 209, 213^217
Shock tube
¢nite-strength, 445^449
weak, 435^437

Shock wave, 409
attached, 426
detached, 426
normal, 410, 413^416, 416^419
oblique, 419^426
strong, 424
weak, 424

Similarity
solutions, 263, 371, 377, 383
variable, 264

Singular perturbation, 309
Singularity, 513
force produced by,153,154

Sink, 84
Small-perturbation theory, 466^468
Sound, speed of, 402^403
Source, 82^83, 108^109, 170^172
in channel, 136^139
line-distributed,177^179

Sources, in¢nite array of, 137

Sphere, 176^177
apparent mass of, 196
force acting on, 305
moving, 200
near a doublet, 198
rotating, 303^304, 311
uniform £ow past, 3^4^306

Stagnation enthalpy, 64
Stagnation point, 95^96,118^119
Stagnation-point £ow, 271^276, 332
Stall, 125,133, 351
Standing waves, 224^225, 225^227
Stokes’

approximation, 289^291
drag law, 305
equations, 291
¢rst problem, 262^266
paradox, 308
relation, 32
second problem, 266^269
stream function,163^165,196
theorem, 504

Stokeslet, 298^303
force due to, 303

Streaklines, 45^46
Stream

¢lament, 48
function,74^77,163^165
tube, 48

Streamlines, 41^43
Supersonic £ow

Ackeret’s theory for, 478^483
around a corner, 483^486
over a wave-shaped wall, 470^476

Surface tension, 210
waves caused by, 212^213
wave propagation due to, 210^213

Taylor instability, 242
Temperature, stagnation, 454
Tensor,

deformation rate, 26
isotropic, 503
rate-of-rotation, 26
rate-of-shearing, 26
shear stress, 506, 507, 509
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[Tensor]
stress, 27

Thermodynamics, 516^520
¢rst law of, 18, 516^517
second law of, 519
zeroth law of, 516

Thickness
boundary layer, 315
displacement, 315^316
momentum, 316

Transformation
conformal, 105^110
Joukowski, 110^113

Travelling waves, 206^210, 220^224

Uniform £ow, 80^82,168^170, 291
Uniform rectilinear £ow, 80

Velocity
complex,77^80,109^110
potential, 61,71, 162^163

Viscoelastic £uids, 27
Viscosity
bulk, 31
dynamic, 30
kinematic, 31
Newton’s law of, 30
second coe⁄cient of, 31

Volume, control, 9
Vortex, 82^85,109^110
¢lament, 49, 51
free, 85
line, 49^51, 286
tube, 49

Vorticity, 46^48
equation of, 65^66

Wall
re£ection of waves from, 437^439
wave-shaped, 470^476

Wave drag, 475, 481
Waves
at an interface, 236^242
capillary, 212
general, 202^204
in cylindrical vessels, 232^236
in rectangular vessels, 228^232
re£ected from an interface, 439^442
refracted from an interface, 439^442
shallow liquid, 213^217
small-amplitude plane, 204^206
standing, 224^225, 225^227
travelling, 217^220, 220^224
weak, in a gas, 430^434

Wedge, £ow over, 329^331
Whitehead’s paradox, 309
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