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This book grew out of a series of courses that I developed and taught over many years in
the areas of lasers, optoelectronics, and photonics. Although these courses have been
taught in the physics department, I have made a conscious effort to keep them accessible
to nonphysics majors, especially sophomores and juniors from engineering or the other
sciences. These students are typically looking for a survey course to introduce them to the
basic elements of photonics and lasers, often to fulfill a science “distribution require-
ment.” It has always been difficult to find an appropriate textbook for such a course be-
cause the existing books in these areas are aimed at either too high a level or too low a
level, or they cover only a portion of the topics that are needed. In teaching these classes,
I came to rely mostly on my lecture notes as the reading material for the course. This need
for a truly introductory level book, covering a wide range of topics in photonics and
lasers, was my motivation for writing this book.

In deciding what material to include, and how to present it, I have kept two distinct au-
diences in mind. One is the college undergraduate described above, and the other is the
working professional who wants to “come up to speed” in the photonics area by learning
the fundamentals in an accessible format. Both of these audiences, I believe, can benefit
from the level of treatment given here. The reader’s physics background is expected to in-
clude the usual freshman-level sequence of courses in mechanics, electricity and magnet-
ism, waves, and modern physics. Knowledge of differential and integral calculus is as-
sumed, including simple ordinary differential equations, but no knowledge of partial
differential equations is needed. Although I do present and discuss certain solutions of
Maxwell’s equations that are relevant for photonics (such as the Gaussian beam), I do not
derive these solutions here. Similarly, I discuss topics relating to quantum mechanics at
the de Broglie wave and “particle in a box” levels, without ever writing down the
Schrödinger equation. Readers with a more advanced physics background will better ap-
preciate some of the points that are made, but the bulk of the material should be under-
standable by those with only a modest physics background. 

My goal throughout has been to make sure that the mathematics does not get in the
way of the physical concepts. I’ve tried whenever possible to give physical arguments
that lead to an intuitive understanding, while including sufficient mathematical detail to
make that understanding quantitative as well. This is a tough balancing act, and necessar-
ily results in trading off rigor versus accessibility. I have deliberately avoided the tempta-
tion to be “comprehensive,” choosing instead to limit the discussion when appropriate to
certain limiting cases that are mathematically simple. This not only makes the discussion

xi
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easier to follow for the beginning student, but also brings out the fundamental concepts
more clearly. To further aid the student who is just learning to think symbolically, I have
written some equations in words as well as symbols.

The topical coverage in this book is somewhat unusual, in that it treats two subjects—
photonics and lasers—that are usually found in separate books. One reason they are in-
cluded together here is that there is a natural synergy between them. On the one hand, un-
derstanding the operating principle of certain lasers requires knowledge of photonics
concepts such as waveguiding, while on the other hand, understanding the principles of
optical communications (an important photonics system) requires some knowledge of
lasers. An additional benefit to treating them together is a consistency of notation, which
is very helpful to the beginning student. An annotated list of symbols is provided at the
end of the book.

Because of the combined coverage of photonics and lasers, it is probably unrealistic to
try to cover the entire book in a one-semester course. If a course emphasizes photonics, a
suggested list of chapters to cover would be 1–7, 10–15, and 24. Chapters 8 and 9 are ad-
ditional options, should time permit. A course emphasizing lasers might cover Chapters 2,
10–11, and 15–23, with Chapter 9 optional if time permits. Different combinations of
chapters or parts of chapters can certainly be used, depending on the emphasis of the par-
ticular course.

I would like to thank the many students who have taken my classes over the years, for
their questions and comments. You have been my inspiration, and your struggles with the
course material have helped me to sharpen my presentations, ultimately making this a bet-
ter book. Thanks are also due to the reviewers commissioned by Cambridge University
Press and Wiley who took the time to make helpful comments on the manuscript. And, fi-
nally, thanks to my wife Julie and daughters Claire and Grace, for putting up with the
many long hours that took me away from family life. This project could not have been
completed without your patience and understanding.

R. S. QUIMBY

Worcester Polytechnic Institute
Worcester, MA
August 2005
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1-1. PHOTONICS DEFINED

During the twentieth century, the electronics industry has revolutionized the way we work
and play. The vacuum tube made practical the transmission of information over long dis-
tances through radio and television. Vacuum tubes were also used in the first electrical
computers for the processing of information. From these first steps, the trend has been to-
ward smaller and faster electronic devices, first with transistors as discrete components,
essentially replacing vacuum tubes, and later with integrated circuits, in which thousands
and then millions of transistors were incorporated onto the same semiconductor chip. This
miniaturization has given rise to many of the conveniences that we have become accus-
tomed to today, including personal computers, cell phones, stereo music systems, televi-
sion, and camcorders, to name just a few.

Today, at the dawn of the twenty-first century, there is a similar revolution underway.
In this new revolution, it is not the electrons of the now mature electronics industry that
are being put to work, but rather the photons of the nascent photonics industry. The word
“photonics” will be taken, for the purpose of this book, to mean phenomena and applica-
tions in which light (consisting of photons) is used to transmit or process information, or
to physically modify materials. Perhaps the most important example to date is fiber optic
communications, in which light traveling down long lengths of ultraclear optical fibers
now carries the bulk of telephone traffic across and between the continents. These same
optical fibers serve as the backbone of high-speed data transmission networks, allowing
Internet users to access not only text and single-frame graphics, but also multimedia con-
tent.

Photonics, as defined above, also includes optical data storage, such as CDs and DVDs
for audio, video, or computer storage. These applications, although under continual devel-
opment, are becoming mature technologies. Less well developed are applications in opti-
cal switching and optical image processing, also considered within the realm of photon-
ics. Optical computing may be considered to be the final goal of photonics research, in
which information is processed and stored mostly optically. This could result in extreme-
ly fast and efficient computers, since light signals travel very fast and there is the possibil-
ity of efficient parallel processing. However, the practical realization of optical computers
remains today, as it has all along, a rather distant goal.

Optical sensors can be considered to be photonic devices, since they optically detect
and transmit information about some property such as temperature, pressure, strain, or the
concentration of a chemical species in the environment. Such devices have applications as
diverse as biosensors for the human body and strain sensors for bridges. Applications
such as laser surgery or laser machining are also considered photonic in nature, since they
rely on a stream of high-intensity photons.

Photonics and Lasers: An Introduction. By Richard S. Quimby 1
Copyright © 2006 John Wiley & Sons, Inc.
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1-2. FIBER OPTIC COMMUNICATIONS

Although fiber optic communications is just one aspect of the broader topic of photonics,
we will emphasize it in this book since it is a well-established and increasingly important
technology. The beginnings of optical communications can be traced to the inventor of
the telephone, Alexander Graham Bell. In 1880, Bell invented a device he termed the
photophone, which allowed information to be transmitted through air on a beam of modu-
lated sunlight. The modulated light was detected by the photoacoustic effect, in which a
sound wave is produced inside a closed gas cell when modulated light is absorbed inside
the cell. Although this was a clever device, it was much less practical than the telephone,
and was not developed further.

It was not until the 1960s that optical communications was considered seriously again,
this time motivated by two parallel developments. The laser had been developed at the be-
ginning of the decade, and this provided a light source that was powerful and highly di-
rectional, both valuable characteristics for sending a light signal over long distances.
Sending a laser beam through the air, however, has obvious limitations as a practical
communications source over long distances. What was needed was a way to guide light
over a controlled path for distances measured in miles rather than feet. It was proposed in
1966 by Kao and Hockham that glass, if sufficiently purified, could form such a light
guide by confining the light to the central region of an optical fiber through the principle
of total internal reflection (TIR). Although this theoretical paper suggested the possibility
of optical fiber communications, the attenuation of light in the glasses available at that
time was too great to make the scheme practical.

To quantify the degree of light attenuation in glass, we digress from the historical de-
velopment to define the decibel, or dB, which is commonly used to characterize attenua-
tion. If light of power Pin is incident on a length of fiber, and light of power Pout exits the
far end of that fiber, then the dB loss is defined as

dB loss = 10 log10 � � (1-1)

which can also be written in the form

= 10–(dB loss/10) (1-2)

From this definition, you can see that a factor of 10 drop in power corresponds to a 10
dB loss, a factor of 100 drop corresponds to a 20 dB loss, and so on. In an electrical cir-
cuit, power is proportional to the square of the voltage, so in electrical engineering the dB
loss is often defined in terms of a voltage ratio as

dB loss = 10 log10 � � = 20 log10� � (1-3)

The utility of the decibel concept becomes apparent when loss elements are cascaded.
Suppose there are two fiber lengths, as shown in Fig. 1-1, with losses of (dB loss)1 and
(dB loss)2 respectively. Light of power P1 enters the first fiber, and light of power P2 exits
this fiber. The light power P2 then enters the second fiber, and exits the second fiber with
power P3. The dB losses for the individual fiber sections are

Vin
�
Vout

V2
in

�
V2

out

Pout
�
Pin

Pin
�
Pout

2 Chapter 1 Overview
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(dB loss)1 = 10 log10 � �
(1-4)

(dB loss)2 = 10 log10 � �
The overall loss for the combination is

dB loss = 10 log10 � � = 10 log10 � · � (1-5)

or, using Eqs. 1-4 and the properties of logarithms,

dB loss = (dB loss)1 + (dB loss)2 (1-6)

The advantage of using decibels to describe attenuation is that we just need to add and
subtract when combining elements. In complex systems, this is more convenient than
multiplying and dividing by transmission factors such as P2/P1 and P3/P2. In a similar
way, optical power is often expressed logarithmically in terms of dBm, according to the
definition

optical power in dBm = 10 log10 � � (1-7)

This gives the optical power relative to 1 mW on a logarithmic scale, so that, for example,
an optical power of –20 dBm is 0.01 mW, whereas an optical power of +20 dBm is 100
mW. This is convenient because a loss measured in dB can then simply be subtracted
from the original optical power (measured in dBm) to obtain the new optical power.

Since the dB loss is additive for cascaded fiber lengths, the total attenuation in dB for a
fiber is proportional to the length of the fiber. This allows us to characterize the fiber loss
in units of dB/km, the attenuation per unit length. Typical loss coefficients for glass avail-
able in the 1960s were on the order of 103 dB/km, or 1 dB/m. For a practical fiber optic
communications system, it was estimated that the loss would have to be reduced to the or-
der of 10 dB/km. Using Eq. 1-2, you can gain an appreciation for the extreme transparen-
cy of such a fiber. This glass would be so clear that after light propagated through it for
1000 feet, approximately 50% of the optical power would still remain. The challenge in
obtaining such glass was to remove the impurities from the glass, which were largely re-
sponsible for the high attenuation.

A breakthrough occurred in 1970, when a team of researchers from Corning Inc. found
a way to dramatically decrease the fiber loss by depositing highly purified SiO2 vapor on

P
�
1 mW

P2
�
P3

P1
�
P2

P1
�
P3

P2
�
P3

P1
�
P2

1-2. Fiber Optic Communications 3

P1
P2 P3

Figure 1-1 The dB concept is useful for cascaded losses.
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the inside of a glass tube. After heating and drawing the tube into a fiber, this process
(now referred to as “inside vapor deposition”) resulted in losses below 20 dB/km. From
this point on, development of low-loss optical fibers was rapid, achieving 0.5 dB/km in
1976, 0.2 dB/km in 1979, and 0.16 dB/km in 1982. This loss was now approaching the
theoretical limit for silica fibers, for reasons that will be discussed in Chapter 5. The
transparency of these later-generation fibers was incredible—50% transmission through
10 miles of fiber. With such low-loss fibers available, optical fibers began to replace cop-
per wires for most long-haul telecommunications.

There are a number of advantages that led to the widespread replacement of copper
wires by fiber optic cables. Optical fibers can transmit data at a higher rate, over longer
distances, and in a smaller volume compared with copper wires. The fiber optic cable is
lightweight and flexible, and can carry information further before the signal needs to be
amplified. The natural resources needed to make fiber are not scarce—mostly silicon and
oxygen, which make up a large part of the sand found on beaches. A further advantage of
optical transmission is its insensitivity to electrical interference. Optical signals can main-
tain their high quality, even over the vast distances between the continents.

1-3. OVERVIEW OF TOPICS

Although the field of photonics is broader than fiber optic communications, the various
components of a fiber optic system provide a convenient framework for presenting the ba-
sic principles of photonics. The approach we will take in this book is to frame the discus-
sion around the elements of an optical communications system, recognizing that these
same components have a number of applications in the general area of photonics.

Figure 1-2 gives a schematic overview of the components of a fiber optic communica-
tions system. Source data, in the form of audio, video, or computer data, is converted into
a digital data stream, and this is used to modulate (see Chapter 9) the intensity of a light
source, typically a light-emitting diode (LED) (see Chapter 11) or a laser (see Chapters
15–23). This light is coupled into a fiber (see Chapter 12), and the light propagates (see

4 Chapter 1 Overview

modulator

source coupler

processor

detector

data data

electrical optical electrical

coupler

In middle, may need repeaters:

fiber

coupler detector source coupleramp

weak light in strong light out

Figure 1-2 Components of an optical communications system. 
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Chapters 3–6) along the fiber to the receiving location, where it is decoupled from the
fiber and converted into an electrical signal by a photodetector (see Chapter 13), typically
a photodiode (see Chapter 14). The electrical signal from the photodetector is then decod-
ed and converted back into a replica of the original source data.

During the propagation of light along the fiber, the signal strength decreases due to
scattering and absorption losses (see Chapter 5), and amplification is necessary. In early
fiber optic systems, this amplification was accomplished by converting the weak light sig-
nal into an electrical signal, amplifying the electrical signal with conventional electronic
amplifiers, and then regenerating a strong light signal from this amplified electrical sig-
nal. Devices that accomplish this task are called repeaters, and they were a major part of
the cost of early fiber optic systems. Since the mid 1990s, these repeaters have largely
been supplanted by optical amplifiers (see Chapters 19 and 24), in which the weak light
signal is directly amplified within a fiber by the process of stimulated emission. Optical
amplifiers allow light signals of different wavelengths to be amplified simultaneously
with high efficiency. The transmission of many distinct information channels down a sin-
gle fiber, each at a slightly different wavelength, is known as wavelength division multi-
plexing (WDM) (see Chapter 24). This technology has rapidly expanded the capacity of
fiber optic systems, allowing the transmission of bandwidth-hungry multimedia content
over the Internet. Future developements will likely include the practical implementation
of new types of optical waveguides, such as photonic crystals (see Chapter 8). In these
new materials, light is confined to a region of space by novel interference effects in a
nanostructured material. The possibilities seem endless, and it may be no exageration to
say that, just as the 20th century was the age of electronics, so the 21st century will be the
age of photonics.

1-3. Overview of Topics 5
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2-1. THE NATURE OF LIGHT

In this chapter, we will review those aspects of optics that are most relevant to the study
of photonics. It is natural to begin with the fundamental question, What is light? Histori-
cally, light has at times been considered to be in the form of particles, or corpuscles, a
point of view favored by Isaac Newton. The view of light as a wave was promoted in the
17th century by Christiaan Huygens, among others, and came to dominance after the ex-
periments of Thomas Young on light interference in the early 19th century. Our modern
view of light arose during the early part of the 20th century with the advent of quantum
mechanics. In this view, light must be considered to be both a particle and a wave, in the
same way that material particles such as electrons have both a particle and wave nature.
Generally, the classical, or wave nature of light is appropriate when light is propagating
from one point to another, whereas the quantum, or particle nature of light manifests itself
when light is absorbed or emitted by atoms. During absorption or emission, light acts like
a stream of particles or packets of energy called photons. Each photon contains energy
equal to

Ephoton = h� = (2-1)

where h = 6.63 × 10–34J · s is Planck’s constant, � and � are the frequency and wavelength
of the light wave, respectively, and c is the speed of light in a vacuum. In most situations
other than absorption and emission, light can be treated as a wave, consisting of oscillat-
ing electric and magnetic fields. The variation of these two fields in space and time is
governed by Maxwell’s equations, the treatment of which are outside the scope of this
book. We will, however, quote certain results from Maxwell’s equations from time to
time and use these results to explain various phenomena relevant to photonics. The inter-
ested reader is referred to the bibliography for more advanced treatments that show how
these results follow from Maxwell’s equations.

One simple solution to Maxwell’s equations in a uniform medium is that of a plane
wave, in which the electric field is constant everywhere along a plane (at a particular in-
stant in time), and varies sinusoidally in a direction perpendicular to that plane. For exam-
ple, if the electric field varies in the x direction, then

E = E0ei(kx–�t) (2-2)

where k � 2�/� is the wave vector magnitude or wavenumber, � � 2�� is the angular
frequency (measured in radians per second), and the quantity � = (kx – �t) is the phase of

hc
�
�

Photonics and Lasers: An Introduction. By Richard S. Quimby 7
Copyright © 2006 John Wiley & Sons, Inc.

Chapter 2

Review of Optics

c02.qxd  2/22/2006  2:49 PM  Page 7



the wave. Here and throughout the book, it will often be convenient to use the complex
exponential notation for waves and oscillations, with the understanding that the real part
of the expression corresponds to the physical oscillation. Using Euler’s identity ei� =
cos(�) + i sin(�), the wave in Eq. (2-2) is then equivalent to

E = E0 cos(kx – �t) = E0 cos �(t) (2-3)

The electric field amplitude E0 is a vector in the y–z plane. If E0 = E0 ŷ, the wave is
said to be polarized in the y direction, whereas if E0 = E0 ẑ, it is polarized in the z direc-
tion. Any other direction for E0 can be described by a linear combination of polarizations
in the y and z directions, so we say in general that there are two distinct polarizations for a
given plane wave. Figure 2-1 shows the variation of Ey with x and t for y-polarized light.
The value of Ey depends on the phase � of the wave at a particular x and t. When � = 0, Ey

is at a positive maximum, and when � = �/2, Ey = 0. A phase � = � gives a negative max-
imum in Ey, and � = 2� gives again a positive maximum. The wave is therefore periodic
in phase with period 2�. It is periodic in space with wavelength � and periodic in time
with period T.

The light wave contains not only an electric field, but also an oscillating magnetic
field. As indicated in Fig. 2-2, the magnetic field has the same dependence on time and
space as the electric field, but is perpendicular to both the electric field and the direction
of propagation. The relative orientation of E and B is always such that the cross product E
× B is in the direction of wave propagation. For an arbitrary wave direction, Eq. (2-2) can
be generalized to

E = E0ei(k·r–�t) (2-4)

In this case, the planes of constant phase are perpendicular to the wave vector k, which
specifies the direction of wave propagation. The wavelength is related to the wave vector
by k = |k| = 2�/�.

The wave in Eq. (2-2) is characterized by planes of constant phase at x = �t/k where
the amplitude is a maximum. As time advances, these planes of constant amplitude prop-
agate in the +x direction with a speed

vp = = �� (2-5)

which is referred to as the phase velocity of the wave. For electromagnetic waves in a vac-
uum, this phase velocity is vp = c, where c = 3 · 108 m/s is the speed of light. In a material

�
�
k
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Figure 2-1 Electric field oscillation in time and space.
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medium, the atoms interact with the light, and the phase velocity of the wave is changed
to

vp = = (2-6)

where n is the index of refraction and we have defined the free-space wavenumber k0 =
2�/�0 in terms of the free-space wavelength �0 = c/�. The effect of a higher refractive in-
dex is to slow the wave down and to decrease the wavelength to � = �0/n. Table 2-1 gives
the index of refraction for a few materials.

Phase and Group Velocity

Generally, the index of refraction is greater than 1, so the speed of light in a medium is
less than the speed of light in a vacuum. This is in accordance with special relativity,
which indicates that speeds greater than c are not allowed because causality would be vio-
lated. However, in certain cases it is possible to have n< 1, which implies vp > c. At first
glance, this would seem to be inconsistent with relativity, since we have something mov-
ing faster than the speed of light. The reason that this is not a problem is that the wave of
Eq. (2-2) conveys no information, since it is infinite in extent—it has no beginning and no
ending. In order to transmit information, you must modulate this wave, that is, turn it on
and off to create a pulse, as shown in Fig. 2-3. Such a pulse of light can be represented by
a linear superposition of infinite plane waves having some distribution of frequencies, in

�
�
nk0

c
�
n

2-1. The Nature of Light 9

Figure 2-2 Transverse electromagnetic wave.

Table 2-1 Refractive index of selected materials at the specified
wavelength. Variation with wavelength is given in Palik (1985).

Material Index � (�m)

air �1 all
water 1.33 0.65
fused silica (SiO2) 1.45 1
silicate glass �1.5 1
sapphire (Al2O3) 1.76 0.83
Al0.3Ga0.7As 3.4 0.88
Si 3.45 2
GaAs 3.6 0.88
InAs 3.5 4
Ge 4.0 4-10
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the manner of Fourier synthesis (see Appendix B). The speed with which the pulse propa-
gates is given by the group velocity:

vg = (2-7)

If the index of refraction is independent of frequency, the medium is said to be disper-
sionless, and the two velocities are the same since d�/dk = �/k. Generally, there is disper-
sion (index varies with frequency) and vg 	 vp. In this case, it is the group velocity that
determines how fast information can be transmitted. This applies not only to plane waves,
but also to waveguide modes in an optical fiber.

Energy in a Light Wave

A propagating electromagnetic wave carries energy in both its electric and magnetic field
components. The energy per unit volume stored in the electric field component is


 = 1–
2 �r�0E2 (energy density in E field) (2-8)

where �0 � 8.85 × 10–12 F/m is the permittivity of free space, a fundamental constant of
nature, and �r is the relative dielectric constant, related to the index of refraction by �r =
n2. For a plane wave, it turns out that the electric and magnetic components carry an equal
amount of energy, so the total energy density should be twice that of Eq. (2-8). However,
the fields oscillate in time as cos �t, and averaging cos2 �t over a complete cycle gives an
additional factor of 1–

2. As a result, Eq. (2-8) is valid as well for the total energy in a light
wave, with E the peak electric field.

It is useful to characterize the energy in a light beam not just by the energy density 
,
but also by the rate at which energy flows across a surface. The intensity I is defined as
the energy passing through a surface per unit time per unit surface area when the surface
is oriented perpendicular to the beam. I and 
 can be related by considering a beam with
intensity I and cross-sectional area A that propagates for time �t, filling a cylinder of
length L = (c/n)�t with light energy. The energy inside the cylinder can be computed from
either the intensity or energy density, as shown in Fig. 2-4, giving the desired relationship

I = 
 = cn�0E2 (2-9)
1
�
2

c
�
n

d�
�
dk
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Figure 2-3 The peak of the envelope function moves at the group velocity.
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2-2. LIGHT AT A BOUNDARY

The discussion so far has been for plane waves in an infinite, uniform medium. We con-
sider now what happens to plane waves at the boundary between two semiinfinite media
having different indices of refraction.

Snell’s Law

Figure 2-5 shows an incident plane wave propagating toward such a boundary from medi-
um 1, the side with index of refraction n1. At the boundary, some of the light energy is re-
flected back into medium 1. The remainder is transmitted into medium 2 (with index n2),
undergoing a change in direction known as refraction. The direction of each wave is spec-
ified by the angle between its k vector and the normal to the boundary (indicated by the
dotted line). The law of reflection states that the angle of reflection is equal to the angle of
incidence, just as for a mirror. The angle of refraction �2 is related to the angle of inci-
dence �1 by Snell’s law, which can be written as

n1 sin �1 = n2 sin �2 (2-10)

If the second medium has a higher index than the first (n2 > n1), Snell’s law says that
the angle of refraction is smaller than the angle of incidence (�2 < �1). In such a case (pic-

2-2. Light at a Boundary 11

Figure 2-4 Light energy inside cylinder can be calculated either from (energy density) × (volume) or
(intensity) × (area) × (time interval).

Figure 2-5 Refraction of light at the dielectric boundary.
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tured in Fig. 2-5), we say that the refracted beam is bent toward the normal. Similarly, if
n2 < n1, then �2 > �1 and the beam is bent away from the normal. Generally, materials that
are more dense have a greater index of refraction, so we can summarize this by saying
that in going from less dense to more dense materials, the refracted beam is bent toward
the normal, and vice versa.

The change in direction of the refracted beam can be understood intuitively by consid-
ering how the wave fronts (planes of constant phase) behave at the boundary. Fig. 2-6
shows the wave fronts of the plane wave as they pass through the boundary. All parts of
the wave front move at the same speed while in medium 1, but when part of the wave
front passes into medium 2 it moves with a slower speed (assuming, for example, that n2

> n1). Since the part of the wave front still in medium 1 is moving faster than the part now
in medium 2, the wave fronts must bend as shown, resulting in a change in the beam’s di-
rection once it is entirely in medium 2. If you pursue this argument quantitatively, you ar-
rive at Snell’s law.

Fresnel’s Equations

Snell’s law tells us the allowed directions for any reflected or refracted beams, but it does
not tell us what fraction of the incident beam is reflected and what fraction is transmitted.
This information is provided by Fresnel’s equations, which are derived by requiring that
the plane wave solutions on either side of the boundary satisfy certain boundary condi-
tions. For example, the component of electric field parallel to the interface must be con-
tinuous as we cross the boundary. Since this component will in general depend on the po-
larization of the light, there will be different Fresnel’s equations for the different
polarizations.

Figure 2-7 shows the notation commonly used to describe plane wave reflection and
refraction at a planar boundary. We define the plane of incidence as the plane formed by
the incident, reflected, and refracted rays (they must all be in the same plane for a uniform
boundary, due to symmetry). When the electric field of the incident wave is in the plane
of incidence, the light is said to be p polarized, or TM (transverse magnetic). The TM no-

12 Chapter 2 Review of Optics

Figure 2-6 Bending of wavefronts in refraction, shown for n2 > n1.
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tation refers to the fact that the magnetic field is perpendicular, or transverse, to the plane
of incidence. The electric field of p polarized light will be denoted as E||. Light with the
electric field perpendicular to the plane of incidence is said to be s polarized, or TE (trans-
verse electric). The electric field of s polarized light will be denoted as E�.

The Fresnel equations for the reflected and transmitted E fields in p polarization (TM)
can be written as

� �||
= (2-11a)

� �||
= (2-11b)

and for s polarization (TE) they are

� ��
= (2-12a)

� ��
= (2-12b)

To determine the fraction of incident light power reflected and transmitted by the
boundary, we use the fact that the energy carried by a light wave is proportional to the
square of its electric field amplitude. The power reflection and transmission coefficients R
and T can then be found from

R � �
I

I
r

i

� = ��
E

E
r

i

��
2

(2-13)

T � �
I

I
t

i

� = �
n
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2
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�

�
2
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���
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��
2

where the intensity I 
 nE2 from Eq. (2-9) has been used. Note that Et/Ei can be > 1, al-
though the fraction T of light power that is transmitted is always < 1. It can easily be veri-

2n1 cos �1
���
n1 cos �1 + n2 cos �2

Et
�
Ei

n1 cos �1 – n2 cos �2
���
n1 cos �1 + n2 cos �2

Er
�
Ei

2n1 cos �1
���
n1 cos �2 + n2 cos �1

Et
�
Ei

n1 cos �2 – n2 cos �1
���
n1 cos �2 + n2 cos �1

Er
�
Ei

2-2. Light at a Boundary 13

Figure 2-7 Polarization notations for Fresnel reflection. Dots and crosses denote fields out of or
into the page, respectively.
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fied from Eqs. (2-11), (2-12), and (2-13) that R + T = 1, which is consistent with conser-
vation of energy.

The Fresnel equations are simplified considerably in the case of normally incident
light, where �1 = �2 = 0. The fraction of light reflected then becomes

R = (2-14)

a result valid for both polarizations. Note that the reflectivity remains the same when n1

and n2 are interchanged, which means that at normal incidence the reflectivity is the same
from either side of the boundary.

Determine the fraction of light transmitted at normal incidence through a pane of win-
dow glass in air, assuming that the glass has an index of refraction of n = 1.5. 

Solution: The fraction of light transmitted through the first interface (going from air to
glass) is

T1 = 1 – R1 = 1 – = 0.96

In going through the second interface (glass to air), the transmission factor is the same,
T2 = 0.96. The total transmission through the combination is therefore T = T1 T2 =
0.922. The fractional reflection loss at each interface is 4% and the total reflection loss
is approximately twice that. This calculation ignores multiple reflections, which only
become important when the reflection coefficient is much higher.

Brewster’s Angle

Another special case in which the Fresnel’s equations are simplified is when the numerator
in Eq. (2-11a) goes to zero. Under these conditions, there will be no reflected beam and all
of the light energy is transmitted from medium 1 into medium 2. This will occur at a par-
ticular angle of incidence �1 known as Brewster’s angle, which can be found by setting

n1 cos �2 – n2 cos �1 = 0

To solve for the Brewster’s angle, we combine this with Snell’s law to obtain the two
equations

n1 cos �2 = n2 cos �1
(2-16)

n1 sin �1 = n2 sin �2

It is clear by inspection that these two equations will both be satisfied simultaneously
when �1 + �2 = 90°, since in that case cos �2 = sin(90 – �2) = sin �1, and similarly, cos �1 =
sin �2. From Snell’s law we then have

(1.5 – 1.0)2

��
(1.5 + 1.0)2

(n1 – n2)2

�
(n1 + n2)2

14 Chapter 2 Review of Optics
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sin �1 = sin �2 = cos �1

which yields the Brewster’s angle �B = �1:

tan �B = (2-17)

This Brewster’s angle was found for p polarized light [Eq. (2-11a)]. It is left as an exer-
cise for the reader to show that there is no Brewster’s angle for s polarized light.

There is a simple way to understand physically why there is no reflected light at the
Brewster’s angle. At an atomic level, the reflection of light from a solid surface can be
thought of as the radiation of light from electrons in the solid that are accelerated sinu-
soidally by the electric field of the light wave. Electrons that are accelerated in a particu-
lar direction radiate light preferentially in a direction perpendicular to the acceleration
vector, as shown in Fig. 2-8. There is no radiated light along the direction of the electron’s
acceleration. The emission pattern is similar to that from a half-wave dipole antenna, in
which the transmission (or reception) is most efficient perpendicular to the wire. Now
consider p polarized light incident on the interface from medium 1, as depicted in Fig.
2-9. Electrons in medium 2 are sinusoidally accelerated in the direction of the electric
field in medium 2, and radiate light with the angular distribution shown in Fig. 2-8. At
Brewster’s angle the transmitted and reflected beams would be at right angles and there
would be no light energy radiated into the reflected beam direction because this direction
is parallel to the electron’s acceleration. For s polarized light, on the other hand, the E
field is always perpendicular to the reflected beam direction and there is no Brewster’s
angle.

Fig. 2-10 shows the power reflection coefficients R as a function of angle of incidence
�1 for n2/n1 = 1.5, calculated using Eqs. (2-10), (2-11), (2-12), and (2-13). The two polar-
izations have the same reflectivity at normal incidence (�1 = 0), as discussed previously.
The p polarized reflectivity decreases with increasing angle of incidence, going to zero at
the Brewster’s angle, and then increases with a further increase in incident angle up to a
maximum of unity at �1 = 90°. The s polarized reflectivity, on the other hand, increases
monotonically with increasing �1 up to the same maximum of unity at �1 = 90°. In each
case, the fraction of incident light transmitted can be found from T = 1 – R.

Total Internal Reflection

When going from a less dense to a more dense medium, as in Fig. 2-10, there is a transmit-

n2
�
n1

n2
�
n1

n2
�
n1

Figure 2-8 The electric dipole radiation pattern is directed perpendicular to the electron’s accelera-
tion vector a.

2-2. Light at a Boundary 15
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ted beam for all angles of incidence �1. In going from a more dense to a less dense medium,
however, there is a restricted range of incident angles that allow a transmitted beam. To see
why, consider a beam with angle of incidence �1 in a medium with refractive index n1, pass-
ing into a medium with refractive index n2 < n1, as shown in Fig. 2-11a. Snell’s law (Eq. 2-
10) dictates that the beam gets bent away from the normal, �2 > �1. As �1 increases, the an-
gle of refraction �2 also increases until �2 = 90°. This occurs at an angle of incidence �1 =
�c, where �c is the critical angle. At the critical angle, Snell’s law becomes

n1 sin �c = n2 sin(90°)

or

16 Chapter 2 Review of Optics

Figure 2-9 At Brewster’s angle, there is no dipole radiation in the direction of the reflected beam
and, hence, no reflected light.

Figure 2-10 Variation of reflectivity with angle of incidence for a dielectric interface having n2/n1 =
1.5. Reflectivity goes to zero at Brewster’s angle for p polarization, but not for s polarization.
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sin �c = (2-18)

For angles of incidence greater than the critical angle (�1 > �c), the light is completely
reflected back into medium 1 and there is no transmitted beam. The interface acts like a
perfect, lossless mirror with angle of incidence equal to angle of reflection. This situation
(see Fig. 2-11c) is referred to as total internal reflection, and is the basis for long-distance
propagation of light down optical fibers. It is also used to make low-loss mirrors for di-
recting high-power laser beams (see Problem 2.9).

Although there is no propagating wave in medium 2 under conditions of total inter-
nal reflection, there is still an electric field (and magnetic field) which penetrates into

n2
�
n1

2-2. Light at a Boundary 17

Figure 2-11 Total internal reflection occurs when the incident angle �1 exceeds the critical angle �c.

Figure 2-12 An evanescent wave decays exponentially in the lower index medium n2 during total
internal reflection. The wave shown corresponds to grazing incidence �1 � 90° and n1/n2 = 1.5.
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the second medium. This field decays exponentially as a function of distance into medi-
um 2 and is referred to as an evanescent field. Figure 2-12 shows how the z dependence
of the E field changes from oscillatory in the higher index medium to exponentially de-
caying in the lower index medium. The variation of field with z in the second medium
is given by

E(z) = E0e–�z (2-19)

where

� = k0�n�1
2�si�n�2���1�–� n�2

2� (2-20)

and z is measured from the boundary. Using k0 = 2�/�0, we find from Eqs. (2-18), (2-19),
and (2-20) that the E field decays by a factor 1/e at a distance � = 1/� from the interface,
where

� = (2-21)

It can be seen that in general the evanescent field decays to a negligible value after a very
small distance from the interface, on the order of the wavelength. The exception to this is
for incident angles close to the critical angle. When �1 � �c, the penetration depth � can
become much greater than the wavelength. This result will prove to be useful in under-
standing certain properties of optical waveguides.

We have emphasized that under total internal reflection there is no steady-state propa-
gation of energy into the second medium. There is, however, some propagation of energy
within the second medium parallel to the interface. The path of energy flow for a ray of
light with finite lateral extent is indicated in Fig. 2-13. The apparent lateral displacement of
the beam along the interface is known as the Goos–Haenchen Shift, and is generally quite
small (less than a wavelength). The phase of the reflected wave is also shifted with respect
to that of the incident wave. Taking the time dependence of the incident wave to be

Eincident = E0ei�t

the time dependence of the reflected wave is

Ereflected = E0 ei(�t+�r) (2-22)

where �r is the phase shift upon reflection. For TE polarization, this phase shift is given by

tan = (2-23)

and for TM polarization it is

tan = � �
2

(2-24)

Note that the phase shift goes to zero at the critical angle, and goes to 180° as �1 � 90°.
These expressions will be useful in the analysis of modes in planar waveguides.

�si�n�2���1�–� (�n�2/�n�1)�2�
��

cos �1

n1
�
n2

�r
�
2

�si�n�2���1�–� (�n�2/�n�1)�2�
��

cos �1

�r
�
2

�0
���
2� n1�si�n�2���1�–� s�in�2���c�

18 Chapter 2 Review of Optics

c02.qxd  2/22/2006  2:49 PM  Page 18



2-3. LIGHT PASSING THROUGH APERTURES

The two phenomena of diffraction and interference are closely related, and can be under-
stood by considering how light behaves once it has passed through one or more apertures.

Diffraction

The preceding discussion of reflection and refraction has assumed plane waves of infinite
extent perpendicular to the direction of propagation k. In practice, a beam of light has a fi-
nite lateral width, and this causes the beam to spread out as it propagates, a process called
diffraction. As indicated in Fig. 2-14, a beam with initial diameter D will diverge into a
cone of half-angle

� ~ (2-25)

where � is the wavelength of light in the medium. The boundary of this cone is not sharp
but is defined so that most of the light energy is contained within the cone. If the beam in-
tensity at the beam waist (smallest-diameter region) falls off gradually away from the
beam axis, then the light distribution near the cone edge is also smooth, falling off monot-
onically to zero. If the intensity distribution at the beam waist is sharp, however, then the
the light intensity near the cone edge will be oscillatory, with dark and bright fringes ap-
pearing around a central bright spot. This would be the case for an infinite plane wave

�
�
D

2-3. Light Passing Through Apertures 19

Figure 2-14 Diffraction of light through an aperture of dimension D.

Figure 2-13 Lateral shift in position of reflected beam in total internal reflection.
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passing through a sharp circular aperture of diameter D. The exact version of Eq. (2-25)
for this situation is

� = 1.22 (2-26)

where now the cone edge is defined by the angle � at which the first dark ring appears in
the diffraction pattern (the factor of 1.22 comes from the zero of a Bessel function). The
appropriate numerical factor to be put in the proportionality of Eq. (2-25) depends on how
sharply the intensity falls off at the beam waist, and also on how the cone edge is defined.
Other common definitions for the cone edge are the angles at which the diffracted light
intensity falls to 1/2 or 1/e2 of the value at the center. The latter definition is used for laser
beams that have a Gaussian distribution (see Chapter 17), where it is found that

� = (Gaussian beam divergence) (2-27)

Here, w0 is the initial beam radius, defined by the 1/e2 intensity point.

Interference

The diffraction of light can be viewed as a special case of the general phenomenon of
light interference. To understand the essence of interference, consider an infinite plane
wave of wavelength � incident on a mask containing two small pinhole apertures, as
shown in Fig. 2-15. According to Huygen’s wavelet principle, the light field inside each
pinhole can be considered to be a new source of radiated light, emitting a spherical light

�
�
�w0

�
�
D
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Figure 2-15 Interference of light from two pinhole sources, S1 and S2. At point A, the waves from
the two sources are in phase, whereas at point B they are out of phase.
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wave centered about that pinhole. At some point A in space (or on a screen), the electric
fields of the light waves from the two sources S1 and S2 may arrive in phase, which means
that the electric fields are both a maximum at the same time. This will occur when the dis-
tance r2A differs from r1A by an integer number of wavelengths, r2A = r1A ± m�. We call
this constructive interference because the two component waves add together to give a
larger total electric field, resulting in a bright spot at point A.

At another point, B, the electric fields from the two sources may be 180° out of phase,
such that the positive maximum of one field arrives at the same time as the negative max-
imum of the other. This will occur when the two distances r2B and r1B differ by a half-odd
integer number of wavelengths, r2B = r1B ± (m + 1–

2)�. This is called destructive interfer-
ence and results in a dark spot at point B. Points at which the phase difference between the
two component waves is between 0 and 180° will have an intermediate intensity, propor-
tional to the square of the total electric field magnitude.

The concept of light interference just described can be generalized to include more
than two point sources. For example, the diffraction of a light beam (Fig. 2-14) can be un-
derstood by considering the beam waist to be composed of an infinite number of point
sources, each radiating a spherical wave of wavelength �. The cone angle of the diffracted
beam is determined by finding the angle � for which destructive interference occurs when
adding the contributions from all these point sources.

Another example is that of the diffraction grating, shown in Fig. 2-16, in which a beam
of light is diffracted by an array of parallel slits. We will assume here that the incident
light beam is collimated (has planar wave fronts), and that the diffraction pattern is ob-
served very far away from the grating. In that case, the two rays labeled 1 and 2 can be
considered to be approximately parallel, both before and after the grating. Defining the
angles of incidence (�i) and transmission (�t) as in Fig. 2-16, the extra distance that ray 2
has to go (the optical path difference) is d(sin �i + sin �t), where d is the slit spacing. For
these two rays to interfere constructively, giving a bright spot in the diffraction pattern,
this optical path difference must be an integer number of wavelengths. The condition for
diffraction maxima then becomes

d(sin �i + sin �t) = m� (2-28)

2-3. Light Passing Through Apertures 21

Figure 2-16 (a) Diffraction geometry for a thin transmission grating; incident and diffracted angles �i

and �t are related by the grating equation, Eq. (2-28). (b) Geometry for a reflection grating, where in-
cident and reflected beams are on same side. Eq. (2-28) still applies, with �t replaced by �r.
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where the integer m specifies the order of the diffraction peak. Note that for 0th order, �t =
– �i, which corresponds to the light passing straight through undeflected. For each value
of the incident angle �i between –90° and +90°, the transmitted beam can take on a finite
number of possible angles �t, corresponding to the various orders. Diffraction gratings are
often used in spectroscopy to separate out the different wavelength components of light,
because according to Eq. (2-28), the angle of diffraction depends on the wavelength.

The diffraction grating of Fig. 2-16 is a thin grating, since it is a two-dimensional
mask with negligible thickness in the third dimension. More generally, we can have a
thick grating that extends into the third dimension. Fig. 2-17 shows a cross-sectional view
of a thick grating, with a regular array of partially reflecting planes oriented perpendicular
to the page. As light propagates through this structure, some light is reflected as it en-
counters each plane, and the rest is transmitted to be incident on the next plane. After
passing through many such planes, most of the light has been reflected. In order for the
light reflected from the various planes to interfere constructively, giving rise to a bright
spot in the diffraction pattern, the optical path difference between any two rays must be an
integer number of wavelengths, just as for a thin grating. If we adopt the same definition
of incident and transmitted angles used for thin gratings, then Eq. (2-28) also applies to
thick gratings. The difference in the case of thick gratings is that the two angles �i and �t

must be equal, since this is a reflection process and the angles must obey the law of re-
flection. Putting �i = �t = � in Eq. (2-28) yields

2d sin � = m� (2-29)

where again m is an integer specifying the order of the diffraction.
Equation (2-29) is known as the Bragg condition, and was first developed by

Lawrence Bragg in 1912 to describe the diffraction of X-rays by the periodic arrays of
atoms in crystals. It also describes the diffraction of light by periodic planes in a solid
with different index of refraction, and has applications in a number of areas of photon-
ics. For example, a volume hologram is essentially a thick grating formed by two inter-
fering light waves, and can be used for high-density optical storage of data. Another ex-
ample is acoustooptic diffraction of light, in which a moving refractive index grating is
created by propagating a high-intensity sound wave through a solid. The pressure oscil-
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Figure 2-17 Diffraction geometry for a thick grating; incident and diffracted angles are the same,
and are given by the Bragg condition.
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lations of the sound wave modify the refractive index by changing the local density of
the material (recall that higher density leads to higher refractive index). Acoustooptic
diffraction can be used for light-beam deflection and for fast switching of a laser pulse
(see Chapter 9).

Another application of thick gratings that has become important for photonics applica-
tions is that of the fiber optic Bragg grating. It was found in 1978 that the refractive index
inside an optical fiber can be modified periodically to form a thick refractive index grat-
ing. These gratings can be highly reflecting for a particular wavelength, and highly trans-
mitting for other wavelengths. The high reflectivity and wavelength selectivity inherent in
Bragg gratings has made them essential elements in devices such as fiber lasers and mul-
tiplexers for WDM systems. The fiber Bragg grating is discussed in detail in Chapter 8.

2-4. IMAGING OPTICS

When lenses are used to form an image, the geometrical optics treatment is usually ade-
quate. Figure 2-18 shows how the location and size of an image can be determined by
tracing rays from a point on the object to a point on the image. Rays traveling parallel to
the optical axis before the lens pass through the focal point after the lens, and rays passing
through the focal point before the lens become parallel to the axis after the lens. Rays
passing through the lens center are undeflected. In the paraxial approximation, the rays
make small angles with the optical axis, and these three rays (and any others drawn from
the same point on the object) will converge to a common point after the lens, forming an
image.

The relationship between object and image distances and sizes can be obtained by us-
ing the geometry of the similar triangles containing angle � to write

tan � = = (2-30)

Note that the image will be larger when it is further from the lens, and vice versa. Anoth-
er useful relation is obtained by considering the similar triangles containing angle �:

tan � = = (2-31)

Combining this with Eq. (2-30) gives, after a few steps of algebra,

+ = (lens equation) (2-32)

This relation is called the lens equation, and is one of the most widely used equations
in geometrical optics. It is valid for any position of the image, according to the sign con-
vention that s1 is positive to the left of the lens, and s2 is positive to the right of the lens.
The focal length f is taken as positive for a converging lens (the kind drawn in Fig. 2-18),
and negative for a diverging lens.

Curved mirrors have focusing properties similar to those of lenses. Figure 2-19 shows
two rays incident on a concave mirror, one through the mirror’s center of curvature and
the other offset from the center but parallel to the optical axis. At the mirror’s surface, the

1
�
f

1
�
s2

1
�
s1

h2
�
s2 – f

h1
�
f

h2
�
s2

h1
�
s1
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angles � that the incident and reflected offset rays make with the normal to the surface are
equal by the law of reflection. The ray through the center is incident perpendicular to the
mirror surface, and is therefore reflected back along its original direction. These two rays
meet at the focal point, a distance f from the mirror surface. Using the geometry shown
for the small right triangle having one vertex at the center of curvature, we can write

= (R – f) cos � (2-33)

which in the paraxial approximation (� � 1) becomes

f � (mirror focal length) (2-34)
R
�
2

R
�
2
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Figure 2-19 Parallel rays incident on a mirror of radius of curvature R are reflected, converging at a
focal point a distance f � R/2 from the mirror.

Figure 2-18 Light rays from a point on an object are refracted by a lens of focal length f and con-
verge to a point on the image.
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Using this focal length for the mirror, the relation between object and image locations
and sizes can be found using Eqs. (2-30) and (2-32), just as for a lens. The difference is in
the sign convention, which for a mirror takes both s1 and s2 as positive for objects and im-
ages to the left of the mirror, and negative to the right. A positive f corresponds to a con-
cave mirror, as shown, whereas negative f corresponds to a convex mirror.

The sign conventions that we have mentioned for lenses and mirrors assume that the in-
cident beam is propagating from left to right. In some applications, however, the beam gets
turned around and propagates from right to left. In such cases, the meaning of phrases such
as “to the left of the mirror” should be generalized to “on the side from which the ray is in-
cident.” When the sign conventions are rephrased in this way, they apply to all situations.

PROBLEMS

2.1 (a) Show that there is no angular deflection of a beam passing through a dielectric
plate with parallel faces. (b) If the two faces are not perfectly parallel, so that one
face makes a small angle � with the other face, determine the resulting angular devi-
ation of a beam that is incident from air with an angle � (also assumed small) from
the normal to one of the faces. Write your result in terms of the angles � and �, and
the index of refraction n of the plate.

2.2 The wavelength dependence of the refractive index for silica glass can be expressed
as

n2(�) = 1 + 	
3

i=1

in the range 0.3 < � < 2.5, where � is the free-space wavelength in units of �m. The
constants are

(a1, a2, a3) = (0.50716, 0.59707, 0.69879)

and

(b1, b2, b3) = (0.04014, 0.11359, 8.81674)

(a) Determine the phase and group velocities for light traveling in silica glass for � =
1.30 �m. (b) Repeat for � = 500 nm.

2.3 A laser beam is incident on the side of a rectangular fish tank with angle �1 from the
normal to the glass surface. The beam enters the water and strikes the surface of the
water. For what range of angles �1 does the beam undergo total internal reflection at
the water–air interface?

2.4 A He–Ne laser beam has power 1 mW and beam diameter 1 mm. Determine the
electric field amplitude in the light wave, assuming that the light intensity is uniform
across the beam profile.

2.5 A light wave is incident from air on a thick glass slab of index 1.8, with angle of in-
cidence 30°. Determine the fraction of light reflected from and transmitted through
the air–glass interface, and verify that these two fractions add to unity. Assume s po-
larization.

ai�
2

�
�2 – bi

2
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2.6 Show that there is no Brewster’s angle for s polarization

2.7 Light passes through a glass slab with parallel faces. Show that if light is incident at
Brewster’s angle on the first (air–glass) interface, then there will also be no reflec-
tion at the second (glass–air) interface.

2.8 Light is incident on a glass–air interface from the glass side, and researchers want to
use the evanescent field on the air side to excite molecules adhered to the surface. It
is desired that the evanescent field extend a distance � = 20 �m into the air side
when using light of free-space wavelength 1 �m. (a) How close to the critical angle
must the incident beam be? (Give the difference �� = �1 – �c.) (b) Considering that
a beam of finite width contains rays with a spread of angles due to diffraction, how
wide must the beam be so that the angular spread is just equal to the difference in
angle found in part a?

2.9 A laser beam is incident perpendicular to the surface of one of the short faces of a
45–45–90 prism. If the refractive index of the glass is 1.5, show that the light under-
goes total internal reflection when it strikes the long face of the prism. This type of
reflector is often used to redirect high-power laser beams, because little heat is de-
posited in the device.

2.10 Collimated laser light of wavelength 632.8 nm is incident on a mm-scale ruler at
grazing incidence (light nearly parallel to ruler axis). The light is diffracted off the
mm-spaced lines and strikes a screen 2 m away. Determine the angular deflection �
of the beam (with respect to the original beam direction) for each diffraction order,
in terms of the angle � between the original beam direction and the ruler axis.
Sketch the pattern of diffracted spots seen on the screen, for � = 1°, identifying the
diffraction order of each spot and the corresponding vertical position on the screen.
If the wavelength of the incident light were unknown, one could use this method to
“measure the wavelength of light with a ruler.”

2.11 A transmission diffraction grating with grating spacing d = 3 �m is originally ori-
ented perpendicular to a collimated beam of wavelength 0.5 �m. (a) Determine the
angular position of the first two diffracted orders. (b) The grating is now tilted by an
angle of 40° about an axis parallel to the grating grooves. Determine the angular de-
flection with respect to the original beam direction for the same diffracted orders
considered in the previous part. Is there still symmetry in the diffraction pattern for
positive and negative orders?

2.12 A compact disk can be used to diffract light, because the spirals of data are evenly
spaced and act like a diffraction grating of groove spacing d � 1.5 �m. A CD is ori-
ented at 45° to the direction of an incident He–Ne laser beam (� = 632.8 nm), and
diffracted spots reflected from the CD are observed on a screen parallel to and 30
cm distant from the incident beam. Determine the position of the spots on the screen
for all observable diffraction orders.

2.13 Derive Eq. (2-32) using Eqs. (2-30) and (2-31).

2.14 An LED (light-emitting diode) has an emitting surface of diameter 0.5 mm. Light
power of 1.5 mW is collected by a lens with focal length 25 mm and diameter 10
mm, placed 80 mm from the LED. Determine the position, the diameter, and the
light intensity for the image of the LED.
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2.15 Light from a light bulb with filament height 2 mm is coupled into an optical fiber of
core diameter 50 �m, using a lens of focal length f. If the bulb is 20 cm from the end
of the fiber, determine the value of f and the required location of the lens so that the
image of the filament just fits inside the fiber core. If the lens diameter is at most
equal to the focal length, what does this say about the efficiency with which light
from a filament can be coupled into a fiber?

2.16 For the mirror in Fig. 2-19, rays only converge at the focus when � � 1 (in radians).
If the incident beam diameter is D, determine the value of D/R for which the focal
point becomes spread out along the optical axis by 0.05 f.

Problems 27
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This chapter treates the propagation of light between parallel planes having different in-
dices of refraction. We start with the planar geometry because it is easier to treat mathe-
matically than the cylindrical geometry of optical fibers. This material has direct applica-
tion to integrated optic and semiconductor devices, and will also allow us to develop an
intuitive feeling for optical modes and dispersion that can be carried over into the later
chapters on optical fibers.

3-1. WAVEGUIDE MODES

Consider the planar dielectric waveguide shown in Fig. 3-1, with medium 1 of refractive
index n1 sandwiched between two semiinfinite media with index of refraction n2. If n2 <
n1, a ray of light propagating in medium 1 will undergo total internal reflection at the up-
per boundary, provided that the angle of incidence �1 on the boundary is greater than the
critical angle �c = sin–1(n2/n1). The angle with the boundary is preserved upon reflection,
so the ray will then strike the lower boundary at the same angle of incidence, assuming
parallel surfaces. A ray with a well-defined initial direction will continue to propagate
down the waveguide in this zigzag path without loss from the reflections. It is this perfect
reflection of light energy by the waveguide boundaries that allows light to propagate such
great distances down optical fibers.

The view of light as a narrow ray with a well-defined direction is called the geometric
or ray optics picture, and is valid when the wavelength is much smaller than the width of
the ray. In this limit, there is no restriction on the beam direction in the waveguide (other
than �c < �1 < 90°), and the concept of a waveguide mode does not apply. However, when
the wavelength is larger, we must use the wave optics picture of light, according to which
an initially collimated beam of diameter D will eventually spread out due to diffraction
(see Chapter 2). Because of this diffraction, any light beam of finite width inside a wave-
guide that starts out at a particular angle �1 will spread out into other angles, and the an-
gular distribution will change as the light propagates down the waveguide. What we
would like to find is a pattern of light distribution that remains constant along the wave-
guide. Such a pattern is referred to as a mode.

It is important to understand the concept of a mode, because we will refer to modes a
lot in this book. An intuitive view of a mode can be obtained by picturing two people
holding a rope that is stretched between them. If one person shakes the rope in just the
right way, a stable pattern of oscillations will be seen, and this corresponds to a vibra-
tional mode of the rope. If the rope is shaken the “wrong” way, then it still vibrates, but
there is no stable pattern. The essential feature of a mode is that there is a pattern that is
stable in time.

Photonics and Lasers: An Introduction. By Richard S. Quimby 29
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To find a mode for the waveguide, we recall from Chapter 2 that a wider beam suffers
less diffraction than a narrower beam. A plane wave that is infinitely wide would not dif-
fract at all, so this is a candidate for our mode. However, being infinitely wide, it would
undergo repeated reflections from the top and bottom waveguide boundaries, so that at a
particular point inside the waveguide there would be plane waves moving both up and
down with the same angle �1. If we let the vectors k1 = kx î + kz k̂ and k2 = – kx î + kz k̂ be
the propagation vectors for these two waves, the total electric field inside the waveguide
can be written as

Emode = E0ei(�t–k1·r) + E0ei(�t–k2·r)

(3-1)
Emode = E0ei(�t–kxx–kzz) + E0ei(�t+kxx–kzz)

Emode = E0ei(�t–kzz)[eikxx + e–ikxx]
(3-2)

Emode = 2E0 cos(kxx)ei(�t–kzz)

According to Eq. (3-2), the distribution of electric field in the x direction is given by
cos(kxx) and does not vary with time. There is also a sinusoidal variation of field in the z
direction, but the z dependence changes with time, in the manner of a traveling wave. This
combination of a traveling wave along the waveguide with a stationary wave in the per-
pendicular direction is the characteristic feature of a waveguide mode. More generally,
we could write

Emode = E0 g(x, y)ei(�t–�z) (3-3)

where the transverse distribution g(x, y) is a function that must be consistent with
Maxwell’s equations and the boundary conditions at the waveguide boundaries, and � is
the propagation constant for the waveguide mode. Determining g(x, y) and � is easy for a
planar waveguide because a simple sum of two plane waves gives a solution of the correct
form, as in Eq. (3-2). For two-dimensional waveguides such as optical fibers, waveguide
modes still have the form of Eq. (3-3), but with a more complicated function g(x, y).

The field in Eq. (3-2) will represent a true mode of the waveguide only when it satis-
fies the appropriate boundary conditions. Each plane wave component of the mode can be
thought of as undergoing multiple reflections from the top and bottom boundaries as it

30 Chapter 3 Planar Waveguides

Figure 3-1 A single ray propagating down a planar waveguide. Superposition of two such rays with
opposite kx constitutes a waveguide mode.
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propagates down the waveguide. In order for the waves to reinforce each other after many
reflections, the total round-trip phase change for propagation in the transverse (x) direc-
tion must be an integer multiple of 2�. For a waveguide of thickness d, the total round-
trip distance in the x direction is 2d, resulting in a phase shift of –kx(2d). If the phase shift
upon reflection is �r, there is an additional contribution of 2�r to the total round-trip
phase shift. The condition for self-reinforcing fields then becomes

–kx(2d) + 2�r = ±m2� (3-4)

where the integers m = 0, 1, 2, 3 . . . label the different modes allowed in the waveguide.
Equation (3-4) specifies the allowed values of kx for the waveguide modes. Each value

of kx in turn corresponds to a different propagation angle � given by kx = k1 cos � (see Fig.
3-1), where k1 is the propagation constant of one of the plane wave components in medi-
um 1. This can be written in terms of wavelength as

kx = cos � = cos � (3-5)

where � and �0 are the wavelengths in the medium and free space, respectively. Combin-
ing Eqs. (3-4) and (3-5) gives

cos �m = (3-6)

where �m is angle � for mode number m. What we have found is that not all angles of light
propagation are possible in a waveguide. Instead, only those discrete angles �m that satis-
fy Eq. (3-6) will propagate in a way that is self-reinforcing.

In addition to the restriction on mode angles �m given in Eq. (3-6), there is also the
condition that total internal reflection be satisfied, �m > �c, where sin �c = n2/n1 (see Chap-
ter 2). As the mode number m increases from zero, the mode angle given by Eq. (3-6) de-
creases from 90°, eventually becoming less than the critical angle �c. There will therefore
be a maximum mode number, which we designate as p, such that �p = �c. The range of
possible mode numbers is then the finite set m = 0, 1, 2, 3, . . . p, with the angle for the pth
mode given by

cos �p = �1� –�si�n�2���c� = �1� –� ����
2�

When combined with Eq. (3-6), this becomes

�n�1
2�–� n�2

2� = p� + �r (3-7)

which gives the maximum mode number p for a waveguide of given thickness and refrac-
tive index.

It is convenient to define

Vp � �n�1
2�–� n�2

2� (3-8)
2�d
�

�0

2�d
�

�0

n2
�
n1

(±m� + �r)�0
��

2�n1d

2�n1
�

�0

2�
�
�
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where Vp is a dimensionless parameter sometimes referred to as the normalized film thick-
ness. Using this definition, the maximum number of modes in a planar waveguide is p +
1, where

p = int� – � (3-9)

The integer function int(x) truncates x to the integer value below it; for example, int(5.27)
= 5.

The phase shift �r varies between 0 and � radians, depending on the waveguide angle
�. For the pth mode, the waveguide angle is near the critical angle, which results in �r = 0
according to Eqs. (2-23) and (2-24). The number of waveguide modes can then be written
simply as

number of modes = p + 1 = int� � + 1 (3-10)

In the case of a thick waveguide where Vp � 1, the number of modes is well approxi-
mated by Vp/�. For each of these modes, there are two possible polarizations, as shown in
Fig. 3-2. For TM polarization the E field is in the plane formed by the zigzagging ray,
whereas for TE polarization the E field is perpendicular to this plane. If the different po-
larizations are considered to be different modes, then the total number of modes in the
planar waveguide is � 2Vp/�. The allowed values of kx for the thick waveguide modes
can be approximated by

kx 	 (3-11)

where Eq. (3-4) has been used with the approximation m� � �r. This approximation is
most valid for the higher-order modes, where m is large.

Assuming light of free-space wavelength 1 	m, determine the number of modes (a) in
a microscope slide of thickness 1 mm, immersed in water, and (b) in a soap film in air
of thickness 2 	m. Take the refractive index of glass as 1.5 and that of water as 1.33.

m�
�

d

Vp
�
�

�r
�
�

Vp
�
�
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Figure 3-2 Polarization definitions for a planar waveguide.

EXAMPLE 3-1
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Solution: (a) The normalized film thickness is

Vp = �(1�.5�)2� –� (�1�.3�3�)2�

Vp = 4.7 × 103

The number of waveguide modes is then � 4700/� � 1500, not including different
polarizations. When including different polarizations, there are about 3000 modes.

(b) The soap film is mostly water, with refractive index 1.33, so

Vp = �(1�.3�3�)2� –� 1�2�

Vp = 11

The number of waveguide modes is then int(11/�) + 1 	 int(3.5) + 1 = 4, not including
different polarizations. When including different polarizations, there are eight modes.

Effective Index

There are a number of parameters that can be used to specify a particular waveguide
mode. For example, there are the transverse wave vector kx and the waveguide angle �,
which are related by Eq. (3-5). There is also the longitudinal wave vector component kz,
which is similarly related to � by

kz = k1 sin � = sin � (3-12)

where k1 = 2�/� is the propagation constant in medium 1 for one of the plane wave com-
ponents of the mode. The wavevector components satisfy kx

2 + kz
2 = k1

2, as can be verified
from Eqs. (3-5) and (3-12). Any one of the three parameters kx, kz, or � can be used to spec-
ify the mode, with the other two parameters then determined by Eqs. (3-5) and (3-12).

A fourth parameter that is often used to specify the mode is the effective index of re-
fraction, defined by

kz � (3-13)

This is similar to the relation k = (2�n)/�0 for a single plane wave propagating through a
medium with index of refraction n, except that the plane wave propagation constant k has
been replaced by the waveguide mode propagation constant kz. According to Eq. (3-2),
the guided wave propagates at the phase velocity given by �t – kz z = constant, or

vp = = = (3-14)
c

�
neff

2�c
�
�0kz

�
�
kz

2�neff
�

�0

2�n1
�

�0

2�(2 × 10–6)
��

1 × 10–6

2�(1 × 10–3)
��

1 × 10–6
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The effective index thus governs the phase velocity of waveguide modes in the same
way that the ordinary index does for plane waves (see Eq. 2-6). Equations (3-13) and (3-
14) can be applied quite generally to waveguides in either planar or circular geometry.
The propagation constant kz is commonly denoted as � in optical fibers, and referred to as
the axial wave vector

Mode Velocities

For a planar waveguide, the effective index of refraction can be written as

neff = n1 sin � (3-15)

using Eqs. (3-12) and (3-13). The phase velocity of the waveguide mode can then be writ-
ten using Eqs. (3-14) and (3-15) as

vp = = (3-16)

where v1 = c/n1 is the phase velocity of a plane wave in medium 1. Since sin �c < sin � < 1
for a guided mode, then, using sin �c = n2/n1, we have

n2 < neff < n1 (3-17)

and

v2 > vp > v1 (3-18)

This says that the phase velocity of the waveguide mode (which is confined to medium
1) is greater than the speed of a plane wave in medium 1. At first glance, this does not
seem to make sense, since one would expect light propagating in a waveguide mode at an
angle � to move more slowly down the waveguide than light moving in a straight line as a
plane wave.

The resolution of this apparent paradox can be found in the distinction between phase
and group velocities, as discussed in Chapter 2. Information is sent down the waveguide
in the form of pulses, which move at the group velocity given by

vg = (3-19)

where we have defined � � kz. The functional relationship between � and � can be found
from Fig. 3-3, which shows the wave vector k1 for one of the plane wave components of
the waveguide mode. The x and z components of k1 satisfy

(n1k0)2 = kx
2 + �2 (3-20)

where we have used k1 = n1k0 = n12�/�0. For high-order modes in which Eq. (3-11) ap-
plies, this can be written as

� �
2

�2 = � �
2

+ �2 (3-21)
m�
�

d

n1
�
c

d�
�
d�

v1
�
sin �

c
�
n1 sin �

34 Chapter 3 Planar Waveguides

c03.qxd  2/14/2006  7:03 AM  Page 34



where � = ck0 has been used (see Eq. 2-6). Taking the derivative with respect to � on both
sides of Eq. 3-21 yields

2� = � �
2

2�

Combining this with Eqs. (3-14) and (3-19) gives

vgvp = v1
2 (3-22)

This is the desired relation between the group and phase velocities for a waveguide
mode. We see that if the phase velocity is greater than v1, then the group velocity is less
than v1 by the same factor. Using Eq. (3-16) for the phase velocity, the group velocity be-
comes

vg = v1 sin � (3-23)

so that vg < v1, as expected. In fact, referring to Fig. 3-3, we see that vg can be interpreted
as the component of the plane wave’s velocity vector along the z axis. This is physically
satisfying, since we would expect energy in a mode to be transmitted down the waveguide
at the speed with which the individual plane waves making up the mode travel down the
waveguide. Although our analysis has assumed a high-order mode, the same result ap-
plies more generally.

Our conclusion from the previous discussion is that the group velocity is the relevant pa-
rameter for determining how fast information propagates down the waveguide. However,
we are still left with the question: What is the physical interpretation of the phase velocity?
Consider Fig. 3-4, which shows two wave fronts (1 and 2) propagating down the +z axis to
form a waveguide mode. Plane wave 1 is propagating up and to the right, and plane wave 2
is propagating down and to the right. The lines of constant phase for each wave are shown
by solid lines at t = 0 and by dotted lines at t > 0. As wave fronts 1 and 2 move to positions
1
 and 2
, the point at which the waves intersect moves to the right as shown. This inter-
section point will be a point of constant phase for the combined waves, since it is a point of
constant phase for each of the constituent waves 1 and 2. It is clear from the geometry that
the intersection point can move down the waveguide faster than the speed of either wave in-
dividually. The speed with which points of constant phase propagate is by definition the

c
�
n1

d�
�
d�
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Figure 3-3 The wave vector for the ray of magnitude n1k0 can be broken down into its longitudinal
and transverse components, � and kx.
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phase velocity, so we identify the phase velocity here with the speed of this intersection
point. With this picture in mind, it is clear that information or energy does not propagate at
the phase velocity, and there is no difficulty having vp > v1.

3-2. MODE CHART

A waveguide mode can be specified by any one of the parameters neff, �, kx, or kz = �. For
a waveguide of given thickness d, an approximate expression for the allowed mode angles
�m can be obtained from Eq. (3-6):

cos �m 	 (3-24)

where it has been assumed that m� � �r. This expression can be combined with Eqs. (3-
15), (3-5), and (3-12) to obtain expressions for the allowed neff, kx, and kz values, valid for
high-order modes. To obtain a result valid for all modes, we must incorporate the proper
expression for �r into Eq. 3-6. Solving Eq. (3-6) for �r and substituting into Eq. (2-23),
we have for TE polarization

tan 
 – m � = (3-25)

A similar expression can be obtained for TM polarization using Eq. (2-24). The results for
TE and TM polarizations will be nearly the same if n1 � n2.

For a fixed value of d, Eq. (3-25) is a transcendental equation for the mode variable cos
�, and can be solved graphically. Figure 3-5 shows the left-hand side (LHS) and right-
hand side (RHS) of Eq. (3-25) plotted as a function of cos �. The LHS has multiple curves
corresponding to different m, spaced evenly along the cos � axis by �0/(2n1d). The RHS
goes to infinity as cos � goes to 0, and goes to zero at the critical angle �c. The intersec-
tions of the LHS and RHS give the solutions to Eq. (3-25) and correspond to the allowed
waveguide modes. The modes are finite in number and approximately spaced by
�0/(2n1d), in accordance with Eq. (3-24).

�1� –� ���
n

n�2

1

���2�–� c�o�s2� ��
���

cos �

�
�
2

�n1d cos �
��

�0

m�0
�
2 n1d
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Figure 3-4 The motion of wave fronts for two component rays with opposite kx illustrates the differ-
ence between group and phase velocity.
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As the waveguide thickness d is decreased, the modes become more widely separated
and fewer in number, until at some point there is only one allowed mode. The condition
for such a single-mode waveguide is

> cos �c

which can be written using Eq. (2-18) as

d < (3-26)

The condition for a single-mode waveguide can also be written in terms of the Vp parame-
ter (Eq. 3-8) as

Vp < � (3-27)

This is in agreement with Eq. (3-10), which gives the number of modes as 1 when Vp < �.
There are advantages to single-mode waveguides, which we will discuss later in this
chapter. It should be noted that no matter how small the film thickness d, there is always
one crossing between curves for m = 0 in Fig. 3-5, and therefore the waveguide always
has at least one mode.

Equation (3-25) is a transcendental equation for the variable cos � and cannot be solved
analytically. However, if cos � is taken as given, then the equation can be solved analyti-
cally for the waveguide thickness d. After some manipulation (Problem 3.2) we find

dm = d0 + (3-28)
m�0

�
2n1 cos �

�0
��
2�n�1

2�–� n�2
2�

�0
�
2n1d
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Figure 3-5 Graphical solution of Eq. (3-25) for modes in a planar waveguide, with n1 = 1.48, n2 =
1.46, and d/�0 = 10. These parameters lead to five allowed modes, which correspond to the five line
crossings.
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where dm is the thickness for mode number m and

d0 = cos–1 � � (3-29)

Equations (3-28) and (3-29) can be used to develop a graph of allowed modes by com-
puting the values of d for a fixed �, and then repeating this for different values of �. It is
customary in such a graph to characterize the modes by the effective index neff rather than
�, where

n1 cos � = �n�1
2� –� n�2

ef�f� (3-30)

using Eq. (3-15).
An example of such a mode chart is shown in Fig. 3-6. Although the mode chart is

constructed by computing d for fixed values of neff, in practice we use the chart by fixing
the value of d for a particular waveguide and going up vertically from the d/�0 axis to find
the neff values for the various allowed modes. When d/�0 < 1/(2�n�1

2�–� n�2
2�) there is only

one allowed mode, in accordance with Eq. (3-26).

Field Distribution in a Mode

Each mode of the waveguide has a characteristic variation of electric field with position,
which is quite different inside and outside the waveguiding region. Inside the waveguide
(in the higher index n1), the field is oscillatory both in x and z, with the form

E(x, z, t) = Emax cos(kxx) cos(�t – �z) (3-31)

The field can also vary as sin(kxx), but we consider only cos(kxx) for simplicity. Here the
definition � � kz has been used, and we have taken the real part of the complex exponen-
tial in Eq. (3-2). For large d/�0 where m � 1, we can use kx � m�/d from Eq. (3-11). Out-

n1 cos �
�
�n�1

2�–� n�2
2�

�0
��
�n1 cos �
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Figure 3-6 Mode chart calculated from Eqs. 3-28 and 3-29, using n1 = 1.48 and n2 = 1.46 as in Fig.
3-5. Values of neff for the various modes are obtained by drawing vertical lines and looking for curve
crossings.
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side the waveguide (in the lower index n2), the field is still oscillatory in the z direction,
but decays exponentially in the x direction.

The transverse (x) variation of E at one instant in time is illustrated in Fig. 3-7, for
some representative positions z along the waveguide. As time increases, the whole pattern
shifts to the right with the phase velocity vp = �/�. At any fixed point in the waveguide,
the E field will vary sinusoidally with time, with an amplitude given by Emax cos (m�x/d).
There will thus be certain values of x for which the E field is zero at all times. The locus
of such zero-field points are called the nodal lines, one of which is shown in Fig. 3-7 by
the dotted line. For a planar waveguide mode with mode number m, there are m nodal
lines, resulting in m + 1 lines of maximum intensity. The lowest-order mode, with m = 0,
has just a single intensity maximum and no nodal lines.

If one could excite just a single mode of higher order m, the intensity distribution ob-
served at the end of the waveguide would consist of m + 1 bright lines with m dark lines in
between. In practice, it is quite difficult to excite just one mode, especially in a thick
waveguide with many possible modes. When many modes are excited simultaneously, the
peak of one mode tends to fill in the node of another, resulting in a more uniform intensi-
ty distribution. The uniformity of the resulting light distribution depends on the coherence
of the light, which we will discuss in Chapter15.

3-3. DISPERSION

In the previous sections, we have found that light propagates in one or more waveguide
modes, each mode being characterized by a different propagation angle �. Energy or in-
formation in these modes propagates down the waveguide at the group velocity, which
varies with � according to Eq. (3-23). The time it takes for a pulse of light to propagate a
distance L down the waveguide will then vary with � as

t = = (3-32)

If the energy in a light pulse is spread out among the various waveguide modes, the
parts of the energy in different modes will arrive at the far end of the waveguide at differ-

Ln1
�
c sin �

L
�
vg
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Figure 3-7 Transverse spatial distribution of the E field at one instant in time for four positions
along the z axis of a planar waveguide. Parameters are those of Fig. 3-5, with mode number m = 4.
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ent times. This means, as indicated in Fig. 3-8, that an initially short pulse will broaden in
time by an amount �t when it reaches the far end, where

�t = � – � (3-33)

The limits on � are �c < � < 90°, where �c is the critical angle for total internal reflection.
Using sin �c = n2/n1, the limits on � become

< sin � < 1 (3-34)

Combining Eqs. (3-33) and (3-34) yields

�t = (n1 – n2) 	 (n1 – n2)

where we have assumed n1 � n2, generally a good assumption for optical fibers. This can
also be written as

�t 	 � (3-35)

where we have defined the fractional index difference � as

� � (3-36)

Equation (3-35) gives the spreading in time of a light pulse due to propagation in dif-
ferent modes, referred to as intermodal dispersion. It occurs in optical fibers as well as
planar waveguides, and is most important when sending pulses a great distance. Note that
the dispersion does not depend on the waveguide thickness, although it is implicitly as-
sumed that the waveguide is thick enough to support several modes. Since �t is propor-
tional to L, it is customary to specify the degree of dispersion as �t/L, in units of ns/km.

Determine the intermodal dispersion of an optical fiber with a core index of 1.5 and a
fractional index difference of 0.01.

n1 – n2
�

n1

Ln
�
c

L
�
c

Ln1
�
cn2

n2
�
n1

1
�
sin �max

1
�
sin �min

Ln1
�

c
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Figure 3-8 Dispersion causes a pulse to broaden in time as it propagates down a long waveguide.

EXAMPLE 3-2
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Solution: Using Eq. (3-35) with L = 1 km, we have

�t = (10–2) = 50 ns

The intermodal dispersion is thus approximately 50 ns/km.

The spreading out of a light pulse in time sets an upper limit on the rate of data trans-
mission in optical communications. Consider a digital data stream as shown in Fig. 3-9a,
consisting of pulses of width T/2 separated in time by T. After propagating along the fiber
for a distance L, each pulse spreads out by �t, so that the pulses start to overlap as shown
in Fig. 3-9b. When the width of the pulses (T/2) + �t is much greater than the separation
T, the individual pulses cannot be distinguished, and reliable transmission of information
is not possible. The criterion for distinguishable pulses is then

T > + �t

which can be written as

BR � < (3-37)

where BR is the number of pulses per second or the bit rate. The bit rate is often specified
in units of Mb/s or Gb/s—mega (106) or giga (109) bits per second. Using Eq. (3-37) with
the intermodal dispersion value of 50 ns/km from Example 3-2, we find a maximum bit
rate of 1/100 ns = 10 Mb/s for L = 1 km. For L = 2 km the spreading �t is twice as great,
leading to BRmax = 5 Mb/s. In general, the product of fiber length and maximum bit rate is
a constant, so the effect of dispersion can be characterized by the length × bit rate product
(L × BR), which for Example 3-2 is L × BR = 10 km Mb/s.

1
�
2�t

1
�
T

T
�
2

(103 m)(1.5)
��
3 × 108 m/s
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Figure 3-9 Pulses are broadened by �t after propagating a distance L, which limits the rate at
which data can be transmitted down a long waveguide.
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For planar waveguides, propagation lengths are typically on the order of centimeters
rather than kilometers, and intermodal dispersion is not usually significant. It is more im-
portant in optical fibers, and will be discussed further in Chapters 5 and 6.

PROBLEMS

3.1 Show that kx = k0 �n�1
2�–� n�2

ef�f� for a planar waveguide, where k0 = 2�/�0 and n1 is the
index of the center region of the waveguide. Show further that for any mode near
cutoff, kx 	 k0 �n�1

2�–� n�2
2�.

3.2 Derive Eqs. (3-28) and (3-29) from Eq. (3-25).

3.3 A waveguide has refractive indices n1 = 3.6, n2 = 3.4, and thickness d = 5 	m. If
light of free-space wavelength 1.3 	m is coupled into the waveguide, how many TE
modes can propagate?

3.4 For the waveguide in Problem 3.3, consider the mode with m = 2. Determine �, neff,
and � for this mode.

3.5 Sketch the electric field distribution E(x) for the mode considered in Problem 3.4.

3.6 Calculate the phase and group velocities for the mode considered in Problem 3.4.

3.7 Consider the waveguide of Problem 3.3, except that now the thickness d can be var-
ied. For what range of d do modes with m = 2 exist?

3.8 A waveguide has n1 = 3.6 and n2 = 3.4. For what range of d does the waveguide sup-
port only one TE mode at a free-space wavelength 1.5 	m, and only two TE modes
at a free-space wavelength 1.3 	m?

3.9 A waveguide has n1 = 3.6, n2 = 3.4, and thickness 1.2 	m. For what range of free-
space wavelengths does it support only three TE modes?

3.10 A multimode optical fiber has n1 = 1.48 and � = 0.015. Determine the range of
propagation angles � for the various modes in the fiber. Express this also as a range
of angles � that the rays make with the fiber axis.

3.11 For the fiber described in Problem 3.10, determine the time spread in an optical
pulse after propagating a distance 2.5 km along the fiber. What is the maximum bit
rate that can be transmitted over this fiber for this distance?

3.12 A fiber is characterized by an intermodal dispersion of 40 ns/km. If the core refrac-
tive index is n1 = 1.49, what is the cladding index n2?

42 Chapter 3 Planar Waveguides
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The previous chapter treated propagation of light in a planar waveguide, in which the E
field varies in only one transverse dimension (1-D), for example the x direction. We now
extend this to two dimensions (2-D), in which the field varies in both the x and y trans-
verse directions. An important special case is that of the optical fiber, which has (usually)
cylindrical symmetry about the fiber axis (z axis). A full treatment of the 2-D waveguide
modes is beyond the scope of this book. However, many of the features of light propaga-
tion in an optical fiber can be understood, at an intuitive and semiquantitative level, by
simple extensions of the 1-D treatment to 2-D.

4-1. ACCEPTANCE ANGLE AND NUMERICAL APERTURE

Consider the cylindrical dielectric waveguide shown in Fig. 4-1, with a solid cylindrical
core of refractive index n1 surrounded by a concentric cladding shell of refractive index
n2. The medium outside the fiber will be taken to have index n0. A ray of light that enters
the fiber end at an angle � from the fiber axis will be refracted upon entering, striking the
core-cladding boundary at an angle of incidence �. Total internal reflection will occur at
the core-cladding boundary if n2 < n1, provided that the internal waveguide angle � is
greater than the critical angle �c = sin–1(n2/n1). As with the planar waveguide, the angle
with the boundary is preserved upon reflection, and the ray will continue to propagate
without reflection loss. The waveguide modes corresponding to such rays are termed
guided modes or propagating modes, since they are guided in a near-lossless propagation
down the fiber. Losses other than reflection, such as absorption and scattering, will be
considered in Chapter 5.

As the entrance angle � is increased from the value shown in Fig. 4-1, the angle of in-
cidence � on the core-cladding boundary will decrease, until at some �max the critical an-
gle is reached, � = �c. Rays having � > �max will still enter the fiber, but the reflection at
the core-cladding boundary will only be partial, as shown in Fig. 4-2. After a short dis-
tance down the fiber, the light will mostly have been lost from the core, and the modes
corresponding to such rays are termed unguided modes or nonpropagating modes. The
fiber will therefore accept light into the guided modes only for entrance angles within the
range 0 < � < �max. In three dimensions for a cylindrical fiber, this corresponds to an ac-
ceptance angle cone of half-angle �max, as shown in Fig. 4-3. Light incident on the fiber
core within this range of angles is accepted into guided modes, whereas light incident out-
side of this range goes into unguided modes. This same cone angle applies for light leav-
ing the end of the fiber.

Photonics and Lasers: An Introduction. By Richard S. Quimby 43
Copyright © 2006 John Wiley & Sons, Inc.
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44 Chapter 4 Cylindrical Waveguides

Figure 4-1 (a) Perspective view of optical fiber core-cladding structure. (b) Side view of optical
fiber, showing path of a light ray that enters the fiber end.

Figure 4-2 Rays incident over some range of angles � are coupled into propagating modes (a and
b). Other rays (c) are attenuated by partial transmission at core–cladding boundary.

Figure 4-3 Light enters or exits the fiber within a cone of half-angle �max.
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The acceptance angle �max can be related to the refractive indices of the core and
cladding by applying Snell’s law at the fiber entrance:

n0 sin �max = n1 sin(90 – �c) (4-1)

Using sin (90 – �c) = cos(�c), cos(�c) = �1� –� s�in�2��c�, and sin �c = n2/n1, this can be written
as

n0 sin �max = NA (4-2)

where the numerical aperture NA has been defined here as

NA � �n�1
2�–� n�2

2� (4-3)

The numerical aperture is widely used in optical systems to specify the maximum ac-
ceptance angle for light to enter the system, and is most generally defined by Eq. (4-2).
For example, the spatial resolution �x of an optical microscope is related to the NA of the
microscope objective by

�x = 0.61 (4-4)

where � is the wavelength of light. Optimum resolution in a microscope requires not only
short wavelengths, but also high numerical apertures.

For optical fibers, the NA is defined by Eq. (4-3) rather than by Eq. (4-2). The two de-
finitions are equivalent in the case of wide core diameters, which support many transverse
modes (so-called multimode fibers). For small core diameters that support only one trans-
verse mode (single-mode fibers), however, the angular distribution of light entering or
leaving the fiber is influenced by diffraction effects, which were not considered in deriv-
ing Eq. (4-2). Although Eq. (4-2) does not apply to single-mode fibers, it is still true that a
smaller NA as defined in Eq. (4-3) leads to a smaller acceptance angle for incident light
(see Problem 4.13). The definition of NA in Eq. (4-3) is therefore most useful for optical
fibers since it can apply to both multimode and single-mode fibers.

In the previous chapter, the fractional index difference � was defined [see Eq. (3-36)]
for planar waveguides as � = (n1 – n2)/n1 for a medium of index n1 sandwiched in be-
tween two media of index n2. In the case of optical fibers, a similar definition is made,
with n1 and n2 now the index of the core and cladding, respectively. This parameter is
usually small, a typical value for telecommunications fiber being � ~ 0.01. For such small
values of �, the indices of the core and cladding are nearly the same, so we can define a
single approximate index n � n1 � n2. In this case, the numerical aperture can be approx-
imated by the simple expression (see Problem 4.1):

NA � n�2��� (4-5)

Germanium is often added to the core glass in an optical fiber to raise its refractive index.
Adding 20% Ge by weight gives �n � 0.025.

�
�
NA
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Determine the numerical aperture and acceptance angle for a multimode fiber with
core index 1.5 and fractional index difference 0.01, assuming that light is incident on
the fiber from air. Repeat if the fiber is immersed in water (index 1.33).

Solution: Using Eq. (4-5), we have for the fiber in either air or water

NA � (1.5)�(2�)(�0�.0�1�)� = 0.21

Although the NA is the same, the acceptance angle is different in air and water:

�max = sin–1(0.21) = 12° (in air)

�max = (1/1.33) sin–1(0.21) = 9° (in water)

4-2. CYLINDRICAL WAVEGUIDE MODES

The problem of determining the allowed modes in a cylindrical geometry is similar in
principle to that of the planar waveguide, but the mathematical treatment is much more
complex. Fig. 4-4 shows the fiber geometry for a multimode fiber with core radius a. A
rigorous solution to the problem involves solving Maxwell’s equations in the core and
cladding regions, and applying appropriate boundary conditions at the core–cladding
boundary. For example, one might look for solutions in the form of Eq. (2-3), which can
be written with cylindrical coordinates as

Emode = E0g(r, �)ei(�t–�z) (4-6)

The solution for g(r, �) turns out to be in the form of Bessel functions in the radial (r)
direction and sinusoidal functions in the azimuthal (�) direction.

Number of Modes

To gain some physical insight into the nature of the modes, without being overwhelmed
with the mathematics, let us first consider the fiber as a rectangular waveguide of width d
= 2a, as shown in Fig. 4-5.

46 Chapter 4 Cylindrical Waveguides

Figure 4-4 Fiber geometry with core radius a, core index n1, and cladding index n2.

EXAMPLE 4-1
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In rectangular geometry, we look for solutions in the form of a plane wave with wave
vector k = k|| + k� with

k|| = �k̂

k� = kx î + ky ĵ

where î, ĵ, and k̂ are the usual unit vectors. Ignoring the phase shifts upon reflection (a
valid approximation for multimode waveguides with high-order modes), the boundary
conditions require that the round-trip phase change in either the x or y directions be a mul-
tiple of 2	. The restrictions on kx and ky are then determined from

kx2d = m2	
(4-7)

ky2d = l2	

where m and l are integers. The allowed values of kx and ky,

kx = m , ky = l (4-8)

are evenly spaced with increment 	/d, and the waveguide modes can be represented as

	
�
d

	
�
d
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Figure 4-5 Rectangular approximation for fiber, with width d = 2a.

Figure 4-6 Allowed modes for rectangular waveguides are uniformly spaced in kx–ky space.
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points in the two-dimensional k space shown in Fig. 4-6. The upper limits on m and l are
found by requiring that total internal reflection occur at the core–cladding boundary.

For a mode with ky = 0, the treatment reduces to that of Chapter 3 for a planar wave-
guide. In our approximate treatment, the fiber diameter 2a corresponds to the 1-D wave-
guide thickness d. It is conventional for optical fibers to define a V parameter that is simi-
lar to the Vp for planar waveguides [Eq. (3-8)], except that the waveguide thickness d is
replaced by the fiber core radius a:

V � �n�1
2�–� n�2

2� (4-9)

where �0 is the free-space wavelength. The two definitions for V are related by Vp = 2V
for our approximate treatment.

The number of guided modes with ky = 0 can then be given by Eq. (3-10), which for
large V reduces to � 2V/	. Similarly, for modes with kx = 0 there are � 2V/	 guided
modes. The total number of guided modes for any combination of kx and ky is therefore
expected to be the product of these two numbers, or � (2V/	)2. This simple analysis gives
the essential feature that the number of modes is ~ V2 for a 2-D waveguide, rather than ~
V for a 1-D waveguide.

For fiber geometry, the above calculation overestimates the number of allowed modes,
because modes with k� = �k�x

2�+� k�y
2� > V/a are not guided. Correcting for this yields a fac-

tor of 	/4 (see Problem 4.2), which gives for the estimated number of modes

# modes (rough estimate) � V2 (4-10)

where the result has also been multiplied by 2 to account for two polarizations for each
spatial mode. This estimate is quite close to the often-quoted result (Senior 1992) for the
number of modes (including both polarizations) in a multimode fiber,

# modes (actual value) 
 V2 (4-11)

and is also close to the result (4/	2)V2 obtained in a more rigorous treatment (Saleh 1991).
Since generally only an estimate is needed in practice, we will use the usual simple ex-
pression V2/2 for calculations.

How many modes can propagate in a step-index fiber with a 100 �m diameter core and
� = 0.03? Take the core index of refraction as 1.5 and the free-space wavelength as
1.00 �m.

Solution: The core radius is a = D/2 = 50 �m, and the V parameter is

V � = �2�(0�.0�3�)�

V � 115

# modes � �
1

2
�V2 = 6,660

2	 (50 · 10–6)(1.5)
��

10–6

2	an�2���
��

�0

1
�
2

2
�
	

2	a
�

�0
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EXAMPLE 4-2
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Mode Patterns

The mode pattern for a rectangular waveguide would consist of standing waves in the x
and y directions, with propating waves in the z direction. Larger mode numbers m and l
mean a more rapid variation in intensity with x and y, giving rise to �m maxima in the x
direction and � l maxima in the y direction.

The situation is qualitatively the same for fibers with cylindrical symmetry, the differ-
ence being the symmetry and shape of the resulting modes. Fig. 4-7 shows representative
mode patterns for low-order modes in an optical fiber. The modes are designated as LP
(for “linearly polarized”), and labeled with integer subscripts l and m. There are m maxi-
ma in the mode intensity along a radial direction, and 2l maxima along the circumference
of a circle around the fiber center.

In the ray picture, m corresponds to rays making different angles with the fiber axis, as
indicated in Fig. 4-8. Likewise, the integer l corresponds to the helicity (tightness of the
spiral) of the ray as it corkscrews down the fiber. Rays that pass through the fiber axis are
termed meridonial rays, and have l = 0 or zero helicity. Rays not passing through the fiber
axis are termed skewed rays, and have l � 0.

Single-Mode Fibers

It is often of interest to have a fiber that allows only a single propagating mode. For ex-
ample, this will eliminate the intermodal dispersion that was discussed in the previous
chapter and allow a higher data rate for optical communications. From the analysis of pla-
nar waveguides we found [Eq. (3-27)] that only a single mode was allowed when Vp < 	.
Setting Vp = 2V as before, we might expect the single-mode condition for a fiber to be V ~
	/2. The actual result of a rigorous treatment is close to this:

V < 2.405 (single-mode condition in fiber) (4-12)

where V for the fiber is given by Eq. (4-9). It should be kept in mind that when we say
“single-mode” fiber, we mean a single spatial mode. There are two distinct polarizations
possible (E along either x or y), and therefore always at least two modes if different polar-
izations are considered as different modes.

4-2. Cylindrical Waveguide Modes 49

Figure 4-7 Typical mode patterns for the LPlm modes.
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Eq. (4-12) can be written in the form

NA < 2.405 (single-mode condition) (4-13)

using Eqs. (4-3) and (4-9). The condition for single-mode propagation is thus seen to de-
pend on three parameters: the core radius a and numerical aperture NA of the fiber, and
the optical wavelength �0. In principle, either a or NA could be reduced to achieve single-
mode operation. Making the NA too small, however, restricts the acceptance angle for in-
cident light and reduces source-to-fiber coupling efficiency (see Chapter 12). In practice,
NA ~ 0.20 is typical for fibers used in optical communications.

The dependence on wavelength in Eq. (4-13) implies that any fiber will be single-
mode for a sufficiently long wavelength of light. Of course, not all wavelengths will prop-
agate efficiently in the fiber, due to attenuation processes such as absorption and scatter-
ing (see Chapter 5). The wavelength at which the fiber just becomes single-mode is
termed the cutoff wavelength �c, defined by

2.405 = NA

which can be written

�c = (cutoff wavelength) (4-14)

For wavelengths � > �c, the fiber will be single-mode, whereas for � < �c it will be multi-
mode.

a) How small must the core be if only one mode is to propagate in a fiber with � = 0.01?
Take the core index of refraction as 1.5 and the free-space wavelength as 1.00 �m.

Solution: For � 
 1, we use the approximation NA � n �2��� = 0.212. From Eq. (4-
13), the core radius must be

2	a NA
�

2.405

2	a
�

�c

2	a
�

�0
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Figure 4-8 (a) End view of fiber, showing spiraling of skewed rays around the fiber axis. (b) Side
view, showing propagation of meridonial ray.

EXAMPLE 4-3
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a < = = 1.8 �m

The core diameter must therefore be less than 3.6 �m.
b) A fiber with the same � and n has a core diameter of 4.4 �m. For what range of
wavelengths will the fiber be single-mode?

Solution: Using Eq. (4-14), the cutoff wavelength is

�c = = 1.22 �m

This fiber would therefore be single-mode for � > 1.22 �m.

Mode Chart

In Chapter 3, it was shown that the modes in a planar waveguide can be described by an
effective refractive index:

neff = � (4-15)

where � is the axial wave vector and �0 is the free-space wavelength of light. The effec-
tive index varies with waveguide thickness d in the manner of the mode chart shown in
Fig. 3-6. Similarly, one can determine the effective index for an optical fiber, defined by
Eq. (4-15), as a function of the core radius a. The calculations are much more difficult for
the fiber due to the 2-D cylindrical geometry. The resulting variation in neff for a fiber is
shown in Fig. 4-9, plotted versus the dimensionless V parameter [Eq. (4-9)]. Note that the
abscissa in Fig. 3-6 would correspond to Vp if rescaled by the factor 2	NA.

Qualitatively, the mode charts for the fiber and planar waveguide are similar. In each
case, there is one mode that can propagate for an arbitrary small waveguide width. As the
waveguide width increases, other modes (which were “cut off” for smaller V) become
propagating as well. The value of V for which a second mode just becomes allowable in a
fiber waveguide turns out to be 2.405, which corresponds to the single-mode condition
given in Eq. (4-12). The number of propagating modes is found by drawing a vertical line
at a particular value of V and counting the number of mode lines that are crossed. Some of
the modes are “degenerate,” in the sense that they have the same value of neff for a given
V. For example, for 2.6 < V < 3.8 there are four mode line crossings, for a total of eight
modes (including two polarizations for each spatial mode). 

The nomenclature for the modes in a circular waveguide depends on the level of ap-
proximation. Most optical fibers can be considered to be “weakly guiding,” with � 
 1.
The modes in an exact treatment are labeled TE, TM, HE, and EH. The TE and TM
modes are analogous to the transverse electric and transverse magnetic modes discussed
in Chapter 3 for a planar waveguide, and have Ez = 0 (TE) or Bz = 0 (TM). The HE and
EH modes are hybrid modes in which both Ez and Bz are nonzero. In the optical fiber there
are no modes that are truely TEM (transverse electric and magnetic), with Ez = Bz = 0.
However, because of the weak guiding, light propagation in the fiber is paraxial (close to
the fiber axis), and the axial components Ez and Bz are small.

The next level of approximation is to neglect these axial fields and consider the modes

�0
�
2	

2	aNA
�

2.405

(2.405)(1 �m)
��

2	(0.212)

(2.405)�
�

2	NA
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to be TEM. These are the linearly polarized modes, LPlm, the patterns for which were
shown in Fig. 4-7. The lowest order mode is LP01, which corresponds to the HE11 hybrid
mode. The next-highest mode is LP11, which corresponds to the three modes HE21, TE01,
and TM01. Figure 4-9 shows that these three levels are nearly degenerate, being designat-
ed as a group by LP11. Similar groupings occur for the higher-order modes. For most ap-
plications in which � 
 1, the LP approximation is adequate.

Gaussian Mode Approximation

The lowest-order mode LP01 in a single-mode fiber is found to be approximately Gauss-
ian, with electric field varying with radial distance r from the fiber axis as

E(r) = E0 e–(r/�)2 (Gaussian profile) (4-16)

The parameter w is the mode waist size, and 2w is the mode field diameter, which charac-
terizes the spread of the optical field, as illustrated in Fig. 4-10. Since the optical intensity
I varies as the square of E,

I(r) = I0 e–2(r/�)2 (4-17)

For 1.2 < V < 2.4, the mode waist size is approximately given by

w � a �0.65 + + � (4-18)

[see (Marcuse 1977) and (Jeunhomme 1990)], where a is the fiber core radius.
It can be seen from Eq. (4-18) that as V decreases, say by decreasing the core radius,

2.879
�

V6

1.619
�

V1.5
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Figure 4-9 Mode chart for optical fiber (after Keck, 1981).
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the mode waist size increases. This can be understood fundamentally as a diffraction phe-
nomenon—as the core is made smaller to confine the light, diffraction becomes more im-
portant and acts to resist that confinement. The steady-state mode distribution given by
Eq. (4-16) is a result of the balance between the tendency of the high-index core to con-
fine the beam and the tendency of diffraction to spread the beam out.

A fiber with very small V has a large ratio of w/a, and the resulting mode is referred to
as weakly guided. The beam may become so spread out that the majority of the mode’s
energy is contained in the cladding region rather than the core. This behavior can be use-
ful for various devices such as fiber sensors and fiber couplers, but is detrimental for low-
loss communications fiber. For best confinement of the mode the fiber V is often chosen
to be not much below the cutoff value of 2.405.

A commonly used telecommunications fiber designed for 1550 nm has parameters 2a
= 8.3 �m and � = 0.0036. The numerical aperture according to Eq. (4-5) is then NA �
0.13, and V � 2.19 from Eq. (4-9). Using Eq. (4-18), we then obtain a mode field diame-
ter of 2w = 9.8 �m. This is only 18% higher than the actual core diameter, which means
that the mode is well confined by the core.

PROBLEMS

4.1 Show how Eq. (4-5) follows from Eq. (4-3) under the approximation n1 � n2.

4.2 Show that for a ray in a cylindrical waveguide to correspond to a guided mode, it must
have a transverse wavenumber k� = �k�x

2�+� k�y
2� < V/a. Show further that this introduces

a factor of 	/4 in obtaining the estimated number of modes given in Eq. (4-10).

4.3 An optical fiber has core index n1 = 1.495, cladding index n2 = 1.485, and core di-
ameter 50 �m. Light of (free-space) wavelength 1.3 �m is coupled into this fiber.
Determine the fiber V parameter and the maximum number of modes that can prop-
agate. Consider different polarizations as different modes.

4.4 For the fiber and wavelength of Problem 4.3, determine the maximum angle � that
rays make with the optical axis. (Hint: use the result of Problem 4.2.)

4.5 Sketch the mode field pattern for the LP32 and LP21 modes.

Problems 53

Figure 4-10 Gaussian modes with mode field diameter 2w in fiber of diameter 2a. Shown is a tight-
ly confined mode with V = 2.2, and a loosely confined mode with V = 1.2.
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4.6 A step index fiber has core index n1 = 1.48 and � = 0.013, and is single-mode only
for free-space wavelengths � > 1.25 �m. Determine the radius of the fiber core.

4.7 For the fiber of Problem 4.6, determine the range of wavelengths for which the fiber
supports eight modes (and no more than eight). Consider different polarizations as
different modes.

4.8 A step index fiber with core diameter 7 �m has more than one mode only for � <
1400 nm. Determine the fiber’s numerical aperture.

4.9 The cutoff wavelength for a step index fiber is 1400 nm. How many modes can
propagate at a signal wavelength of (a) 1550 nm, (b) 1100 nm, and (c) 750 nm. Con-
sider different polarizations as different modes.

4.10 The fiber in Problem 4.6 is used with a signal wavelength of 1.7 �m. Use the mode
chart of Fig. 4-9 to determine neff and � for the fiber mode.

4.11 For the fiber and wavelength of Problem 4.10: (a) determine the mode field diame-
ter, and (b) determine the radial distance from the fiber axis at which the light inten-
sity is reduced to 5% of the peak (on-axis) value.

4.12 Consider a standard telecommunications fiber designed for operation at 1550 nm,
with core diameter 8.3 �m, core index 1.48,  and fractional index difference 0.0036.
What is the mode field diameter when the operational wavelength is 1630 nm? If
this fiber is used at a wavelength of 1310 nm, will it still be single-mode?

4.13 Using the definition of NA in Eq. (4-3), along with Eqs. (4-9) and (4-18), show that
a smaller NA in a single-mode fiber leads to a smaller divergence angle for light
emitted from the fiber core.

54 Chapter 4 Cylindrical Waveguides

c04.qxd  2/22/2006  2:51 PM  Page 54



Historically, the success of fiber optic communications depended critically on the devel-
opment of low-loss optical fiber, as discussed in Chapter 1. In an optical fiber, there are
three fundamental loss mechanisms: absorption, scattering, and bending loss, as illustrat-
ed in Fig. 5-1. Absorption results in the loss of a propagating photon, the photon’s energy
generally being converted into heat. In a scattering process, the photon does not disap-
pear, but its direction (and possibly its energy) is changed. Absorption and scattering are
fundamental materials properties, occurring both in fibers and in bulk glass (large uni-
form sections of glass). The third loss mechanism, bending loss, is unique to the fiber
geometry, and relates to the requirement of total internal reflection (TIR) for lossless
transmission down the fiber. In this chapter, each of these three loss mechanisms will be
discussed in turn.

5-1. ABSORPTION LOSS

Consider light propagating from left to right through a length L of uniformly absorbing
material, as shown in Fig. 5-2. We define the attenuation coefficient � as the fractional
loss in light power per unit length of propagation. The amount of power lost in a thin slice
of thickness dz is then P�dz, where P is the power incident on the slice. If the power en-
tering the material from the left is Pin, it is straightforward to show (see Problem 5.1) that
the power exiting the right side is

Pout = Pine–�L (5-1)

which is known as Beer’s law. When the attenuation of light is predominantly due to ab-
sorption, � is also referred to as the absorption coefficient. Since �L is dimensionless, the
units for � are reciprocal length, often given in cm–1.

The attenuation coefficient � is an alternative to the decibel concept discussed in
Chapter 1. Using Eq. (1-1), we have

dB loss = 10 log10 � � = 10 log10 (e�L) = 10 �L log10 e (5-2)

or,

dB loss = 4.34 �L (5-3)

Pin
�
Pout
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Note that the dB loss per unit length and the attenuation coefficient are the same, apart
from a scaling factor. The equivalence can be expressed by a conversion factor for the
two units:

1 cm–1 = 4.34 × 105 dB/km
(5-4)

1 dB/km = 2.303 × 10–6 cm–1

In practice, the dB/km unit is usually used to describe losses in optical fiber systems,
whereas the cm–1 unit is used when relating propagation losses to fundamental physical
processes.

Figure 5-3 summarizes the various absorption processes that can lead to attenuation in
an optical fiber. These processes can be separated into two fundamentally different types:
those that promote an electron from a lower to a higher energy state (an electronic transi-
tion), and those that increase the vibrational energy of some group of atoms (a vibrational
transition). Electronic transitions are generally of higher energy than vibrational transi-
tions because of the small mass of an electron compared to the mass of an atom. At the
shortest wavelengths (typically � < 400 nm), the photon energy is sufficient to promote an
electron from the valence band to the conduction band of the host glass (energy bands are
discussed in Chapter 10). At the longest wavelengths (typically � > 2 �m) the photon en-
ergy matches the vibrational energy of the host glass, and vibrational transitions become
efficient.

In between these two wavelengths, the absorption loss can be very small— there is a
“window of transparency” in the visible and near-infrared regions between 0.4 < � < 2
�m. However, the presence of impurities introduces additional electronic and vibrational
absorption, which can reduce the transparency in this window. Typical impurities include
transition metal ions such as Cu2+, Fe2+, and Cr3+, which introduce electronic transitions,

56 Chapter 5 Losses in Optical Fibers

Figure 5-1 Loss mechanisms for light propating in optical fiber.

Figure 5-2 A fraction � dz of light power P is absorbed in slice of thickness dz.
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and the hydroxyl ion OH–, which introduces strong vibrational transitions at 1.4 and 2.8
�m. The transition at 1.4 �m is especially detrimental, being close to the important
telecommunications wavelength 1.5 �m where the attenuation in silica fiber is a mini-
mum. For the lowest-loss fibers, it is important to keep water out during the manufactur-
ing process, to minimize the OH content.

5-2. SCATTERING

In an ideal crystal at zero temperature, light can propagate without scattering. Real crys-
tals have defects and impurities that interupt the perfect crystalline order and give rise to
some degree of scattering. Noncrystalline materials such as glasses and liquids (and air!)
have an inherent disorder that results in some minimum level of light scattering, even in
the absence of impurities.

Rayleigh Scattering

The most important scattering loss in glass fibers is Rayleigh scattering, in which the
wavelength of the scattered light remains unchanged. Rayleigh scattering arises from the
interaction of the light wave with stationary fluctuations �n in the index of refraction n.
These fluctuations occur due to random thermal motion when the glass is in a liquid
state, and are frozen in place when the glass makes the transition from liquid to solid at
temperature TF. The scattering process can be thought of as equivalent to the scattering
of light from small spheres of diameter d and index n + �n, embedded in a uniform
medium of index n. If d � � (a good approximation here), the attenuation coefficient is
found to be

�R � � (Rayleigh scattering) (5-5)

where �(�n)2� is the average square of the refractive index fluctuation and kB is Boltz-
mann’s constant.

kBTF
�

�4

�(�n)2�
�

�4
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Figure 5-3 Absorption coefficient versus wavelength for optical fiber, showing electronic and vibra-
tional loss mechanisms.
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The �–4 dependence on wavelength in Eq. (5-5) is the most important characteristic of
Rayleigh scattering and explains, for example, why the sky is blue (because light at short-
er wavelengths, i.e. blue, is more strongly scattered into our eyes). For fiber optic commu-
nications the important consequence is that longer signal wavelengths will experience less
loss, with less amplification and signal regeneration required. For the silica (SiO2) glass
typically used in communication-grade fibers,

�R � (0.8)� �
4

dB/km (silica fiber) (5-6)

with � in �m and �R in dB/km. If special attention is given to processing parameters dur-
ing fiber manufacture, the prefactor in Eq. (5-6) can be made 0.7 or even 0.6, but not
much lower. The earliest optical communications systems used wavelengths around 850
nm, the so-called first telecommunications window, in which Rayleigh scattering losses
are � 1.5 dB/km. Increasing the operating wavelength to 1.3 �m (the second telecommu-
nications window) reduced Rayleigh scattering losses to � 0.28 dB/km, a five-fold im-
provement. Further development of the third telecommunications window, around 1.55
�m, reduced the losses another factor of two to � 0.14. Each factor of two reduction in
�R was important in the developing success of optical communications, effectively halv-
ing the number of regeneration stations required for long-haul optical networks.

One might ask whether the losses can be further reduced for wavelenths longer than
1.55 �m. The answer for silica fiber is no, because at longer wavelengths the absorption
of light by vibrational transitions of the host glass becomes more important than Rayleigh
scattering. Figure 5-4 shows a typical loss spectrum for a silica fiber, along with the
Rayleigh scattering and lattice absorption contributions. The combination of Rayleigh
scattering at shorter wavelengths and lattice absorption at longer wavelengths results in a
V-shaped curve that is characteristic for a particular type of glass. In addition, there is a
pronounced OH absorption peak at 1.4 �m, which creates local minima in the attenuation

1 �m
�

�
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Figure 5-4 Typical attenuation spectrum for silica glass fiber, showing contributions from Rayleigh
scattering and lattice absorption that result in a V-shaped curve.
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around 1.3 and 1.5 �m. As optical communications systems evolved toward longer wave-
lengths, it was only natural to choose operating wavelengths in these windows of trans-
parency. There are other advantages as well to the 1.3 �m window, to be discussed in the
next chapter. Only recently has the technology for manufacturing optical fiber improved
to the extent that the OH peak can be practically eliminated. Although low-OH fiber can
now be made, most of the communications fiber that is currently installed and in use does
have an OH peak.

For pure silica fiber, the minimum attenuation obtainable is � 0.15 dB/km. To reduce
the attenuation further, alternative types of glass could be tried, but to date there has not
been significant improvement. For example, the Rayleigh scattering can be reduced by
adding small amounts of dopants such as Na2O to the silica host, but the reduction is only
a modest 20% (Saito et al. 1997).

Another strategy for lower attenuation is to reduce the lattice absorption, which would
shift the minimum in the V curve to longer wavelengths and smaller minimum attenua-
tion. For a time in the late 1980s there was much interest in ZrF4-based, heavy-metal flu-
oride glasses for this purpose, since they have reduced absorption in the infrared com-
pared with silica glass. The reduced absorption arises from the need to simultaneously
create a greater number of lattice vibrational quanta (phonons) in the fluoride glass, due to
the lower vibrational frequency of the Zr–F bond compared with that of the Si–O bond.
However, the lowest loss so far in fluoride glass fibers is ~ 1 dB/km, due to problems with
crystallization and other sources of loss.

It seems at present that for light propagating in a glass fiber, the ultimate practical min-
imum loss will be ~ 0.1 dB/km. To reduce the loss further would require that the light
propagate not in glass, but in air. Recent developments that make this possible will be dis-
cussed in Chapter 8.

Brillouin Scattering

Light will generally be scattered by any nonuniformity in a material’s index of refraction.
In the case of Rayleigh scattering in glass, the nonuniformity consists of stationary densi-
ty and compositional fluctuations which were “frozen in” when the liquid cooled into a
solid. The index of refraction can be thought of as nonuniform in a “lumpy” sort of way.
Another way that the index of refraction can be nonuniform is via a sound (acoustic)
wave, in which the density and pressure vary periodically inside the material. The varying
density causes a varying refractive index, resulting in “waves” of changing index of re-
fraction, propagating at the speed of sound vs in the material. The separation between
planes of maximum index will be d = vs/fa, where fa is the frequency of the acoustic wave.

When light is incident upon these “index waves,” it can be scattered as shown in Fig.
5-5, a process termed Brillouin scattering. The situation actually corresponds to Bragg
diffraction from a thick grating, as discussed in Chapter 2 (see Fig. 2-17). The Bragg con-
dition [Eq. (2-28)] then applies, giving the allowed angles � for efficient scattering. Since
the index grating is in motion, the scattered light waves will undergo a Doppler shift, just
as for light reflected from a moving mirror. The optical frequency 	 will increase or de-
crease depending on the component of the acoustic wave’s velocity along the direction of
the incident light wave. The change in optical frequency �	 is

= 2 = vs sin � (5-7)
2n
�
c

valong ray
�

c/n

�	
�
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where n is the average refractive index of the material and � is the incident angle defined
in Fig. 5-5. Combining Eq. (5-7) with Eq. (2-28) yields the simple result (see Problem
5.4) that the change in optical frequency is just equal to the acoustic frequency, �	 = fa. In
the quantum picture of light, this can be interpreted to mean that the photon energy h	 has
changed by a unit of the vibrational energy hfa (the phonon energy), implying that a
phonon has been either created or destroyed in the scattering process.

The magnitude of the frequency shift in Brillouin scattering can be estimated from Eq.
(5-7) by putting in typical values for glass (n = 1.5 and vs = 5 × 103 m/s) and setting sin � =
1. This gives a maximum fractional frequency shift �	/	 � 5 × 10–5, which for 1500 nm
light corresponds to �	 = 10 GHz or �� = 0.075 nm. The intensity of the scattered light is
very weak for thermally generated acoustic waves. However, for externally applied sound
waves of large amplitude, this scattering process can be efficient, and forms the basis for a
practical way of deflecting laser beams, the acoustooptic deflector. In fibers, Brilluoin scat-
tering is an important source of loss only when it becomes nonlinear (see Chapter 9). This
occurs primarily for narrowband light, with spectral width �	 < 10 MHz.

Raman Scattering

In the previous section, we saw that light could scatter off acoustic waves in a process
called Brillouin scattering. These acoustic waves consist of the collective motion of a
large number of atoms, with nearby atoms moving in nearly the same direction. Other
types of vibrations are possible as well, including localized vibrations in which neighbor-
ing atoms are moving in opposite directions. Figure 5-6 illustrates such a vibrational mo-
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Figure 5-5 Brillouin scattering from acoustic waves.

Figure 5-6 Molecular vibrations involved in Raman scattering can be modelled by masses and
springs.
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tion for adjacent silicon and oxygen atoms in SiO2 glass. The vibration can be modeled as
a molecule of two masses (the Si and O atoms) connected by a spring of spring constant k.
For small-amplitude motion, this results in simple harmonic motion with vibrational fre-
quency fv given by

fv = �� (5-8)

where mr = m1 m2/(m1 + m2) is the reduced mass of the system.
When light is incident on the vibrating molecule, it can be scattered as shown in Fig. 5-

7, a process termed Raman scattering. Energy is conserved in Raman scattering, just as
for Brillouin scattering, and the new (scattered) photon energy h	
 is

h	
 = h	 ± hfv (Raman shift) (5-9)

When the scattered light is decreased in frequency (often called Stokes scattering), the
molecule is left in a more highly excited vibrational state after the scattering process. The
converse process (anti-Stokes scattering) takes vibrational energy out of the molecule to
increase the frequency of light. At finite temperature, there is some probability that the
molecule is initially in the ground vibrational state, in which case no energy can be ex-
tracted. Therefore, the ratio of anti-Stokes to Stokes scattering probabilities is less than
one, and is temperature dependent.

The magnitude of the frequency shift 	
 – 	 is much greater for Raman scattering
than for Brillouin scattering because the localized vibrational frequency fv is much larg-
er than the typical acoustic frequency fa. Typically, fv ~ 10 – 30 THz, whereas fa ~ 10
GHz. Fundamentally, this can be understood by considering the motion of adjacent
atoms in the glass, as in Fig. 5-8. For localized vibrations, the atom–atom separation d
undergoes large oscillations in time. In an acoustic wave, however, where the atoms
move collectively, the distance between adjacent atoms undergoes only small oscilla-
tions. Since the restoring force arises from changes in the spacing between adjacent
atoms, the effective spring constant is reduced, and so is the oscillation frequency ac-
cording to Eq. (5-8).

k
�
mr

1
�
2�
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Figure 5-7 Some energy from the photon is transferred to molecular vibrational energy in Raman
scattering.
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Light of free-space wavelength 1500 nm is incident on silica glass. Determine the
frequency and wavelength of the Stokes-shifted, Raman-scattered light, assuming fv =
15 THz.

Solution: The optical frequency of the incident light is

	 = = = 2 × 1014 Hz

From Eq. (5-9), the frequency of scattered light is

	
 = (20 – 1.5) × 1013 = 1.85 × 1014 Hz

which corresponds to

�
 = = = 1620 nm

Like Brillouin scattering, the Raman effect tends to be very weak and difficult to de-
tect when the scattering occurs off the thermally generated vibrations naturally present in
the glass. However, the effect can be significantly enhanced when the vibrations are large,
leading to practical devices such as lasers and optical amplifiers. These devices are based
on nonlinear phenomena, which will be discussed in Chapter 9. Losses due to Raman
scattering become important in single-mode fibers when nonlinear effects set in, typically
at power levels > 500 mW.

5-3. BENDING LOSSES

When an optical fiber is bent, light that was originally guided in the core may become un-
guided, resulting in a loss of guided light power. The light might also shift from one guid-
ed mode to another guided mode, a process known as mode coupling. These processes
can be understood from either a geometrical optics or physical optics point of view.

3 × 108 m/s
��
1.85 × 1014 Hz

c
�
	


3 × 108 m/s
��
1.5 × 10–6 m

c
�
�
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Figure 5-8 Vibrational patterns for (a) Raman scattering and (b) Brillouin scattering. Arrows show
the relative displacement of the atoms.

EXAMPLE 5-1
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Geometrical Optics View

Consider a light ray that is initially propagating at point A along the axis of a multimode
fiber of radius a, as shown in Fig. 5-9. If the fiber is bent into a circular arc of radius R,
then the ray will strike the core–cladding boundary at B, making an angle � with the sur-
face normal at that point. If R is too small, � will become smaller than the critical angle �c,
and the ray will no longer be guided. It is straightforward to show (see Problem 5.10) that
this occurs when

R < (significant bending loss) (5-10)

where � � 1 has been assumed, as is typical for optical fiber. For example, if the core di-
ameter is 100 �m and � = 0.01, the bending loss will be significant for R < 5 mm. A
smaller-diameter core would allow the fiber to be bent in an even smaller radius of curva-
ture, although the fiber may break before the losses become significant.

The derivation of Eq. (5-10) assumed that the ray was initially propagating along the
fiber axis, a so-called low-order mode. If, instead, the ray was initially already making a
steep angle with the fiber axis, but was still guided (a high-order mode), it could become
unguided with a much more gentle bending than that of Eq. (5-10). The degree of bending
loss therefore depends not only on the bend radius, but also on which modes are propagat-
ing. The low-order modes are more stable and resistant to bending losses, whereas the
high-order modes are only marginally stable, and prone to significant loss from even
small bends.

Physical Optics View

The loss of propagating light in a bent fiber can also be understood from the wave optics
point of view. Consider a low-order mode propagating in a fiber bent into a circular arc
with center at O and radius of curvature R, as shown in Fig. 5-10. As the wave moves
along the arc, different parts of the wave must move at different speeds, in order for the
wave to maintain the same shape as it propagates. The situation is similar to that of a line
of ice skaters, joining hands and pivoting about one end, so that the skaters at the far end

a
�
�
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Figure 5-9 Ray optics picture of light loss due to fiber bending.
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are moving very fast compared to those near the pivot. For the optical wave, this implies
that at some distance rmax from the pivot, the evanescent wave in the cladding must be
moving at a speed greater than the speed of light in the cladding material, c/n2. Since this
is not allowed by Maxwell’s equations, the energy contained in the evanescent wave for
r > rmax will then be lost from the wave.

From this physical optics viewpoint, the degree of bending loss is seen to depend on
how far the evanescent field extends into the cladding. High-order modes with internal
waveguide angle � close to the critical angle �c extend the furthest into the cladding, ac-
cording to Eq. (2-21). Low-order modes, in contrast, are more tightly confined to the core,
as shown in Fig. 5-11. High-order modes are then expected to be more lossy than low-or-
der modes, a conclusion in accord with the ray optics result. The physical optics approach
has the advantage that it applies to single-mode as well as multimode fibers.
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Figure 5-10 Wave optics picture of light loss due to fiber bending.

Figure 5-11 High-order modes are more lossy because more of the mode’s energy is in the
evanescent wave, where energy is lost due to bending.

c05.qxd  2/14/2006  7:15 AM  Page 64



Length Scale for Bending Loss

Bends in a fiber can be on any scale of length, but it is useful to classify them into two
broad categories: macrobending and microbending. Macrobending losses are those
caused by bends with R in the centimeter to meter range, and occur when the fiber is de-
liberately bent around a corner, for example. In practice, these losses can be minimized
and are usually small, affecting mostly the higher-order modes in a multimode fiber.

Microbending losses are more difficult to control, arising from bends on the �m length
scale. These microbends can be introduced by anything that crimps or stresses the fiber, in-
cluding the packaging material that houses the fiber. Figure 5-12 shows two schemes for
jacketing an optical fiber that minimize microbending losses. On the left is the tight buffer-
ing scheme, which contains the solid glass core and cladding within a soft plastic. This soft
plastic buffering is solid enough to hold the core in a well-defined position, while being soft
enough to relieve stresses and minimize microbends. The surrounding hard plastic adds
mechanical protection to the fiber. On the right is the loose buffering scheme, in which the
core and cladding are contained loosely within a larger hollow tube. The protection from
microbending is better with loose buffering, since there is more “wiggle room” for the
fiber. Each of these types of packaging can be incorporated into fiber cables containing
large numbers of individual fibers in a variety of geometries (Hecht, J. 2002).

Mode Coupling

In our discussion to this point, we have considered light scattering and fiber bending to be
loss mechanisms, in the sense that photons are lost from a signal beam. However, these
processes do not always result in a loss of light power, because light propatating in one
guided mode can be scattered into another guided mode, as illustrated in Fig. 5-13. This
process of transferring energy from one mode to another is termed mode coupling. It is
convenient to visualize the distribution of modes as in Fig. 5-14, with the axial compo-
nent of the wave vector � taking on discreet values between the minimum n2k0 and maxi-
mum n1 k0. Modes with the highest � values are low-order modes, whereas those with the
lowest are high-order modes. Light that is no longer guided (� < n2k0) is said to be in a ra-
diation mode, although this is not a true mode of the fiber.

Modest bending of a fiber results in only small changes in �, so the mode coupling
takes place mostly between adjacent modes in � space. The low-order modes are fairly
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Figure 5-12 Two typical fiber-jacketing schemes. The method of containing the fiber in the cable
can influence the degree of microbending loss.
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stable, coupling mostly with other guided modes, whereas the high-order modes are lossy,
coupling efficiently with the radiation modes. After light has propagated over a long
length of fiber, the distribution of light among the modes reaches a steady state that is
skewed toward high values of �. In effect, the higher-order modes have been filtered out
by the process of bending-induced mode coupling. As the light propagates, energy is con-
tinually hopping between adjacent modes, with a gradual leaking away of total energy as
the high-order modes are coupled into radiation modes.

This mode coupling has implications for the intermodal dispersion discussed in Chap-
ter 3. The spreading in time for a pulse in a multimode fiber was calculated in Eq. (3-35)
to be �t � Ln�/c, assuming that the pulse energy was distributed equally among all
modes. This result would be valid if light launched initially into a particular mode stayed
in that mode. Mode coupling, however, causes the light to switch back and forth between
faster and slower modes as it propagates, resulting in a more nearly uniform arrival time
for the different parts of the pulse. After propagating ~ 1 km, it is found that �t � 	L

rather than the linear dependence on L predicted by Eq. (3-35).

For some applications, it is desirable to create an equilibrium distribution of modes in
a short fiber length, for example in fiber loss measurements (see Chapter 7). The coupling
of modes can be enhanced by forcing the fiber through a series of tight bends, as illustrat-
ed in Fig. 5-15. Such a device is termed a mode mixer, and can be realized by simply
sandwiching the fiber between pieces of sandpaper.

Cladding Modes

Light that is lost into radiation modes is no longer guided by the core, but it can still prop-
agate some distance along the fiber in what is known as a cladding mode. Fig. 5-16 illus-
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Figure 5-13 Scattering or fiber bending can couple light from one mode to another.

Figure 5-14 Distribution of fiber modes in � space, with discreet guided modes in the range n2k0 <
� < n1k0, and continuous radiation modes for � < n2k0.
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trates the process, in which light entering the cladding is partially reflected at the interface
with the surrounding jacket material. The light can propagate in the cladding for some
distance, losing some of its energy with each bounce. These “modes” are highly lossy,
and when excited directly by end-pumping the fiber, they can complicate measurements
of the fiber attenuation coefficient.

One way to remove light from the cladding modes is to employ a mode stripper (see
Fig. 5-16), in which the protective coating is removed from a section of the fiber, leaving
just the bare cladding exposed. The fiber is then immersed in a liquid that nearly matches
the index of refraction of the cladding, so there is little reflection of light at the cladding
boundary. The mode stripper removes light from the cladding modes, leaving only true
guided modes carrying the light energy. As the light propagates, some guided modes will
continue to feed energy into the cladding modes by mode coupling. However, this is gen-
erally much less of a problem than the light that was initially injected into the cladding
modes.

PROBLEMS

5.1 Derive the Beer’s law expression in Eq. (5-1) by integrating the power lost per unit
distance over the length L, as indicated in Fig. 5-2.

5.2 Light with wavelength 1.3 �m is coupled into a long silica fiber. (a) Determine the
attenuation coefficient in units of cm–1, assuming that Rayleigh scattering is the pre-
dominant loss mechanism. (b) If the optical power at the beginning of the fiber is 5
mW, determine the optical power at a distance 2.5 km down the fiber. (c) Determine
the power a distance 25 km down the fiber.

5.3 In a certain (nonsilica) fiber, the loss due to Rayleigh scattering is 6 dB/km at � =
800 nm. What would be the corresponding Rayleigh scattering loss at � = 600 nm?

5.4 Use Eq. (5-7) along with Eq. (2-28) to show that the change in optical frequency in
Brillouin scattering is equal to the acoustic frequency fa.

Problems 67

Figure 5-15 A mode mixer creates an equilibrium modal distribution.

Figure 5-16 Cladding modes can be removed with a mode stripper.
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5.5 An acoustooptic deflector uses sound waves of frequency 200 MHz to deflect light
of free-space wavelength 1053 nm. Assuming a sound velocity of 5000 m/s and re-
fractive index of 1.5, determine the angle by which the beam is deflected from its
original direction in first order. Also calculate the wavelength of the deflected light.

5.6 Incident light of wavelength 1064 nm is Raman scattered in a glass with localized
vibrational frequency fv = 20 THz. Determine the wavelength of the scattered light.

5.7 Raman scattering from the CO2 molecule occurs on the symmetric stretch mode (see
Fig. 23-22), which vibrates at 40 THz. If the usual isotope of oxygen (8 protons, 8
neutrons) is replaced by one with 8 protons and 10 neutrons (18O), the mass that
governs the vibrational frequency in Eq. (5-8) will be increased by the factor �
18/16. (a) Determine the molecular vibrational frequency for CO2 with the 18O iso-
tope. (b) If the incident light has wavelength 800 nm, calculate the wavelength of
Raman-scattered light for both the 16O and 18O isotopes.

5.8 In Raman scattering from CO (carbon monoxide) molecules, the principal stretching
vibration occurs at a frequency of � 65 THz. Taking the mass of carbon as 12 u, and
the mass of oxygen as 16 u (where 1 u � 1.66 × 10–27 kg is the atomic mass unit),
calculate the effective “spring constant” for the C–O chemical bond.

5.9 Argon laser light at 514.5 nm is incident on a gas cell with some unknown mole-
cules, and Raman scattering is observed at 579 nm. Are the unknown molecules
CO2 or CO? (See Problems 5.7 and 5.8 for data.)

5.10 Use the geometry of Fig. 5-9 to show that the minimum bend radius is given by Eq.
(5-10).

5.11 Show that in Fig. 5-10, the radius at which light becomes lost from the waveguide
mode is

rmax � R(1 + �)

Also show that if the criterion for significant light loss is taken to be rmax < R + a,
we obtain the same result as in Eq. (5-10). Explain why this is a reasonable criterion.

5.12 Determine the bend radius at which bending losses become significant, for (a) mul-
timode fiber with NA = 0.25 and core diameter 50 �m, and (b) single-mode fiber
with NA = 0.18 and core diameter 8 �m. Assume core index = 1.5.

68 Chapter 5 Losses in Optical Fibers
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As a pulse of light propagates down a long fiber, it will generally broaden in time, a phe-
nomenon known as dispersion. In multimode fibers, the dispersion is largely due to the
different propagation speeds for the various modes, which is known as intermodal disper-
sion. Typical values of intermodal dispersion are ~ 50 ns/km (see Chapter 3), which limits
the useful propagation range for a 100 Mb/s signal to ~ 100 m.

There are two basic approaches to reducing dispersion. The first is to design the fiber
core so that different modes have a more nearly equal transit time down the fiber. This
can be accomplished with a graded-index fiber, as discussed in the next section. The sec-
ond approach is to eliminate all modes but one, that is, use a single-mode fiber. Although
single-mode fibers have no intermodal dispersion, they have other sources of dispersion,
which are the subject of much of this chapter. The dispersion that occurs for propagation
in a single mode is termed intramodal dispersion.

6-1. GRADED INDEX FIBER

Consider a fiber with an index of refraction that varies radially in the core, as shown in
Fig. 6-1. The index is highest on the fiber axis, and decreases smoothly to the core-
cladding boundary. This is called a graded-index fiber, and is in contrast to the usual step-
index fiber, in which the core index is constant right up to the core–cladding boundary. A
ray such as b (Fig. 6.1) that initially makes an angle with the fiber axis will be deflected
into a curved path as it propagates, because the speed of the wavefront v = c/n is higher in
the lower-index medium than in the higher-index medium. The physical understanding of
this deflection is similar to that of refraction through a dialectric interface, shown in Fig.
(2-6).

To see how a graded-index fiber can reduce intermodal dispersion, consider two rays,
taking the paths marked a and b (Fig. 6.1). A ray taking the path b has a longer distance to
go, but it moves along a path where the average speed is higher. If the radial index varia-
tion n(r) is chosen properly, the time taken for light to propagate along the two paths will
be nearly the same. It turns out that a quadratic variation,

n(r) = n1[1 – (r/a)2�]

accomplishes this, where � = (n1 – n2)/n1, n1 and n2 are the (maximum) core index and
cladding index, respectively, and a is the core radius. Theoretically, this variation in n(r)
reduces the dispersion by a factor of �/8 compared to an equivalent step-index fiber (Se-
nior 1992). For example, if � = 0.01, then the 50 ns/km intermodal dispersion for a step-
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index fiber becomes only � 50 ps/km for the corresponding graded-index fiber. The im-
provement is very sensitive to the exact index profile, however, and care must be taken to
ensure that n(r) is close to quadratic.

6-2. INTRAMODAL DISPERSION

In a single-mode fiber, there would be no dispersion for monochromatic light, that is,
light with a single precise wavelength. However, light with any finite spectral width ��
will suffer from dispersion because the different wavelength components of the light trav-
el at different speeds. Since this dispersion occurs within a single mode, it is referred to as
intramodal dispersion, and because it depends on the spectral distribution of the light, it is
also called chromatic dispersion. Chromatic dispersion arises from two distinct processes,
as discussed in the following two sections.

Material Dispersion

One cause of chromatic dispersion is the variation of refractive index n(�) with wave-
length. The refractive index governs the speed of the wave, so a varying index will result
in a varying speed for the different wavelength components. This is called material dis-
persion because it depends only on a property of the material—the index of refraction. It
applies equally to light propagating in a fiber geometry or in a large, homogeneous medi-
um such as a glass rod, a liquid, or the atmosphere.

We can characterize the material dispersion quantitatively by calculating the time t for
light of a particular wavelength � to travel a distance L down the fiber. Recognizing that
the group velocity given by Eq. (3-19) is the appropriate speed to use, we have

t = = L = L · (6-1)

where � here will be taken as the free-space wavelength. The derivative d�/d� can be de-
termined from the relations � = c/� = 2�c/� to be

= –2� = – (6-2)
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Figure 6-1 Ray propagation along two paths a and b in a graded-index fiber.
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The derivative d�/d� in Eq. (6-1) can be evaluated easily if we assume that the light
propagates as a plane wave. In this case,

� = nk0 = n (plane wave assumption) (6-3)

where the wavelength dependence appears both explicitly and through the index n(�). Us-
ing the rule for the derivative of a product, we have

= – n = – �n – � � (6-4)

Substituting Eq. (6-2) and Eq. (6-4) into Eq. (6-1) then yields for the propagation time

t = �n – � � (6-5)

Notice that the propagation time for a given wavelength is not found by simply using the
wavelength-dependent index n(�) in t = Ln/c, but rather depends on the variation of index
with wavelength dn/d�. This comes from the use of the group velocity rather than the
phase velocity. The group velocity is given by

vg = (6-6)

whereas the phase velocity is vp = c/n. If the index of refraction is a constant, then dn/d� =
0, and the simple result t = Ln/c is obtained. The group and phase velocities are the same
in this special case.

If a light pulse has a spectral width ��, the different wavelength components in the
pulse will propagate with different delay times according to the n(�) and dn/d� for each
wavelength. The spread in arrival times �t for the different wavelength components will
then be

�t = · �� (6-7)

The derivative in Eq. (6-7) can be evaluated from Eq. (6-5) as
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which, after combining with Eq. (6-7), yields

�t = – � �� (material dispersion) (6-9)
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According to Eq. (6-9), there are two ways to minimize material dispersion. The first
approach is to use a nearly monochromatic light source (small ��). This is a fundamental
property of laser light, making the laser an ideal source for high-speed optical communi-
cations.

The second approach is to choose a wavelength where d2n/d�2 becomes very small.
The variation of refractive index with wavelength arises from the interaction of the light
with the electronic and vibrational transitions in the glass. For wavelengths in the visi-
ble and near infrared regions, the balance between these two types of transitions causes
n to decrease with increasing � in the fashion shown in Fig. 6-2. At some wavelength
�0, there is an inflection point in the graph of n(�), at which point d2n/d�2 � 0. In sil-
ica glass, this occurs at �0 � 1300 nm, which is another reason (in addition to low at-
tenuation) that the 1300 nm region was chosen for the second telecommunications win-
dow.

Since the dispersion is proportional to L and ��, it is convenient to define a material
dispersion coefficient,

Dm � = – (material dispersion coefficient) (6-10)

which is only dependent on the material property d2n/d�2. The bottom graph in Fig. 6-2
shows that Dm is negative for � < �0 and positive for � > �0. A negative Dm implies that
longer wavelengths have a shorter arrival time, that is, they travel faster. This is termed
normal dispersion since it is what is normally encountered in the visible and near IR spec-
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Figure 6-2 Variation of refractive index with wavelength for silica glass in the visible and near IR re-
gions. The curvature d2n/d�2 goes to zero at �0 � 1300 nm.
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tral regions. It also happens to agree with how the phase velocity changes with wave-
length: longer � means decreasing n, which gives a greater vp = c/n.

A positive value of Dm implies that longer wavelengths have longer arrival times, and
thus travel slower. This is termed anomalous dispersion, and occurs in silica glass for � >
1300 nm. In this spectral region, the group velocity decreases with increasing �, but the
phase velocity increases, since n continues to decrease with increasing �. This difference
in group and phase velocity behavior is one sense in which the dispersion is “anomalous,”
and has applications in soliton propagation in fibers, to be discussed in Chapter 9.

Calculate the dispersion coefficient Dm in ps/(nm · km) and the dispersion per unit
length in ns/km or ps/km for each of the following:

(a) LED (light-emitting diode) light with spectral width of 40 nm, operating at wave-
length 800 nm, where d2n/d�2 = 4 × 1010 m–2.

(b) Laser light with spectral width of 0.2 nm, operating at wavelength 1500 nm, where
d2n/d�2 = –2.7 × 109 m–2.

Solution: (a) For � = 800 nm, the material dispersion coefficient is

Dm = – (4 × 1010) = –107 × 10–6 s/m2

or

Dm = –107 

The dispersion per unit length (dropping the minus sign) is

= �107 � · (40 nm) = 4.3 

This can be compared with the ~ 50 ns/km typical for intermodal dispersion (see Ex-
ample 3-2).

(b) For � = 1500 nm,

Dm = – (–2.7 × 109) = 13.5 × 10–6 s/m2 = 13.5 

The dispersion per unit length is

= �13.5 � · (0.2 nm) = 2.7 

The dramatic reduction in dispersion for the laser source illustrates its importance for
high-speed optical communications.
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Waveguide Dispersion

In the previous section, the plane wave assumption � = n2�/� was made. Although this is
a reasonable assumption for multi-mode fibers, it is not as valid for single-mode fibers.
The proper treatment for single-mode fibers is to replace n by neff, as in Eq. (4-15). The
effective index neff varies with wavelength not only because of material dispersion, but
also because neff varies with V (see Fig. 4-9), and V, in turn, varies with wavelength. This
implicit variation of neff[V(�)] with � gives rise to the second cause for intramodal disper-
sion, which is termed waveguide dispersion.

Waveguide dispersion can analyzed quantitatively by making the substitution n � neff

in each of Eqs. (6-3)–(6-10). The resulting total chromatic dispersion is then

Dc � = – (total chromatic dispersion coefficient) (6-11)

To evaluate this, it is useful to define the waveguide contribution to the index as � =
neff – n2.* Eq. (6-11) then becomes
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= Dm + Dw

where Dw is the waveguide dispersion coefficient. The waveguide dispersion coefficient
can be rewritten using a change of variables (see Problem 6.6) as

Dw � – (waveguide dispersion coefficient) (6-13)

with V given by Eq. (4-9). In writing Eq. (6-13), we are assuming that the wavelength de-
pendence of V is V 	 1/�, which ignores the wavelength dependence of NA in V = 2�a
NA/�. Relaxing this assumption gives rise to another (usually minor) contribution to Dc

called profile dispersion.
The waveguide dispersion given by Eq. (6-13) can be positive or negative, depending

on the curvature of V� versus V. Fig. 4-9 shows that the curvature of � versus V is positive
for small V, and becomes negative for large V. A plot of V� versus V exhibits a similar be-
havior, except that the point of zero curvature is shifted to larger V. In the range V < 2.405
relevant for single-mode fibers, the curvature is positive, making Dw negative.

The dependence of Dw on wavelength can be understood by referring to Eq. (6-13) and
Fig. 4-9. Longer � corresponds to a smaller V, where the curvature of V� versus V is larg-
er. This leads to a larger negative value of Dw for increasing �. Fig. 6-3 illustrates this
variation of Dw, along with the material dispersion Dm and the combined dispersion Dc =
Dm + Dw. The effect of waveguide dispersion is to shift the wavelength �min for which the
dispersion is zero from �0 to a longer wavelength. In conventional single-mode fiber opti-
mized for the 1300 nm band (now referred to as “legacy fiber”), this shift is small.

The shift in the zero-dispersion wavelength can be made larger by modifying the re-
fractive index profile in the fiber core. For example, if the core radius is made very small,
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*A related constant b = �/(n1 – n2) is defined by some authors, such that 0 < b < 1.
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the fiber V parameter is also small, leading to larger negative values of Dw. For step-
index, single-mode fiber of core radius a it is found that Dw 	 a–2. Fiber for which the
zero-dispersion wavelength �min is significantly shifted from �0 is called dispersion-shift-
ed fiber, as illustrated in Fig. 6-4b. When �min is shifted to ~ 1550 nm, the wavelength of
lowest loss coincides with the wavelength of minimum dispersion. This allows the maxi-
mum possible data transmission rate for long optical fiber communications links operat-
ing at a single wavelength.

One limitation in using dispersion-shifted fiber is that the system is optimized for only
a single wavelength. When multiple wavelengths are simultaneously sent down the fiber
(called wavelength division multiplexing, or WDM), the different wavelengths will have
vastly different dispersion, complicating the system engineering. Another complication
occurs when nonlinear effects in the fiber core mix different wavelengths in a WDM sig-
nal (see Chapter 24). The mixing process is most efficient when different wavelengths
propagate with equal speeds, that is, when the dispersion is very small.

For the above reasons, there is interest in fibers having a dispersion that is small but
nonzero, and fairly constant over the wavelengths used in long-haul telecommunications.
An example of this is the so-called “W fiber,” which has a double-cladding structure, as
shown in Fig. 6-4c . This type of refractive index profile gives rise to dispersion-flattened
fiber, which has the desired dispersion characteristics for WDM. Other multiple-cladding
structures can be used to fine-tune and optimize fibers for dispersion management (Senior
1992).

Polarization-Mode Dispersion

So far, we have considered the spreading in time of a light pulse due to intermodal disper-
sion (light distributed among several modes) and chromatic dispersion (light distributed
over a range of wavelengths). A third type of time-spreading mechanism, that of polariza-
tion mode dispersion (PMD), is a consequence of the light being distributed over different
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Figure 6-3 Dispersion coefficient Dc for single-mode fiber, showing contributions Dm from material
dispersion and Dw from waveguide dispersion (core radius � 4 
m).

Dc
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polarizations. For a perfectly uniform and symmetrical fiber, the propagation speed would
be independent of polarization, and light of all polarizations would arrive at the far end of
the fiber at the same time. In real fibers, however, there are always small stresses on the
fiber that make the refractive index slightly different for light of two orthogonal polariza-
tions, and the arrival time, therefore, depends slightly on polarization. The resulting dis-
persion tends to be small, because light of one polarization is rather easily coupled (usual-
ly within a few meters) into the orthogonal polarization by fiber bends and irregularities.
This gives rise to a fairly uniform propagation speed, with statistical fluctuations from the
average that increase with fiber length. The time spread of a pulse due to PMD is found to
obey

�tPMD � DPMD�L	 (polarization mode dispersion) (6-14)

where DPMD is the polarization mode dispersion coefficient. Typical values for communi-
cations fiber are 0.2-2 ps/�k	m	.

The �L	 dependence for PMD is similar to that noted earlier (see p. 66) for intermodal
dispersion when L > 1 km. The origin of the �L	 dependence lies in the statistical nature
of the processes. Light is coupled randomly from mode to mode, or from one polarization
to another, resulting in statistical fluctuations from an average. This corresponds to the
well-known “random walk problem” in statistics, which is characterized by a distribution
with a width proportional to the square root of the number of steps.
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Figure 6-4 The refractive index profile can be tailored to produce different dispersion curves.
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Total Fiber Dispersion

To determine the total time spread of a pulse, we must combine the various sources of
fiber dispersion. The way that we combine them depends on whether they are correlated
or uncorrelated. For example, material dispersion Dm and waveguide dispersion Dw are
correlated because they both depend in a specified way on the wavelength. In this case,
we add these dispersions directly, as in Eq. (6-12), to obtain the total chromatic disper-
sion, Dc. However, intermodal dispersion, chromatic dispersion and PMD do not share
any common origin, and are therefore uncorrelated. In this case, we must add the time
spreads “in quadrature”:

�tfiber = ��	t2
m	od	al	 +	 �	t2

c	hr	om	at	ic	 +	 �	t2
P	M	D	 (total fiber dispersion) (6-15)

In many situations, one of these three terms dominates and the others can be neglected.
For example, in step-index multimode fiber, the �t2

modal term usually dominates; it is zero,
however, in single-mode fiber. The contribution from PMD can often be neglected, but
can be significant in long fiber spans when very monochromatic light sources are used.

PROBLEMS

6.1 A light pulse with wavelength 850 nm passes through a single-mode silica fiber. (a)
Determine the time spread of the pulse per unit length due to material dispersion if
the spectral width is 20 nm. (b) Repeat if the spectral width is 2 nm. (From Fig. 6-2,
take d2n/d�2 = 3 × 1010 m–2.)

6.2 A light pulse with wavelength 1550 nm passes through a single-mode silica fiber.
Using Fig. 6-3, determine the time spread of the pulse per unit length due to materi-
al dispersion if the spectral width is 2 nm.

6.3 Determine the maximum bit rate for digital modulation using the results in Problems
6.1 and 6.2 for fiber lengths of 100 m and 10 km.

6.4 Pulses with a 2 nm spectral width at two discrete wavelengths 850 and 860 nm are
coupled simultaneously into a long step-index, single-mode fiber with core radius 4

m. (a) Which of these pulses reaches the far end of a 5 km long fiber first? (b)
What is the time delay between the two pulses at the fiber end?

6.5 Repeat Problem 6.4 if the two wavelengths are 1550 and 1560, each with spectral
width 2 nm.

6.6 Using V = 2�aNA/�, show that Eq. (6-13) is equivalent to the second term in Eq. (6-
12). Assume that NA is independent of �.

6.7 Using Fig. 6-3, estimate the total chromatic dispersion at 1550 nm for a step-index
silica fiber having core radius 3 
m. Repeat for a core radius 2 
m.

6.8 Show that the intermodal pulse spread per unit length in a fiber is approximately
given by �t/L � NA2/(2nc), where NA is the fiber numerical aperture, and the core
and cladding are assumed to have indices both close to n.

6.9 Light from a GaAs LED (center wavelength 850 nm, spectral width 50 nm) is sent
down a step-index fiber with core diameter 60 
m. At this wavelength, the silica
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glass in the core has material dispersion d2n/d�2 = 3 × 1010 m–2. What NA is needed
for this fiber so that the �t/L for intermodal dispersion will be equal to that of mate-
rial dispersion?

6.10 Chromatic dispersion in a long fiber link can be “undone” by periodically passing
the dispersed pulses through a special dispersion compensation fiber (DCF), which
has a chromatic dispersion coefficient of opposite sign. If the DCF has Dc = – 300
ps/(nm km) at the operating wavelength of 1550 nm, and a length of 1 km, deter-
mine the distance required between the DCF insertions along the fiber link. Assume
that the fiber link uses standard silica telecommunications fiber of core radius 4 
m.

6.11 Single-mode fiber in a communications link is dispersion-flattened with Dc = 2
ps/(nm km) at the operating wavelength of 1550 nm, and has polarization mode dis-
persion coefficient DPMD = 2 ps/�k	m	. The linewidth of the light source is 1 nm.
Determine the total time spread of light for fiber lengths of (a) 500 m and (b) 5 km.
The chromatic dispersion can be reversed using dispersion-compensating fiber (see
Problem 6.10). Will this work for polarization dispersion?
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To use fibers for photonics applications, light must usually be coupled from one fiber to
another. The different ways of accomplishing this will be discussed in this chapter. The
losses involved in making fiber connections will be considered, as well as diagnostic
techniques for determining the degree of loss.

7-1. FIBER CONNECTIONS

Connections between fibers can be classified into three types: a splice, a connector, or a
coupler. In this section, each of these is briefly described.

Fiber Splice

A fiber splice is a permanent connection between fibers and is the optical equivalent of
soldering wires together. In a mechanical splice, the fibers are typically held together in a
“V groove” arrangement or in a tightly fitting capillary tube, as shown in Fig. 7-1. Index-
matching fluid can be inserted between the fiber ends to reduce Fresnel reflection losses,
and glue can be used to secure the alignment. An elastomeric splice is a type of mechani-
cal splice having some elasticity in the capillary tube, which allows fibers of somewhat
different dimensions to be joined.

The other type of splice is the fusion splice, in which the fiber ends are fused (melted)
together to form a seamless junction. The fusion is accomplished with a fusion splicer,
which is essentially an optical arc welder. In this process, a high-current, pulsed electrical
discharge is created between closely spaced electrodes, which raises the temperature of
the fiber to above the melting point of the glass. The duration of the pulse is carefully con-
trolled to melt just emough glass to make the join, but not so much as to degrade the core-
cladding structure. Slight misalignment of the two fibers tends to be self-correcting in this
process, because the surface tension of the liquified fiber region acts to bring the fiber
cores into proper alignment. Losses in a fusion splice can be quite low, in the 0.1 dB
range.

Fiber Connector

A fiber connector is a connection intended to be repeatedly made and broken, as in an
electrical plug. The two fibers are held securely in a connector housing, and are joined by
simply “butt coupling” the two fiber ends, as in Fig. 7-2, so that the cores match up.
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Several different connector housing types have become industry standards, including
the SC connector, which snaps in place, the ST connector, which twists on with a bayonet
latch, and the FC connector, which twists onto a threaded mount. (Hecht, J. 2002)

Fiber Coupler

In a fiber coupler, light is combined or divided between three or more fibers. The Y cou-
pler, for example, couples power P1 and P2 from two input fibers into a power P3 in a
single output fiber, as shown in Fig. 7-3a. In an ideal Y coupler, any light incident from
port 1 will be coupled entirely into the output port 3, and any light incident from port 2
will also be coupled entirely into port 3. For multimode fibers, the throughput efficien-
cy P3/(P1 + P2) can be reasonably high, but for single-mode fibers there are fundamen-
tal limits to this efficiency. The limitations on coupling light from two sources into a
single-mode fiber can be understood based on the principle of optical reciprocity. This
principle is based on the symmetry of Maxwell’s equations with respect to the replace-
ment t � (–t), and asserts that any allowed passive optical process (such as propagation
of light) has an equally allowed counterpart that is identical in every respect but re-
versed in time.

80 Chapter 7 Fiber Connections and Diagnostics

Figure 7-1 Two ways of holding fibers together for splicing. (a) Fiber sandwiched between V-
groove substrate and flat glass top plate. (b) Fiber inserted into tight-fitting capillary tube.

Figure 7-2 In butt-coupling geometry, the cores of two optical fibers are pressed directly together.
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Applying the reciprocity principle to the Y coupler, say that there is power P2 inci-
dent in port 2 and no power incident in port 1, as shown in Fig. 7-3b, and it is desired
to extract the entire power P2 out of port 3. In this case, the time-reversed propagation
of Fig. 7-3c would also be allowed, which means that a power P3 coupled into the port
3 would be entirely output into port 2. However, we could equally well have started
with light only coupled into port 1, in which case the conclusion would have been that
light coupled into port 3 is entirely output into port 1. Since in a single-mode fiber there
is only one way for the light to propagate after being coupled into port 3, the two con-
clusions are inconsistent. This means that our assumption that Fig. 7-3b is an allowed
solution must be wrong; light entering port 2 (or port 1) must go somewhere in addition
to port 3.

Further insight into this problem of limited coupling efficiency can be obtained by
considering the specific coupling scheme shown in Fig. 7-3d. A small, partially reflective
surface is placed at an angle of 45° inside the fiber, and light incident from the side is in-
jected into the fiber core by reflection off this surface. If a fraction R of light is reflected,
then an amount of light power RP2 will be injected into the core, with (1 – R)P2 passing
through the fiber and lost. At the same time, however, the light already in the fiber core
will be partially reflected out of the fiber, an amount RP1 being lost. The total amount of
light remaining in the fiber after the coupling will be RP2 + (1 – R)P1, which is less than
the total incident light P1 + P2. The difference between total incident and total coupled
light is lost into the upward-going beam, which constitutes a de facto fourth port for this
device.

The limits on coupling efficiency discussed above apply only when combining two
beams into one single-mode fiber. It is important to note that it does not apply to the split-
ting of energy from a single beam into two beams or fibers going in different directions. A
device that performs this task is termed a directional coupler, and can have high efficien-
cy. Examples of directional couplers would be Fig. 7-3a with the arrows reversed (P3 is
input beam), or Fig. 7-3d without the beam P2 incident from the side.

The efficiency limits for combining two beams also only applies to beams of precisely
the same wavelength. Beams of different wavelengths can be more efficiently coupled by
means of wavelength-selective reflective elements such as dichroic mirrors or diffraction
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Figure 7-3 Combining two beams in a (a) Y coupler and (d) an in-fiber beam splitter. Perfect cou-
pling of each input port into the output (b) is not allowed by time-reversal arguments (c).
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gratings. This has important implications for wavelength division multiplexing (WDM),
as will be discussed in Chapter 22.

An important fiber coupler that can be used as a beam splitter or combiner is the fused
biconical taper coupler. This four-port device is constructed by twisting together two
bare-clad fibers, then applying heat and stretching the fibers to create a region in which
the fibers become thinner, as shown in Fig. 7-4.

In the tapered region, the core radius of each fiber becomes very small, and the result-
ing small V parameter gives a large mode waist size w according to Eq. (4-18). The mode
field from each fiber core extends far enough into the cladding to overlap significantly
with the core of the adjacent fiber, as illustrated in Fig. 7-4b. As a result, light propagating
in one of the cores will gradually “leak into” or “couple with” the other core. After propa-
gating a distance known as the coupling length, the light energy has moved completely
from one core to the other. As the light continues to propagate, the energy is transferred
back and forth between the two cores in a periodic fashion. The coupling length will be
shorter for cores that are closer together, since the modes then interact more strongly. By
adjusting the ratio of the physical taper length to the coupling length, one can design the
coupler so that a given fraction of light entering port 1 will be exit in port 3, and the re-
mainder in port 4. This device plays the role of an all-fiber beam splitter, and has many
applications in photonics.

7-2. LOSSES IN FIBER CONNECTIONS

Light can be lost in a fiber connection in a number of ways, including scattering or ab-
sorption of light at the fiber surfaces, misalignment of the two fiber cores, or a difference
in numerical aperture (NA) when connecting different types of fiber. Scattering and ab-
sorption can be minimized by sufficiently polishing and cleaning the fiber surface. The
coupling loss due to NA mismatch will be considered in Chapter 12. In this section, we
consider the various types of misalignment and the associated coupling loss for multi-
mode and single-mode fiber.
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Figure 7-4 Fused biconical taper coupler in (a) side view, (b) cross section.
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Multimode Fiber

There are three types of misalignment that can cause loss of coupled power, as indicat-
ed in Fig. 7-5. The greatest loss usually comes from a lateral offset � in the fiber cores.
For multimode fibers, the cores can be considered to be uniformly filled with light. The
coupling efficiency is then determined by the overlap of core areas, and can be shown to
be (see Problem 7.1)

�lat � = �2 cos–1� � – � ��1 – � �
2

�
1/2

� (7-1)

where a is the core radius, and P1 and P2 are the optical powers before and after the con-
nection. The dB loss due to lateral offset is then

dB loss = 10 log10(1/�lat) (lateral offset loss) (7-2)

using Eq. (1-1).
If there is a gap between the fibers, there will be an additional loss due to the Fresnel

reflection at each fiber end. This will cause the transmitted light to be reduced by the fac-
tor (see Problem 7.4)

�Fres = (Fresnel transmission) (7-3)

where n1 and n0 are the refractive indices of the core and coupling medium, respectively.
The combined coupling efficiency for both lateral offset and Fresnel losses is then � =
�lat�Fres.

Another source of coupling loss is angular misalignment, as shown in Fig. 7-5b. If one
multimode fiber is tilted by an angle � from the other, it can be shown (Tsuchiya et al.
1977) that the coupling efficiency is

�ang � 1 – (angular offset) (7-4)

where � is measured in radians, NA is the numerical aperture, n0 is the refractive index of
the medium between fibers, and small deviation � � 1 is assumed. Note that since the
cone angle for light entering or leaving a fiber is �max 	 NA/n0, the fractional decrease in
coupling efficiency due to angular misalignment is � �/(��max).

Still another (usually minor) source of coupling loss is a longitudinal separation z be-
tween the fiber ends, as in Fig. 7-5c. For small separations z � a, the coupling efficiency
due to longitudinal offset is (Tsuchiya et al. 1977)

�long � 1 – (longitudinal offset) (7-5)

The total coupling efficiency for any combination of small offsets is given by

�tot � �Fres�lat�ang�long (total coupling efficiency) (7-6)

zNA
�
4an0

n0�
�
�NA

16(n1/n0)2

���
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�
�
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�
�
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�
�
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The corresponding total dB loss is found by adding the dB losses for for the individual
loss mechanisms.

Single-Mode Fiber

For single-mode fibers, it is not a good assumption that the fiber core is uniformly filled
with light. Rather, the mode field is approximately Gaussian in distribution, as given by
Eq. (4-16). Therefore, when calculating the loss due to lateral offset it is not the core area
overlap that must be calculated, but instead the overlap of the two (offset) Gaussian mode
fields. The coupling efficiency is then found (Marcuse et al. 1979) to be

�lat = e–(�/w)2 (single-mode lateral offset) (7-7)

where w is the mode waist size given by Eq. (4-18). One difference between the single-
mode and multimode results (see Problems 7.2 and 7.5) is that for small � the loss is lin-
ear with � for the multimode case, but quadratic with � for the single-mode case. This
helps to alleviate the sensitivity of single-mode fibers to lateral offset, but the very small
w typical of single-mode fibers still makes precise alignment necessary.

Angular misalignment losses are also different for single-mode fibers, because the an-
gular spread of light exiting the fiber is determined by diffraction rather than by the nu-
merical aperture. The divergence angle is thus [see Eq. (2-25)] �max ~ �/(2w), and the
coupling loss should then depend on the ratio �/�max. A detailed calculation bears this out
(Marcuse et al. 1979), with the result

�ang = e–(�n1w�/�)2 (single-mode angular offset) (7-8)

where, again, w is the mode waist size and n1 is the core index of refraction. Note that for
small angular offset, the fractional loss varies quadratically with angle as ~ (�/�max)2, in
contrast to the linear dependence for multimode fibers.
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Figure 7-5 Types of misalignment in fiber–fiber coupling.
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There is also some loss from longitudinal offset, but in practice it is usually small
compared with the other two offsets, and can be neglected. The total coupling efficien-
cy can then be obtained by multiplying the efficiencies for lateral and angular offsets
and reflection losses (or adding the corresponding dB losses), provided the losses are
small.

The results in Eqs. (7-1)–(7-8) serve as a useful guideline for estimating losses in real
multimode and single-mode fiber systems. However, it should be kept in mind that irreg-
ularities in the fiber geometry or modal distribution can cause deviations from these cal-
culations in practice, and the equations are more useful for estimating trends than for
making detailed quantitative predictions.

7-3. FIBER LOSS DIAGNOSTICS

It is important in practice to be able to evaluate the losses occuring in a fiber optic system.
Say, for example, that we have a splice connection between two fibers, and want to know
the loss due to the splice. One possibility, as indicated in Fig. 7-6, would be to measure
and compare the powers Pin incident on the fiber and Pout exiting the fiber. There are sev-
eral difficulties with this approach, however. First, if the fiber link is long, the powers
would need to be read on different power meters, requiring careful calibration. Also, the
amount of power actually coupled into the fiber is not the same as the incident power, due
to the (unknown) coupling efficiency. Even if these problems were overcome, it would
not be possible with a single measurement to determine whether the measured loss were
due to the splice or to intrinsic losses within the fibers themselves. And finally, if there
were more than one splice, it would not be possible to determine the contribution from
each splice separately.

In this section, two important techniques are discussed that address one or more of the
above problems.

Cutback Method

If the primary goal is to accurately measure the propagation loss in a long length of fiber,
the cutback method can be used. As illustrated in Fig. 7-7, light is coupled into the long
fiber, which is typically coiled up on a drum in the laboratory, and the power exiting the
far end is measured with a power meter. After the power is measured (designated PB), the
fiber is cut at point A, which is close to the beginning of the fiber. The power exiting the
end of the (now very short) fiber is again measured with the same power meter, and des-
ignated PA. Since the input coupling efficiency has not changed, and since the collection
efficiency remains the same, the only reason for a difference in the two power readings
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Figure 7-6 Measuring input and output power to determine fiber loss.
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would be propagation loss in the fiber under test. The attenuation coefficient � in the fiber
is then determined from

PB = PAe–�L (7-9)

where L is the length of fiber that was cut off.
For meaningful loss measurements, it is important that light is propagating only in the

core, and (for multimode fiber) is uniformly distributed among the modes. This can be ac-
complished with a mode stripper (Fig. 5-16) and mode scrambler (Fig. 5-15) inserted in
the fiber before point A. The cutback method is a destructive technique, since a small
amount of the long fiber is removed each time a measurement is made. It is mostly used in
laboratory work for examining the quality of an optical fiber, rather than as a diagnostic
technique in the field.

Optical Time-Domain Reflectometer

The optical time-domain reflectometer, or OTDR, is a general purpose instrument for
characterizing fiber losses, and is used both in the laboratory and in the field. Like the cut-
back method, it corrects for the unknown coupling loss by taking ratios of measured sig-
nals. Instead of taking the ratio of signals at different locations, however, it takes the ratio
of reflected signals arriving at different times. In this way, the OTDR can separate out
multiple sources of loss in a fiber link, determining the location and magnitude of splice
losses as well as the attenuation coefficients of the fibers in the link.

As illustrated in Fig. 7-8, an OTDR operates by sending a short pulse of light through a
beam splitter, and coupling it into the fiber under test. As the pulse propagates in the fiber,
a certain fraction is scattered (point A) or reflected (point B) from splices or other irregu-
larities, and a fraction of this scattered light is coupled back into the fiber core going in
the reverse direction. When this backward-going light exits the front end of the fiber, a
portion reflects off the beam splitter and into a photodetector, which converts the light
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Figure 7-7 The cutback method for determining fiber loss.
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into an electrical signal. The resulting time-dependent photodetector signal is displayed
on an oscilloscope or waveform averager, and constitutes the OTDR trace that is used to
determine losses in the fiber link.

There are two distinct sources of the OTDR signal: reflection at discrete points at
which there is a break or end in the fiber, and Rayleigh scattering along the entire length
of fiber. In a reflection process, the angle that the ray makes with the boundary is pre-
served, and a large fraction of the backward-reflected light remains coupled in the fiber.
In a scattering process, however, the direction of the scattered light is randomized, and
only a small fraction (~ 	/2) is trapped by the fiber core in the backward-going direction.
Fiber breaks, therefore, appear as large spikes on top of a continuous background from
Rayleigh scattering, as shown in the inset of Fig. 7-8.

Three important aspects of fiber loss can be analyzed quantitatively from a single
OTDR trace.

1. Location of Splice or Break

The fundamental idea of the OTDR is that it maps the spatial distribution of defects along
the fiber into the time domain. The pulse of light must travel for a time t = z/v to reach a
defect (such as a splice) that is a distance z down the fiber, as illustrated in Fig. 7-9. Here,
v is the group velocity given by Eq. (6-6), with n replaced by neff. Although the differ-
ences between vp, vg, and veff are important when considering dispersion (Chapter 6), they
are insignificant when determining the propagation times to different parts of a fiber, and
it is a good approximation to let v = c/n, where n = n1 is the core index. The propagation
time for the pulse to reach the defect is then t = z/(c/n). After reflecting or scattering from
the defect, the scattered light must then propagate for another time t = z/(c/n) to reach the
front end of the fiber, for a total “delay time” of

tdelay =
2nz
�

c
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Figure 7-8 The optical time domain reflectometer (OTDR) uses the time dependence of reflected
light to analyze fiber losses.
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Putting it another way, if a spike is observed on the OTDR trace at a delay time of tdelay,
the corresponding defect is located at a distance

z = tdelay (position of defect) (7-10)

The reference time for measuring tdelay is taken to be the reflection spike from the front
end of the fiber, which is generally quite large due to the high refractive index contrast be-
tween the incident medium (usually air) and the fiber core. Compared to the delay from
propagating hundreds of meters in the fiber, delays associated with propagation from the
beamsplitter to detector are quite small and can usually be neglected.

2. Magnitude of Splice Loss

In addition to measuring the location of a splice, an OTDR can also determine the magni-
tude of loss in that splice. The splice loss is determined by comparing the Rayleigh scat-
tering OTDR signal from points before the splice (point A in Fig. 7-9b) and after the
splice (point B). If the one-way transmission through the splice is T, then a fraction T of
the forward-propagating pulse energy at point A remains at point B to undergo scattering.
Of the light that is scattered at point B, only a fraction T remains after traversing the splice
again in the reverse direction. The OTDR signals SA and SB due to light scattered at points
A and B are then related by

SB = T2SA (7-11)

and the corresponding dB drop in OTDR signal is

dBdrop = 10 log10� � = 20 log10� � (7-12)

Note that the one-way dB loss through the splice is half that given by Eq. (7-12).

3. Loss Coefficient of Fiber

The third important fiber characteristic that can be studied with the OTDR is the attenua-
tion coefficient of the fiber. According to Beer’s law (Eq. 5-1), the intensity of light de-
creases by the factor exp(–�z) after propagating a distance z down the fiber. The amount

1
�
T

SA
�
SB

c
�
2n
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Figure 7-9 An OTDR can be used to: (a) locate the position of a splice by the travel time of reflect-
ed light, (b) determine the transmission loss of a splice.
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of Rayleigh-scattered light generated at z is, therefore, also decreased by the factor
exp(–�z) compared with that generated at the beginning of the fiber (z = 0). The light
scattered at position z must propagate back to the beginning of the fiber, decreasing the
measured signal by another factor of exp(–�z). The signal S(z) due to light that was scat-
tered at position z is then

S(z) = S(0)e–2�z (7-13)

where S(0) is the signal from light scattered near the beginning of the fiber (z = 0), and �
is the attenuation coefficient. Light scattered at position z will be detected at time t given
by Eq. (7-10), so the time dependence of the OTDR signal will be

S(t) = S(0)e–2�(ct/2n)

(7-14)
= S(0)e–(�c/n)t

which is a decaying exponential. Taking the log of Eq. (7-14) gives

loge� � = –�� �t (7-15)

which is a straight line with slope –�c/n. The attenuation coefficient � can, therefore, be
determined by plotting loge [S(z)/S(0)] versus t, and dividing the slope of this line by c/n.

The types of information that can be obtained from an OTDR trace are illustrated in
Fig. 7-10. Straight-line sections correspond to distributed Rayleigh scattering, with steep-
er slope implying higher loss. A splice or break between two fiber sections is marked by a
sudden vertical shift in the trace, the time of the shift giving the location of the splice and
the magnitude of the shift giving the dB loss in the splice. The spatial resolution for locat-
ing defects is limited by the time resolution 	t, given by the pulse width or the detector
response time, whichever is larger. Using Eq. (7-10), the spatial resolution 	z is

	z = 	t (7-16)
c

�
2n

c
�
n

S(z)
�
S(0)
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Figure 7-10 Fiber attenuation is determined from the slope of the OTDR trace on a semilog plot.

�
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For example, a pulse width of 10 ns results in a spatial resolution of 1 m, assuming n =
1.5. Pulse widths in the picosecond range can give cm–mm scale resolutions, provided
that the detector response is sufficiently fast (see Chapter 14).

Although the OTDR was developed for fiber optic communications diagnostics, the
basic principle of time-resolved detection has some other potentially important applica-
tions. For example, optical fiber sensors sense changes in the fiber’s environment via the
changing stresses, strains, and associated losses, and find applications in monitoring the
integrity of buildings and bridges into which a network of optical fibers has been embed-
ded. These sensors can be made into distributed fiber sensors by monitoring the time-de-
pendent reflections from the fiber network upon pulsed excitation. With such a monitor-
ing system in place, the user is not only notified that there is a defect in the structure, but
is also given information about the location of that defect.

PROBLEMS

7.1 Derive Eq. (7-1) by calculating the area overlap of two circles, both of radius a, with
centers offset by �.

7.2 Develop an approximate expression for the fraction of light lost due to lateral offset
in a multimode fiber by expanding Eq. (7-1) in powers of �/a. Assume �/a � 1 and
keep just the lowest-order terms in �/a.

7.3 Two multimode fibers with a = 25 
m are joined together, with a lateral offset � =
1.5 
m. Use Eq. (7-1) to calculate the coupling efficiency and the fraction of light
lost. Compare this with the result obtained using the approximate expression derived
in Problem 7.2.

7.4 Use the Fresnel reflection coefficient for normal incidence given in Eq. (2-14) to de-
rive Eq. (7-3). Also derive an approximate expression for the fraction lost when |n0 –
n1| � 1.

7.5 Develop an approximate expression for the fraction of light lost due to lateral offset
in a single-mode fiber by expanding Eq. (7-7) in powers of �/w. Assume �/w � 1
and keep just the lowest-order terms in �/w.

7.6 For a multimode fiber, how small must the fractional displacement �/a be in order to
keep the coupling loss below 0.2 dB? Repeat this calculation for the �/w ratio of a
single-mode fiber. It is convenient here to use the approximate expressions derived
in Problems 7.2 and 7.5.

7.7 A single-mode fiber has a mode-field diameter of 8.5 
m. Determine the lateral off-
set � that will produce a transmission loss of 0.5 dB.

7.8 Two multimode fibers are being connected with an air gap between them. The air
gap is now filled with an index-matching fluid that is not perfect, as it has a refrac-
tive index of 1.4 whereas the fiber core has an index of 1.48. Compute the transmis-
sion loss in dB, and also the reflected power level (in dB) with respect to the inci-
dent power level.

7.9 A lab technician measures the optical power transmitted through a long spool of
fiber, and then cuts off 2.2 km of fiber from the spool to measure the attenuation co-
efficient. If the two measurements yield powers of 3 mW and 10 mW, what is the at-
tenuation coefficient, expressed both in cm–1 and in dB/km?
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7.10 A field technician is diagnosing the losses in a fiber optic link consisting of two
fibers, A and B, connected together with a mechanical splice. She sends in 800 nm
light at the accessible end of fiber A, and looks at the reflected light signal from that
same port using an OTDR. The measured time dependence is shown in Fig. 7-11.
From this data, how long is the fiber link, and where along the fiber link is the splice
located? Assume an index of 1.5.

7.11 For the fiber link of Problem 7.10, what is the one-way transmission loss through
the splice, expressed in dB? Also give the reflected power from the splice expressed
in dB relative to the power incident on the splice, assuming that the splice loss is due
to reflection (rather than, e.g., absorption or scattering).

7.12 For the fiber link of Problem 7.10, determine the attenuation coefficients for the two
fibers A and B. Express your answer both in cm–1 and in dB/km.

Problems 91

Figure 7-11 Reflected power measured in OTDR for Problem 7.10. The vertical axis is log scale;
the horizontal axis is linear.
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The conventional method for guiding light along a particular path in space is to utilize to-
tal internal reflection (TIR) so that light propagating in a higher index core reflects with
100% efficiency off the boundary with a lower index cladding. This fundamental princi-
ple underlies the operation of nearly all fiber optic and planar waveguide devices in use
today. Recently, however, there has been emerging an alternative and promising para-
digm for controlling the flow of light. In this new scheme, light is confined to the core not
by TIR, but instead by modifying the microstructure of the cladding region so that light
cannot propagate there. The cladding material is modified so that the refractive index
varies periodically in space, with a repetition distance on the order of the wavelength of
light. In three dimensions, the resulting microstructure can be likened to that of a crys-
talline solid, with regions of high index where the atoms would be, and regions of lower
index in between. Because of this analogy with crystalline lattice structure, a microstruc-
tured material of this type is termed a photonic crystal.

A photonic crystal can be periodic in one, two, or three dimensions. The Bragg grating,
for example, which was discussed briefly in Chapter 2, is an example of a one-dimension-
al (1-D) photonic crystal. We will begin this chapter by treating Bragg gratings in further
detail, not only because they are quite useful in and of themselves, but also because their
fundamental properties are easy to understand, and this can be used to develop an intuitive
understanding of the more complex two- (2-D) and three-dimensional (3-D) photonic crys-
tals. We then consider 2-D and 3-D photonic crystals, emphasizing their relation to simple
1-D structures, and pointing out those applications that seem most promising. Progress in
constructing and utilizing 2-D and 3-D photonic crystals is proceeding at a rapid pace, and
new developments will certainly need to be included in any future overview. However, the
fundamental principles are now well established, and the introductory treatment given here
is intended to provide an intuitive foundation for understanding future advances in this ex-
citing field.

8-1. 1-D PHOTONIC CRYSTALS

Step-Index Grating

The simplest one-dimensional photonic crystal consists of an array of N uniformly spaced
parallel slabs, as shown in Fig. 8-1. We define the refractive index of the slabs as n2, and
that of the medium between slabs as n1, with the index difference �n � n2 – n1. The cen-
ter-to-center spacing of the slabs is denoted by �, so the total length of the photonic crys-
tal in the x direction is L = N�. The thickness of each slab will be taken as �/2, so that on
average there is an equal amount of material with indices n1 and n2. This not only simpli-
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fies the analysis, but is also the appropriate condition for making comparisons with a si-
nusoidal grating.

When light is incident from the left, it is partially reflected from each interface in the
series of slabs. To analyze the reflection quantitatively, we take the incident light wave’s
electric field to be of the form

Ei(x, t) = A cos(�t – kx)
(8-1)

= A�ei(�t–kx)

where � designates the “real part” of the following expression, � is the angular frequen-
cy of the light, k =2� n/�0 is the wave vector magnitude, and �0 is the free-space wave-
length. In the following, we will assume �n � 1, so n1 � n2 � n. The complex exponen-
tial notation is useful here because the phase shift of light reflected from different
interfaces is then easily accounted for. Taking the left-most interface to be at x = 0, the E
field of light reflected from the jth interface can be written in the form

Erj(0, t) � � ~Erjei�t (8-2)

where ~Erj is a complex amplitude that includes relative phase as well as magnitude. The
complex amplitude of the incident light at x = 0 is ~Ei = A, a real number.

The total electric field of the reflected light is found by adding the contribution from
each interface, as indicated in Fig. 8-2. The reflections can be separated into two groups:
those in which the light is incident on the interface from index n1, and those in which the
light is incident from index n2. For reflections of the first type, the Fresnel equations (Eqs.
2-11 and 2-12) at normal incidence (� = 0) give an amplitude reflection coefficient:

r = = � – (8-3)

where Ei and Er are evaluated just before and after reflection. Reflections of the second
type obey the same relation, except that n1 and n2 are interchanged, so that r � �n/2n.
Assuming that |r| � 1, the total reflected field at x = 0 due to reflections of the first type
is

�n
�
2n

n1 – n2
�
n1 + n2

Er
�
Ei
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Figure 8-1 A simple 1-D photonic crystal consists of uniform parallel slabs with refractive index n2,
separated by a medium with refractive index n1.
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~Er,12 = – A[1 + e–i	 + e–i2	 + . . . + e–i(N–1)	] (8-4)

where

	 = k(2�) = (2�) = (8-5)

is the phase delay due to propagation over the round-trip distance 2� between slabs. For
reflections of the second type, the corresponding total reflected field is

~Er,21 = Ae–i	/2 [1 + e–i	 + e–i2	 + . . . + e–i(N–1)	] (8-6)

The extra phase change of –	/2 in this last expression comes from the additional round-
trip propagation distance 2(�/2) for each type 2 reflection compared with the correspond-
ing type 1 reflection.

The simplest way to add the terms inside the square brackets is to visualize them as vec-
tors in the complex plane. Each vector has the same magnitude, but the angle from the real
axis is 0, –	, –2	, and so on, for the successive terms. The terms will add to give a maxi-
mum resultant when the vectors all point in the same direction, as depicted in Fig. 8-3a. In
this case, there is constructive interference of the various reflected waves, and the incident
light undergoes efficient Bragg reflection. This will occur when 	 = m2�, where m is an in-
teger giving the order of diffraction. For first-order Bragg diffraction (m = 1), light will be
efficiently reflected when the wavelength satisfies Eq. (8-5) with 	 = 2�. This gives

�B = 2n� (Bragg wavelength) (8-7)

�n
�
2n

4�n�
�

�0

2�n
�

�0

�n
�
2n
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Figure 8-2 Light incident on the array of slabs is partially reflected at each boundary at which the
refractive index changes. Reflected waves from all boundaries at which the index changes from n1 to
n2 combine to give a total reflected complex field amplitude

~
Er,12. The corresponding reflections from

n2 � n1 boundaries give a reflected amplitude
~
Er,21.
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where �B is the Bragg wavelength. (Note that this is the free-space wavelength, not the
wavelength in the medium.) The Bragg wavelength can also be evaluated using Eq.
(2-29), which gives the same result as Eq. (8-7) if we use � = 90°, m = 1, and � in place of
d for the grating spacing.

When the Bragg condition 	 = 2� is satisfied, exp (–i	/2) = –1, and ~Er,21 = ~Er,12. In this
case, the total reflected complex amplitude from all interfaces is

~Er = ~Er,12 + ~Er,21

(8-8)

= – �
�

n

n
� A[1 + e–i	 + e–i2	 + . . . + e–i(N–1)	]

Since each of the N terms in the square brackets is unity for 	 = 2�, the reflected ampli-
tude becomes simply

~Er = – AN

and the power reflectivity is

Rmax = � �
2

= �– N�
2

= N2� �
2

(8-9)

where we have used ~Ei = A. Since the grating length is L = N�, this can be written as

Rmax = � �
2

= � �
2

(8-10)
2�nL
�

�B

�n
�
n

L
�
�

�n
�
n

�n
�
n

~Er
�~Ei

�n
�
n
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Figure 8-3 The complex amplitudes of the various reflected waves can be added by treating them
as vectors in the complex plane. (a) Bragg resonance, all vectors in phase. (b) Slightly off resonance,
small difference in phase between vectors. (c) Further off resonance, vectors add to zero, giving de-
structive interference.
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where �B = 2n� from Eq. (8-7) has been used. Defining the parameter 
 � 2�n/�B, this
can be written more compactly as

Rmax = (
L)2 (peak reflectivity, weak grating) (8-11)

The constant 
 (Greek letter kappa, not to be confused with the propagation constant k) is a
measure of how strongly the light is attenuated as it propagates through the Bragg grating.

The above is only an approximate result, based on certain assumptions. It is assumed not
only that �n/n � 1, but also that 
L � 1. This amounts to the restriction Rmax � 1. Another
assumption is that the Bragg condition is satisfied exactly. If we relax this assumption and
allow the incident wavelength to be slightly detuned from �B, the terms in Eq. (8-8) will
have phases that become progressivly further apart. The phase difference � between suc-
cessive terms is � = –	, and if the wavelength changes by ��, this phase difference changes
by �� = –�	. This is illustrated graphically in Fig. 8-3b, which shows the addition of N
complex amplitude vectors, each differing from the next by a phase difference ��. When
N �� = 2�, as depicted in Fig. 8-3c, the vectors add to give a resultant of zero. The grating
reflectivity, therefore, goes from a maximum to zero over a range of wavelengths �� such
that �� = 2�/N. The wavelength interval �� is the spectral half-width of the Bragg reso-
nance. The full width would be 2��.

To evaluate ��, we use Eq. (8-5) to write

�� = –�	 = – �� = �� (8-12)

Since �0 � �B near the Bragg resonance, we use �B = 2n� from Eq. (8-7) and the condi-
tion �� = 2�/N to obtain

= ��

or

= (spectral half-width, weak grating) (8-13)

This remarkably simple result says that the fractional width of the Bragg resonance is
the reciprical of the number of grating planes. The width of a resonance is often charac-
terized by the quality factor Q, defined as the center frequency divided by the frequency
width. In terms of wavelength, this is equivalent to �/��. The quality factor for the Bragg
grating is therefore Q � N.

If the incident wavelength is detuned from �B by more than ��, the vectors in Fig. 8-3c
continue to curl around in the complex plane. This leads to a secondary maximum in the
resultant field when N�� � 3�, and another zero when N�� = 4�. When this second
zero occurs, the vectors have wrapped around in two complete circles. This pattern con-
tinues with increasing detuning, and results in an oscillatory dependence of reflectivity on
wavelength like that shown in Fig. 8-4.

Sinusoidal Index Grating

The step-index grating discussed in the preceeding section is useful for obtaining an intu-
itive view of Bragg reflection. In practice, however, the refractive index in a Bragg grat-

1
�
N

��
�
�0

2��B
��

�0
2

2�
�
N

4�n�
�

�0
2

d	
�
d�
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ing often varies sinusoidally with position, rather than in a step-wise fashion. Perhaps the
most important example is that of the fiber Bragg grating, in which the refractive index is
made to vary periodically along the core of an optical fiber. Figure 8-5 shows how this
can be accomplished by the interference of two intersecting pump beams of (free-space)
wavelength �p. The interference of two beams crossing at an angle was analyzed when we
developed the concept of waveguide modes [see Eq. (3-2) and related discussion]. Using
similar arguments here, it is straightforward to show that the pump light intensity in Fig.
8-5 varies sinusoidally along the fiber axis, and has a constant value along planes perpen-
dicular to the axis. If the angle between the beams is 2�, the separation � between planes
of maximum intensity can be shown (see Problem 8.5) to be

98 Chapter 8 Photonic Crystal Optics

Figure 8-4 Reflectivity of 25 layer step index Bragg grating versus wavelength for Rmax � 1. Reflec-
tivity is normalized to the maximum value Rmax = (
L)2, and free-space wavelength is normalized to
the Bragg wavelength �B. The fractional half-width is 1/N.

Figure 8-5 (a) The holographic scheme for fabricating a fiber Bragg grating utilizes the inteference
fringes created by crossed laser beams. (b) The resulting index of refraction varies sinusoidally along
the fiber core.
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� = (8-14)

This relation shows that for a fixed pump wavelength �p, the grating spacing � can be
conveniently adjusted by choosing the proper angle �.

The spatial variation of light intensity produced by the crossed pump beams will create
a corresponding spatial variation of refractive index if the fiber exhibits the property of
photosensitivity. Photosensitivity in optical fibers was discovered by Ken Hill and
coworkers in 1978, at the Canadian Communication Research Center, and has been exten-
sively studied since then. For certain glasses, especially those with dopants such as ger-
manium, it is found that the refractive index increases with increasing pump intensity and
exposure time, up to some limiting value at which the response saturates. In silica fiber,
for example, the maximum index change (�n)max varies from ~ 3 × 10–5 for standard
telecommunications fiber (3 mole% GeO2 in core) to ~ 2.5 × 10–4 for high-germanium
fiber (20 mole% GeO2 in core). The effect is largest for pump wavelengths in the UV
(~ 240 nm), where the large photon energy rearranges chemical bonds in the glass. The
rearrangement of these bonds modifies the glass structure, and this causes a change in the
refractive index.

If the product of pump intensity and exposure time is short enough so that �n has not yet
reached saturation, the resulting index variation may be expressed by the sinusoidal form*

n(x) = n� + �n cos� � (8-15)

where n� is the average index and � is the spacing between index maxima (the grating
spacing). The detailed analysis of reflections from this type of grating is more complicat-
ed than that of the step-index grating, and we do not present it here. However, many of the
results for the step-index grating apply equally well to the sinusoidal grating. For exam-
ple, the wavelength �B for Bragg reflection is still �B = 2n�, in agreement with Eq. (8-7).
In the low-reflectivity limit, the resonance half-width is still �� = �0/N, and the peak re-
flectivity is Rmax � (
L)2, as in Eqs. (8-13) and (8-11). One small difference is that the at-
tenuation constant for the sinusoidal grating is given by


 � (attenuation constant, sinusoidal grating) (8-16)

rather than 
 = 2�n/�B for the step-index grating.
In the discussion so far, the weak reflection limit has been assumed, so that 
L � 1.

Since high-reflectivity gratings are needed for many applications, the more general result
for arbitrary 
L is of interest. The analysis for this more general case involves the use of
“coupled mode theory,” which accounts for the exchange of energy between forward- and
backward-propagating beams. Using these methods, it is found [see, for example,
(Kashyap 1999)] that the peak reflectivity is

Rmax = tanh2(
L) (peak reflectivity, arbitrary 
L) (8-17)

��n
�

�B

2�x
�

�

�p
�
2 sin �
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*Nonsinusoidal gratings can be expressed as a Fourier series of terms like this with multiples of the spatial fre-
quency 2�/�.
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where tanh u = (eu – e–u)/(eu + e–u) is the hyperbolic tangent function. In the limit 
L � 1,
this reduces to Rmax � (
L)2, in agreement with Eq. (8-11). As 
L increases, the reflectiv-
ity starts to saturate around 
L ~ 1, and in the limit 
L � 1 it approaches the limiting val-
ue Rmax � 1.

The significance of the saturation condition 
L ~ 1 can be understood by relating 
 to
the attenuation of light in the Bragg grating. Coupled-mode theory predicts that the light
wave’s E field at resonance decreases according to

E(x) = E0e–
x (8-18)

as illustrated in Fig. 8-6. After the light has propagated a distance Leff � �/
 into the grat-
ing, its E field has been reduced by the factor exp(– �) = 0.043. Since the parts of the grat-
ing beyond x = Leff do not interact significantly with the light’s E field, this distance can
be thought of as an effective grating length. The number of grating planes in this effective
grating is

Neff = = � �� � = (8-19)

In the limit 
L � 1, the grating’s spectral width can then be found by setting N = Neff in
Eq. (8-13), with the result

= = (spectral half-width, strong grating) (8-20)
�n
�
2n

1
�
Neff

��
�
�0

2n
�
�n

2n
�
�B

�B
�
�n

Leff
�
�
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Figure 8-6 At the Bragg resonance, light is attenuated exponentially as it propagates through the
grating, so that only a finite number Neff of grating planes are effectively interacting with the light.
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This contribution to the resonance width is present even for thin gratings where 
L � 1,
but in that case it is smaller than the contribution 1/N = �/L. The two limiting cases for
Bragg grating linewidth can be summarized by the expressions

= � (8-21)

where the Bragg condition �0 � 2n� has been used. In the transition region 
L ~ 1, both
expression above become the same order of magnitude. By varying the pump intensity,
exposure time, and grating length, fiber Bragg gratings with a wide range of reflectivity
bandwidths can be fabricated.

This ability to customize the spectral reflectivity for a particular application has led to
the incorporation of Bragg gratings into a number of photonics devices. Perhaps the most
important application of Bragg gratings has been to replace one or more of the mirrors in
a laser cavity. The high reflectivity that is obtained for 
L � 1 leads to low lasing thresh-
olds, and the narrow spectral width for large N provides wavelength selectivity for the
laser output. Bragg gratings are integral to the operation of distributed-feedback lasers
and vertical-cavity surface emitting lasers (see Chapter 11), and have become standard in
fiber lasers as well (see Chapter 23).

Another application of growing importance is the use of the fiber Bragg grating as a
sensor. A number of different physical parameters can be measured, such as strain, tem-
perature change, and pressure change, but the parameter measured most directly is strain.
When a fiber of length L is stretched by some applied force, the elongation 	L is general-
ly proportional to L, with the ratio 	L/L defined as the strain. Since 	L/L is usually quite
small, the “unit” microstrain is often used, which corresponds to a fractional extension
	L/L = 10–6. If a fiber containing a Bragg grating is uniformly stretched, the grating spac-
ing � is increased by the same fractional amount as the length L. Since the Bragg wave-
length is �B = 2n�, it also increases by this same fractional amount.

A Bragg grating in silica fiber (n = 1) has a length of 7.5 mm, and is designed to reflect
light of free-space wavelength 1500 nm in first order. (a) Determine the shift 	�B in
wavelength of the Bragg peak for an elongation of 1 microstrain. (b) Determine the
Bragg resonance half-width assuming 
L � 1. (c) If it is possible to measure a shift in
�B equal to 5% of the half-width, what is the minimum strain that can be measured in
this fiber?

Solution: (a) For 	L/L = 1 × 10–6, the fractional change in �B is also 10–6, so

	�B = 10–6 �B = (10–6)(1.5 × 10–6 m) = 1.5 pm

where 1 pm = 10–12 m. The sensitivity to strain can then be expressed as 1.5 pm/micro-
strain.

(b) From Eq. (8-21) in the limit 
L � 1,

�� = = = 1.0 × 10–10 m = 0.1 nm
(1.5 × 10–6 m)2

���
2(1.5)(7.5 × 10–3 m)

�B
2

�
2nL

for 
L � 1

for 
L � 1

�0/(2nL)

�n/(2n)
��
�
�0
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(c) The minimum fractional shift in wavelength that can be measured is

= (0.05) = (0.05) = 3.3 × 10–6

which corresponds to a sensitivity of 3.3 microstrain.

Fiber grating sensors have a number of advantages over conventional electrical strain
gauges. They are robust, compact, and linear over a wide range of strains. They are also
inherently “calibrated,” and since wavelength is measured rather than optical power, they
are not affected by power fluctuations in the light used to probe the grating. Perhaps the
greatest advantage is that a number of different fiber sensors can be cascaded together in
series along a fiber, so that the probe light passes through them all sequentially. If each
grating has a slightly different center Bragg wavelength, then the wavelength shift for
each one can be determined in a single spectral measurement with a broadband light
source. The set of all such wavelength shifts gives information about how the strain is dis-
tributed along the length of the fiber; it is in effect a distributed fiber sensor. Such an
arrangement can be used, for example, to probe the development of strains in buildings,
bridges, and other structures so that structural defects can be remedied prior to catastroph-
ic failure. This type of application has come to be termed smart-structure technology.

An alternative type of distributed fiber sensor is possible, in which the reflections from
the different gratings are separated in the time domain rather than in wavelength. We have
already seen one example similar to this—the optical time-domain reflectometer
(OTDR)—which gives information on the distribution of losses due to Rayleigh scatter-
ing and splices throughout a fiber link. If there are Bragg gratings distributed throughout
the fiber as well, the OTDR can separate out the reflections from the different gratings.

Photonic Band Gap

One of the important characteristics of a Bragg grating is the exponential attenuation of
light for wavelengths close to �B. For a sufficiently long grating, this leads to nearly 100%
reflection of the light, with essentially none transmitted. According to coupled-mode the-
ory, this exponential attenuation occurs only for wavelengths �0 in the range �B – �� < �0

< �B + ��, with �� given by Eq. (8-21) in the limit 
L � 1. Outside this wavelength
range, the solutions to the wave equation are oscillatory rather than exponentially
damped, and the effect of the Bragg resonance there is to alter the wave velocity, not the
amplitude. The range of wavelengths for which light is attenuated is referred to as the stop
band, since light is “stopped” from propagating in this region. A similar situation arises in
the propagation of infrared light through a crystal, where a stop band (the reststrahlen
band) arises from the strong interaction between the light and the vibrational modes of the
lattice.

The existence of a stop band in the Bragg grating implies that there is a “gap” in the
spectrum of allowed propagation frequencies; that is, there is a certain range of frequen-
cies for which there are no propagating electromagnetic modes. Since the energy of a
photon is ��, this is equivalent to saying that there is a gap in the allowed energy states in
the system. The idea of an energy gap may be familiar if you have studied the optical

10–10 m
��
1.5 × 10–6 m

��
�
�

	�
�
�
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properties of solids. We will see in Chapter 10 that energy bands and gaps between those
bands are a fundamental feature of the energy spectrum of electrons in a solid. These gaps
arise from the interaction of the electron with the periodic potential presented by the crys-
talline lattice. In much the same way, the gap in the photon energy spectrum arises from
the interaction of the photon with a periodic dielectric “lattice.” Because of this close
analogy, a frequency gap in the photon spectrum has come to be known as a photonic
band gap.

When a material has a photonic band gap, the dispersion relation �(k) is altered for fre-
quencies near the gap. Figure 8-7a shows the dispersion curve for a perfectly homoge-
neous material of refractive index n. For simplicity, we will assume here that n does not
vary with frequency (no material dispersion), so the phase and group velocities are both
equal to c/n [see Eqs. (2-5)–(2-7)]. If now a dielectric lattice with spatial period � is in-
troduced into the medium, then Bragg scattering occurs at wavelengths satisfying the
Bragg condition m�0 = 2n�. Here, m is an integer specifying the diffraction order, and �0

is the free-space wavelength. The corresponding wavelength in the medium is � = �0/n,
with wave vector magnitude

kB = = (2�n)� � = m (8-22)

At the values k = �/�, 2�/�, . . . , the wave becomes nonpropagating, which means that
the group velocity d�/dk must go to zero there. The dispersion curve, therefore, bends as
shown in Fig. 8-7b, in such a way that frequency gaps open up. For frequencies below a
gap, vg decreases with increasing �, which is similar to the effect of “normal” material
dispersion. For frequencies above a gap, vg increases with increasing �, which is similar
to “anomalous” material dispersion. This photonic band gap dispersion adds to whatever
material dispersion may also be present.

One result of the dispersion shown in Fig. 8-7b is that there are two values of the light
frequency at k = �/�. This seems strange at first, because for a propagating wave one

�
�
�

m
�
2n�

2�
�
�0/n
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Figure 8-7 Dispersion relation �(k) for (a) homogeneous material and (b) photonic band gap mater-
ial. Bragg reflection opens up frequency gaps in the dispersion curve.
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would expect a unique frequency for every possible wavelength. However, at the Bragg
condition k = �/�, the wave is not propagating, but is actually a standing wave created by
the superposition of two equal amplitude, counterpropagating beams. The physical origin
of the two frequencies can then be understood by considering two possible standing wave
intensity profiles, as depicted in Fig. 8-8. If the intensity maxima are aligned with the
higher-index regions, the effective refractive index neff will be higher than the average,
whereas if the intensity maxima are aligned with the lower index regions, the effective re-
fractive index neff will be lower than the average. The effective index relates the frequen-
cy and wave vector according to

� = (c/neff)k = (c/neff) (8-23)

so that a higher neff gives rise to a lower �, and vice versa. The two frequencies at k = �/�
can then be interpreted as arising from these two offset intensity profiles. Qualitatively,
this viewpoint suggests that a higher index difference �n will lead to a larger frequency
gap.

The width of the frequency gap can be determined quantitatively from the known
width of the wavelength stop band, 2��. Using � = 2� c/�0, we have

�� = �� = – ��

The fractional half-width is then

= = 
�n
�
2n

��
�
�0

��
�
�

2�c
�
�0

2

d�
�
d�0

�
�
�
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Figure 8-8 The standing wave intensity patterns that occur at Bragg resonance give a lower oscil-
lation frequency when the intensity peaks line up with regions of higher n, and higher frequency when
they line up with regions of lower n.
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where the minus sign has been dropped (only the magnitude is significant) and Eq. (8-21)
has been used. The ratio of gap width to center frequency is therefore

= = (8-24)

According to the above equation, if we want to create a material with a large photonic
band gap, we need a large index difference. Although the derivation has assumed a sinu-
soidal index grating in one dimension, the same qualitative conclusion is true for arbitrary
refractive index profiles, and also for two and three dimensions. Later in this chapter, we
will see that a high �n is especially important in the creation of 2-D and 3-D photonic
band gaps.

Localized Modes

We have seen that for frequencies within the photonic band gap, the oscillations of a light
wave’s E field are exponentially attenuated. A grating of infinite length (a perfect photon-
ic crystal) is, therefore, unable to support propagating light waves at these frequencies.
However, if there is a discontinuity or defect in the “crystalline” structure, then it is possi-
ble to have light energy residing in a special type of optical mode that is confined to the
vicinity of the defect. These are termed localized modes, and they play an important role
in the practical application of photonic crystals.

The simplest type of defect is the edge or surface of a photonic crystal, which for the 1-
D Bragg grating corresponds to the point at which the grating begins. In this case, the E
field of the localized mode decays exponentially with distance from the surface, as illus-
trated in Fig. 8-6. This mode is localized to within a distance ~ Leff = �/
 of the surface. It
is important to note that there is no steady-state flow of energy in the localized mode (in
the language of electromagnetic theory, the Poynting vector is zero). The localized mode
does store optical energy, however, and there will be a transient flow of energy in the
vicinity of the mode when the stored energy changes.

Another type of defect can be formed by removing one or more of the high-index layers
from an infinite Bragg grating, as illustrated in Fig. 8-9. Light cannot propagate in the re-

�n
�
n

2��
�

�

frequency gap
��
center frequency
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Figure 8-9 When one or more high index layers are removed from an infinite Bragg grating, the E
field in the vicinity of the resulting defect is localized, with an oscillatory region surrounded by two
exponentially damped regions.
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gions on either side where the Bragg grating is still intact, but it can propagate in the mid-
dle where the high-index layers were removed. The result is a localized mode, with an os-
cillatory E field region surrounded by two exponentially damped E field regions. This lo-
calized mode can be thought of as an optical cavity formed by two semiinfinite Bragg
gratings. Light initially propagating to the right is reflected from the Bragg grating on the
right, and after propagating to the left for a short distance it is reflected from the Bragg grat-
ing on the left. This process continues, resulting in complete confinement of the light to the
vicinity of the defect. The same general principle can be extended to propgation in two or
three dimensions, and has important implications for practical devices, as we will soon see.

8-2. 2-D PHOTONIC CRYSTALS

The concepts developed for the 1-D photonic crystal can now be used to develop a quali-
tative understanding of 2-D photonic crystals. An example of such a structure is the array
of dielectric rods shown in Fig. 8-10a, which is periodic in both the x and y directions.
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Figure 8-10 (a) A periodic array of parallel dielectric rods forms a 2-D photonic crystal. (b) Cross-
sectional view of square lattice, showing distinct symmetry directions x and x
. (c) Triangular lattice of
air holes in solid substrate, with r the hole radius and a the spacing between hole centers. Two sym-
metry directions x and x
 are shown.
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Historically, the understanding of 2-D photonic crystals has developed along two parallel
lines. In one approach, the light is assumed to propagate mostly in the x–y plane, perpen-
dicular to the rods. In the other approach, light is assumed to propagate mostly along the z
axis, parallel to the rods. These two limiting cases lead to rather different types of devices
and applications, and we consider them separately in the following.

Planar Geometry

First, consider light propagating in the x–y plane perpendicular to the dielectric rods of
Fig. 8-10a. We will assume initially that the rods are arranged in a square lattice with
spacing a, as shown in the cross-sectional view of Fig. 8-10b. Because of the periodicity
in the +x direction, light propagating along that axis encounters a spatially varying refrac-
tive index, and is scattered as in a 1-D Bragg grating. When the propagation constant sat-
isfies the Bragg condition, the light will be strongly reflected, and gaps will open up in the
dispersion relation �(kx), as depicted in the left panel of Fig. 8-11a. This is similar to the
gap that develops in the 1-D Bragg grating dispersion curve of Fig. 8-7, at the Bragg con-
dition given by Eq. (8-22). In accordance with Eq. (8-24), we would expect the band gap
to increase with increasing refractive index difference between the rods and surrounding
medium.

These analogies with the 1-D Bragg grating are helpful in developing a qualitative un-
derstanding of 2-D photonic crystals. However, there are important differences in the two
cases. For example, whereas the Bragg grating is periodic in only one direction, the 2-D
photonic crystal is periodic in more than one direction. The position and width of the band
gaps will in general be different for different directions, and they may or may not overlap.
Another difference is that polarization becomes important for 2-D photonic crystals.
Light propagating in the x direction can have an E field along y (with B along z), or an E
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Figure 8-11 Illustration of dispersion curves for (a) TM polarized and (b) TE polarized light propa-
gating along symmetry axes x and x
 in a square lattice of dielectric rods embedded in air. The posi-
tion and width of the band gaps correspond to rods with dielectric constant �r � 9, and r/a � 0.2.
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field along z (with B along –y).* The former is termed TE polarization (transverse elec-
tric), since the E field is perpendicular to the rods, whereas the latter is termed TM polar-
ization (transverse magnetic), since the B field is perpendicular to the rods. The disper-
sion curves and corresponding band gaps will be different for the two polarizations.

The dispersion for different propagation directions and polarizations is illustrated in
Fig. 8-11 for the square lattice of side a. There are two distinct directions, labeled x and x

in Fig. 8-10b, which have different periodicities. There is also periodicity in the y direc-
tion, but it is the same as that in the x direction, and is therefore not distinct. The separa-
tion between neighboring planes in the x direction is a, while the separation between
neighboring planes in the x
 direction is a/	2�. Bragg reflection, therefore, occurs at kx =
mgX in the x direction and at k
x = mgM in the x
 direction, where gX = �/a, gM = 	2�(�/a),
and m is an integer. For TM polarization, the bandgaps in the x and x
 directions partially
overlap, which results in a range of frequencies for which no light can propagate in any
direction (in the x–y plane). We say in this case that there is a complete photonic band gap
for TM polarized light.

For TE polarized light, the band gaps for the x and x
 directions are narrower, and do
not overlap for the assumed relative dielectric constant �r = 8.9. There is thus no complete
photonic band gap for this polarization. The physical origin of this difference between
TM and TE polarization is easily understood by referring to Fig. 8-12, which shows the
field distribution and electric field orientation with respect to the rods. We discussed pre-
viously (see Fig. 8-8) the interpretation of the 1-D band gap as arising from the relative
alignment of the high-index material with the intensity peaks in the standing waves that
occur near Bragg resonance. The same argument can be made for the array of 2-D rods,
except that now the effective index neff depends on polarization as well. The difference in
neff for the two standing waves is largest in the case of TM polarization, because the E
field is mostly in the rods for one standing wave, and mostly outside of the rods for the
other standing wave. For TE polarization, there is less difference, because the E field in
both standing waves passes through a certain amount of the low-index material. We thus
expect in general that TE waves will have a smaller band gap than TM waves.

To confine light in two dimensions, we need a range of frequencies for which light
cannot propagate for any direction and any polarization. This will occur only when the
band gaps for different directions and polarizations all overlap in some frequency range.
Since the band gap increases with increasing refractive index difference �n = nrod – nair,
the existence of a complete photonic band gap becomes more likely for higher �n. In the
case of a square lattice of dielectric rods, it is found that at sufficiently high �n there are
indeed complete photonic band gaps for both TE and TM polarization. However, the band
gap for TE polarization does not overlap the band gap for TM polarization, so there is no
frequency range for which light of any polarization is blocked. A square lattice of dielec-
tric rods is, therefore, not the best structure for a photonic crystal.

A better structure consists of a triangular lattice of air holes embedded in a solid di-
electric substrate. Figure 8-10c shows a cross section of the geometry, with r and a the ra-
dius and center-to-center spacing of the holes, respectively. A complete photonic band
gap is found to occur in such a structure when the relative dielectric constant of the sub-
strate is �r > 7.2, which corresponds to a refractive index n > 2.7.† For practical applica-
tions, we would like the refractive index of the substrate to be considerably larger than
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*Light with arbitrary polarization can be written as a linear combination of these two fundamental polarization
directions.
†The relation between dielectric constant and refractive index is n = 	��r�.
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this, so that the band gap is reasonably large compared to the center frequency of the gap.
If we use the semiconductor GaAs, for example, which has �r � 13 and n � 3.6, then the
band gap extends over a frequency range that is � 19% of the mid-gap frequency. The
magnitude of the gap also depends on the ratio r/a, and is maximized in this case when r/a
� 0.48.

The photonic band gap for the triangular lattice of air holes can be represented in terms
of the dispersion graph �(k), as shown in Fig. 8-13. This graph represents the same type
of information presented in Fig. 8-11, but in a more compact fashion. Instead of separate
�(k) plots for the different directions x and x
, there is a single plot showing �(k) as k
varies from zero (�) to the maximum value in the x direction (K), and also from zero to
the maximum value in the x
 direction (M). Another difference is that the higher-order
bands (beyond the first-order Bragg condition) have been translated along the k axis to be
more easily visualized. The results for both polarizations are presented, with TE polariza-
tion (E in x–y plane) shown by the solid curves, and TM polarization (E along z) shown
by the dotted curves. It is clear from this graph that there is a range of frequencies for
which no light can propagate, regardless of direction or polarization. There is a complete
photonic band gap for both polarizations.

Light with a frequency within the photonic band gap will be prevented from propagat-
ing, but only if the photonic crystal is perfectly uniform. Defects in the photonic crystal
structure will partially relax this prohibition, as we saw in the case of the 1-D Bragg grat-
ing. For example, if one or more rows of holes is removed, a linear defect is created, and
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Figure 8-12 (a) Side view of square lattice of dielectric rods, showing possible alignments of stand-
ing waves and rods for TM polarization. (b) Top view of the same, for TE polarization.
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local modes are allowed in the vicinity of this defect. Light is prevented from leaving the
vicinity of the defect, because the E field is evanescent (exponentially decaying) in the
surrounding 2-D photonic crystal. The only direction in which light can propagate is
along the path of the removed holes. The line of missing holes thus acts much like an op-
tical waveguide, confining light to a certain path in the x–y plane.

This optical waveguiding effect has considerable potential for applications in integrat-
ed optics. Practical devices would not extend infinitely in the z direction, however, but
would have the geometry of a slab waveguide, such as that shown in Fig. 8-14. Confine-
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Figure 8-13 Compact representation of dispersion �(k) for triangular lattice of air holes in solid di-
electric. Vertical axis is frequency � normalized to c(2�/a), and horizontal axis gives k along different
symmetry directions. The substrate has dielectric constant �r = 13, and the hole radius is r = 0.48 a.
There is a complete photonic band gap for both TE (solid line) and TM (dotted line) polarizations (af-
ter Meade et al. 1992).

Figure 8-14 In a photonic crystal slab waveguide, light is confined to a row of missing air holes by
two different mechanisms. In the plane of the waveguide, confinement is due to the photonic band
gap in the surrounding 2-D photonic crystal, whereas in the perpendicular direction, confinement is
by conventional total internal reflection.
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ment to the slab is provided by total internal reflection (TIR), as discussed in Chapter 3.
These structures are not true 2-D photonic crystals because of their finite extent in the z
direction. Furthermore, the light propagation is not strictly in the x–y plane, but has a
small component along z. Nonetheless, the essential qualitative features of a 2-D photonic
crystal still do apply, and light can be guided through such structures with very little loss.

The confinement of light to the vicinity of a line defect in a 2-D photonic crystal slab
waveguide is illustrated in Fig. 8-15. This shows the calculated E field distribution for a
triangular lattice of air holes in InP, which has three rows of air holes missing to form a
line defect. At the position of the arrow, the direction of the line defect changes abruptly
by 60°, and from there the line of missing holes continues again in a straight line to the
edge of the photonic crystal region. Before the bend, the wavefronts are uniform, charac-
teristic of a low-order waveguide mode. After the bend, the wavefronts become irregular
due to scattering of light into a mixture of higher-order modes. However, light is still con-
fined to the line of missing holes, and exits the photonic crystal region with high efficien-
cy.

This ability to transmit light efficiently around sharp bends is a key advantage of pho-
tonic crystal waveguides, as compared to traditional waveguides based on TIR. We saw
in Section 5-3 that bending losses in a traditional optical waveguide increase as the bend
radius is reduced, so the losses would be very high around a sharp bend. In contrast, a
photonic crystal waveguide suffers little loss around even a sharp bend, because light is
totally reflected from the photonic crystal boundary for any angle of incidence. This man-
ner of channeling light through a photonic crystal structure represents a new paradigm for
integrated optics, with considerable potential for planar waveguide devices.

Fiber Geometry

The opposite limiting case for a 2-D photonics crystal is that in which the light is propa-
gating mostly in the z direction, with only a small component perpendicular to the rods or
air holes in the structure. This is the appropriate limit for propagation in an optical fiber,
and we will see that the photonic band gap can be used to confine light to the core of an
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Figure 8-15 Calculated E field distribution for 1500 nm light propagating along a line defect with a
sharp 60° bend. The photonic crystal consists of a triangular lattice of air holes, separated by 450
nm, in an InP substrate. The hole radius is such that about half the volume of the structure is air, and
the effective refractive index for the waveguide mode is neff = 3.21 (after Talneau et al. 2002).
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optical fiber in much the same way that it confines light in a planar waveguide structure.
However, light in such a fiber can also be confined by total internal reflection (TIR), just
as in a conventional fiber, with the photonic crystal acting to create an appropriately low-
er refractive index. This TIR principle was the first to be exploited, and we begin our dis-
cussion of the fiber geometry in photonic crystals with this type of application.

Guiding by Effective Index

Figure 8-16 shows an electron microscope image of an early photonic crystal fiber, con-
sisting of a triangular array of air holes parallel to the fiber axis. Fibers such as this can be
made by stacking silica rods and tubes into a mm-scale preform, and then drawing the
preform into a fiber by heating and pulling in a conventional fiber draw tower. Surface
tension forces tend to keep the holes properly aligned as the preform is pulled out into a
�m-scale fiber. Because the fiber has a periodic array of air holes running down its
length, it is also referred to as “holey fiber.”

At the center of the fiber is a single missing air hole, which constitutes a defect in the
2-D photonic crystal structure. It is this defect that allows confinement of light by TIR.
The effective refractive index for light in the vicinity of the defect is approximately that
of the glass material itself, which is � 1.45 for pure silica. For light that propagates into
the surrounding photonic crystal structure, however, the effective index is some appropri-
ate average between that of silica and that of air. Since air has n = 1, this average index is
lower than that of pure silica. The fiber, therefore, contains a high-index “core” region,
surrounded by a low-index “cladding” region. This is exactly what is needed for confine-
ment of light to the core by TIR, as discussed in Chapters 3 and 4.

One practical aspect of this scheme is that only one glass type is needed for the fiber.
Normally, either the core must be doped with atoms that raise the index (such as Ge), or
the cladding must be doped with atoms which lower the index (such as F). In the photon-
ic crystal fiber, no doping of the glass is required, although one can think of the cladding
region as being “doped” with air holes.

Photonic crystal fibers can guide light in either a single transverse mode (single-
mode), or in a combination of higher order modes (multimode), just as in a conventional
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Figure 8-16 Electron microscope image of an early photonic crystal fiber, showing the triangular
lattice of air holes with one hole missing at the center. The hole spacing is � = 2.3 �m, and the fiber
is � 40 �m across (after Birks et al. 1997).
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fiber. We saw in Chapter 4 that single-mode guidance of light occurs in conventional
step-index fiber when V < 2.405, where the V parameter is given by Eq. (4-9). For holey
fiber of the type shown in Fig. 8-16, it is found that single-mode guidance occurs for the
similar condition VPCF < �, where

VPCF � 	n�c
2�–� n�2

cl�(��)� (8-25)

is the V parameter as defined for photonic crystal fiber. The definitions for V are the same
in the two cases, except that the hole spacing � is used for holey fiber, rather than the core
radius a. In this equation, � is the free-space wavelength, nc is the “core” index (essential-
ly that of silica glass), and ncl(�) is an effective cladding index, as discussed above.

Although light confinement by TIR proceeds in much the same way for the two types
of fibers, there is one important aspect in which photonic crystal fiber behaves quite dif-
ferently. The effective cladding index is not a constant, characteristic of one particular
type of glass, but instead varies strongly with wavelength. This can be understood by con-
sidering that ncl is an average over the glass and air hole parts of the cladding structure,
weighted by the strength of the light field distribution in each region. At shorter wave-
lengths, light is better able to be confined to the glass between the air hole regions, where
the index is higher. At longer wavelengths, however, diffraction prevents the light from
being well confined to the glass regions, and the light field spreads out to “sample” more
of the air hole regions, thereby lowering the effective index. The net result is that the re-
fractive index of the cladding increases strongly with decreasing wavelength, and ap-
proaches that of the core in the short-wavelength limit. This amounts to a strong disper-
sion in the cladding structure (see Chapter 6), which is in addition to the material
dispersion of the glass.

The variation of ncl(�) with wavelength has important implications for the single-mode
condition VPCF < �. As � decreases, the factor 2��/� in Eq. (8-25) causes VPCF to in-
crease, and in a conventional fiber this would eventually cause the fiber to go from single-
mode to multimode. In a photonic crystal fiber, however, this increase is offset by a de-
crease in the factor 	n�2

c�–� n�2
cl�, since ncl increases and approaches nc as � decreases. The

fiber, therefore, has the remarkable property of being single-mode over a much wider
wavelength range than conventional fibers, and such fibers have been termed endlessly
single-mode.

In order for a fiber to be endlessly single-mode, it is necessary that the glass region be-
tween the edges of neighboring air holes be sufficiently wide; if it is too narrow, diffrac-
tion will prevent the light field from being confined there, and ncl will not become suffi-
ciently close to nc to keep VPCF < �. This means that there is a maximum ratio of hole
diameter d to hole spacing � for endlessly single-mode operation. Above this value of
d/�, the fiber will still be single-mode for sufficiently long wavelength. However, as the
wavelength is decreased, the fiber will become multimode when the condition VPCF = �
is reached.

There are thus two boundaries between single-mode and multimode behavior: one as
d/� increases and another as � decreases. This can be summarized graphically in a kind of
“phase diagram,”* as shown in Fig. 8-17. On one side of the “phase boundary” line, the
fiber is single-mode, and on the other it is multimode. For the triangular lattice of air

2��
�

�
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*This terminology comes from pressure/temperature diagrams that show the boundary between liquid and solid
phases of matter, for example.
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holes with one hole missing, the fiber is always single-mode when d/� < 0.4. For larger
d/�, the fiber will be single-mode for large enough �/�, but the required wavelength be-
comes longer as d/� increases. It should be noted that the quantitative results of Fig. 8-17
apply only when the core consists of a single missing air hole. When there are three or
seven missing air holes, the endlessly single-mode condition becomes d/� < 0.25 and d/�
< 0.15, respectively.

An important feature of the endlessly single-mode condition is that it depends only on
the ratio d/�, and not on d or � separately. The fiber can, therefore, be scaled up in size,
and it will remain single-mode as long as d/� < 0.4 (for a single missing air hole). This is
in distinct contrast to a conventional step-index fiber, which becomes multimode when
the core radius a exceeds a certain value.

This scaling property of the photonic crystal fiber has important applications in de-
vices such as high-power fiber lasers (see Chapter 23). The optical power achievable in
such devices is limited ultimately by various nonlinear optical processes and by optical
damage, both of which depend on the optical intensity (power per unit area). Increasing
the effective core area of the fiber, therefore, increases the maximum optical power that
can be generated before nonlinear processes become significant or optical damage occurs.
In principle, the core size (and hence maximum power) can be made arbitrarily large by
increasing both � and d in the same proportion. However, the fiber becomes very sensi-
tive to small bends and inhomogeneities when � > 10 �, which puts a practical limit on
the achievable output power. Output powers of several kilowatts in a single transverse
mode are predicted to be possible using this scheme.

In the example of the fiber laser just discussed, nonlinear optical effects are detrimen-
tal, limiting the optical power that can be generated at the desired wavelength. In other
applications, however, nonlinear effects may be desirable. For example, we may wish to
convert light at one optical frequency into light at another frequency, a process called fre-
quency conversion (see Chapter 9). The efficiency of such a conversion process increases
with increasing light intensity, which means that the light should be confined to a core
area that is as small as possible.
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Figure 8-17 The boundary between single-mode and multimode behavior can be represented on a
plot of free-space wavelength � versus air hole diameter d, both normalized to the hole spacing �.
This fiber is single-mode for any wavelength when d/� < 0.4 (after Mortensen et al. 2003).
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In a conventional step-index fiber, if the core radius a is made too small, the optical
mode is not well confined to the core. This can be seen from Eq. (4-18)—if a (and hence
V) becomes very small, then w � a. In a photonic crystal fiber, on the other hand, the op-
tical mode can be well confined even to a very small core. The reason for this difference
is that the cladding index of the photonic crystal fiber can be made close to 1 by making
the cladding consist mostly of air (large d/� ratio). This makes NA = 	n�2

c�–� n�2
cl� large,

which in turn keeps VPCF reasonably large even for very small �. Although Eq. (4-18)
does not apply quantitatively to the modes of a photonic crystal fiber, it remains true qual-
itatively that the mode is well confined to the core when VPCF > 1.

A small core size not only allows higher optical intensity, but also changes the disper-
sion properties of the fiber (see Chapter 6). The zero-dispersion point in such fibers can
be shifted from the usual value of 1300 nm to a wavelength as short as 800 nm. These al-
tered dispersion characteristics, in combination with the high intensity that is possible,
serve as the basis for a whole new class of nonlinear optical applications.

Guiding by Photonic Band Gap

When the photonic crystal fiber guides light by total internal reflection, the function of
the periodic air holes is simply to provide an effective refractive index in the cladding
that is lower than that in the core. However, we saw earlier in this chapter that a 2-D
photonic crystal structure can do more than this—it can prevent light from propagating
in the cladding at all, regardless of the index of the core, provided that the cladding
structure has a complete photonic band gap. In the case of a planar-waveguide photon-
ic crystal, it was found that a complete photonic band-gap in the most favorable crystal
type (triangular lattice of air holes) only occurs when the substrate material has a di-
electric constant �r > 7, which corresponds to a refractive index n > 2.65. Since silica
glass has n � 1.5, it might seem that this scheme of photonic band gap guiding will not
work for silica-based holey fiber. However, the condition �r > 7 applies only for light
propagating perpendicular to the air holes. In an optical fiber, just the opposite limit oc-
curs, since the direction of propagation is mostly parallel to the holes. It turns out that
in this case, a complete photonic band gap can indeed be obtained for the proper geom-
etry of air holes in silica glass fiber.

Figure 8-18 shows a cross-sectional view of a typical fiber that has a photonic band
gap in the cladding. The size of the air holes has expanded to take up most of the volume,
leaving thin webs of silica between them in a honeycomb structure. The core is hollow, an
important and distinguishing characteristic of this type of fiber. In conventional fiber, a
hollow core could not guide light efficiently, because TIR requires that the refractive in-
dex of the core be higher than that of the cladding. When the guiding of light is due to a
photonic band gap in the cladding, however, there is no need for the core index to be
higher than 1.

We have seen in this chapter that a photonic band gap occurs over some range of light
frequencies �, which depends on the index difference �n and the particular photonic
crystal structure. The gap frequency also depends on the direction of light propagation,
and in an optical fiber the direction of light propagation is related to the axial wave vector
�, as depicted in Fig. 8-19a. For a given �, modes with larger � are directed more nearly
down the fiber axis, whereas those with smaller � have a larger transverse component. A
photonic band gap will, therefore, occur over some range of the parameters � and �.

The values of � and � for which a photonic band gap occurs can be represented on a
plot of �/c vs. �, as depicted in Fig. 8-19b. In the cladding, where the effective refractive
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index is ncl, the magnitude of the wave vector is ncl �/c. Propagating modes are then al-
lowed in the cladding when

� < ncl (propagating mode allowed in cladding) (8-26)

and in the core when

� < (propagating mode allowed in core) (8-27)

Both of the above conditions amount to requiring that the component of the wave vector
be less than its magnitude. The boundaries between propagating and nonpropagating
modes are then straight lines of slope 1/ncl for modes in the cladding, and slope 1 for
modes in the air.

The regions in which light cannot propagate are shaded in the graph, and they consist
of two types. Any mode with � > ncl�/c is automatically prohibited, because the axial
component of the wave vector would be larger that its magnitude. The other shaded re-
gions correspond to the photonic band gaps, where light is prohibited from propagating in
the cladding (but not in the core). These photonic band gap regions have the shape of nar-
row “fingers,” which gives rise to the name finger plot for such a graph. Light will be
guided in the hollow core for values of �/c and � that are within these finger regions, and
also above the slope = 1 boundary line.

Hollow-core fibers have some important advantages over conventional solid-core
fibers. The E field of the light field mode is distributed mostly in the hollow core, rather
than in the glass, and this makes the fiber propagation characteristics much less depen-
dent on the properties of the glass. The loss coefficient, for example, which in conven-
tional fiber is limited by absorption and Rayleigh scattering in the fiber core, could po-
tentially be much lower in hollow-core fiber. This would allow light to propagate

�
�
c

�
�
c
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Figure 8-18 Electron micrograph of photonic crystal fiber with hollow core. The core diameter is
�10 �m (after Couny et al. 2005).
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further in a telecommunications fiber before amplification is required. Dispersion could
also be reduced, allowing very short optical pulses to propagate without significant
spreading in time. Another advantage of hollow-core fibers is the ability to transmit
much higher optical powers before damage occurs. Optical damage occurs when the E
field in the glass material exceeds a limiting value, and the high damage threshold of
hollow-core fiber is a consequence of the fact that the light is propagating mostly in air,
rather than in the glass.

Some novel applications are made possible by injecting various gases, liquids, or small
particles into the hollow core of the fiber. Light guided by the fiber interacts with these
materials over a long path length and at high optical intensity, which is ideal for nonlinear
optical effects. For example, new optical frequencies can be generated by stimulated Ra-
man scattering or harmonic generation (see Chapter 9) when the proper gas is introduced
into the core, and this frequency conversion is efficient at much lower optical power than
would normally be required. Another application is the guiding of atoms or small parti-
cles down the core of the fiber using optical trapping. Optical trapping takes advantage of
the natural tendency of objects to drift toward a region of very high optical intensity, such
as occurs at the core of an optical fiber. In this way, atoms or small particles can be kept
near the fiber axis, and prevented from striking and sticking to the glass material at the
core boundary. The ability to move small particles around in a controlled way using opti-
cal fibers has considerable potential for a variety of applications.

8-3. 3-D PHOTONIC CRYSTALS

To have complete control over the path that light can take through a material, we need a
photonic crystal that is periodic in all three dimensions. The concept of the 3-D photonic
crystal was introduced independently by E. Yablonovitch and S. John in 1987. The origi-
nal motivation for Yablonovitch was to control the wavelength distribution of light spon-
taneously emitted by matter, so as to improve the efficiency of semiconductor laser de-
vices. For John, the interest was in studying the fundamental mechanisms by which light
could be “localized,” or confined to a small region of space. Both of these applications
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Figure 8-19 (a) For a propagating wave, the wave vector has a projection � along the fiber axis. (b)
The “finger plot” shows the values of � and � (shaded regions) for which there is a complete photon-
ic band gap in the cladding.
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would require a material with a complete photonic band gap over some frequency range,
so that light of any polarization or direction would be unable to propagate.

It was not clear at first whether any such material could actually be constructed. An
early candidate was the close-packed array of dielectric spheres depicted in Fig. 8-20a.
The crystalline symmetry for this arrangement is face-centered cubic, or fcc, which
means that the unit cell is cubic, with dielectric sphere “atoms” at each corner and face of
the cube. Unfortunately, theoretical calculations showed that this structure does not have
a complete photonic band gap, regardless of the refractive index of the spheres. However,
further calculations by K. Ho and coworkers showed that this structure can be made to
have a complete gap, provided that the single dielectric sphere at each lattice location is
replaced by a pair of spheres (a dimer). For the proper spacing between spheres in the
dimer, this configuration is identical to what would be obtained if single dielectric spheres
were placed at the lattice points of a diamond lattice. The resulting structure, depicted in
Fig. 8-20d, is actually a special case of the more general configuration in which asymmet-
rical dielectric objects are placed at the lattice points of an fcc lattice. It is found that a
complete photonic band gap can occur in such a structure, provided that the dielectric ob-
jects have a sufficiently high refractive index (n > 1.87) and asymmetry. Although these
more general structures are not true diamond lattice configurations, they are closely relat-
ed, and are typically referred to as “diamond-type structures.”

It would certainly be nice if dielectric spheres would spontaneously organize them-
selves into a diamond lattice, thereby creating the desired photonic crystal. Nature is not
so inclined, however, and a collection of dielectric spheres tends instead to assemble into
an fcc lattice, which is the structure of the naturally occuring gem opal (see Fig. 8-20a).
Although the opal structure itself does not have a complete photonic band gap, it is possi-
ble to derive from this structure a material that does have a band gap. The situation is sim-
ilar to the 2-D case, in which it was found that an array of dielectric rods has no complete
photonic band gap, but the complementary array of air holes in a solid dielectric does
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Figure 8-20 (a) Spheres of SiO2 in suspension naturally assemble into the fcc close-packing struc-
ture of opal. (b) Interchanging the silica and nonsilica regions yields the inverse opal structure. (c) A
dimer consists of two associated silica spheres. (d) Replacing each sphere in the opal structure with
a dimer yields the diamond-type structure. (After Xia et al. 2001.)
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have a band gap. In the 3-D case, it is the so-called inverse opal structure, depicted in Fig.
8-20b, that has a complete photonic band gap. It is derived from opal by replacing the di-
electric spheres by air, and the space between spheres by dielectric. For this structure, it is
found that a refractive index of n > 2.8 is needed for a complete photonic band gap. Com-
pared with a diamond-type structure, therefore, the inverse opal structure requires a high-
er index for a complete band gap, and for a given index (n = 3.6, say, for GaAs), the fre-
quency width of the gap will be smaller.

There are thus two basic approaches to creating a 3-D structure with a complete pho-
tonic band gap. The first approach is to modify materials in a deliberate and controlled
way so that a diamond-type structure is obtained. This is called the “top-down” approach,
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Figure 8-21 Yablonovite is formed by drilling holes into a dielectric at three precise angles, and re-
sults in a diamond-like structure. The holes can be created by exposure to X-rays through a mask
(after Cuisin et al. 2000).

(a)

(b)
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and has the advantage that a wider band gap can be achieved for a given refractive index.
The second approach is to allow the constituents to self-assemble in an opal structure, and
to then use this as a template in forming an inverse opal structure. This is called the “bot-
tom-up” approach, and is more readily scaled up to mass-production levels than the first
method.

Both approaches for constructing a 3-D photonic bandgap material have been used
with some success. The earliest experimental demonstration of a complete photonic
band gap (Yablonovitch, 1991) is an example of the top-down approach. The structure
was created by drilling holes into a dielectric substrate at precise angles, as indicated in
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Figure 8-22 (a) The “Lincoln log” structure has a diamond-type lattice symmetry, and exhibits a 3-
D photonic band gap. (b) Calculated density of states when the dielectric bars have a refractive index
n = 3.6 (that of GaAs) and fill 28% of the space. Reproduced by permission of Nature Publishing
Group (after Lin et al. 1998). Courtesy Sandia National Laboratories. 
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Fig. 8-21. The intersection of the holes in the material forms a diamond-like pattern, and
this structure (now known as yablonovite) was found to have a complete photonic band
gap. In the initial experiments, the hole spacing was on a millimeter scale, and the band
gap was in the microwave frequency region. To give a band gap for optical frequencies,
the hole spacing needs to be scaled down to the �m range. Figure 8-21 shows a more
recent realization of this type of structure, using X-ray exposure through a mask to cre-
ate the holes.

Another example of the top-down approach is the “Lincoln log” or “woodpile” struc-
ture depicted in Fig. 8-22a. This sequence of crisscrossing dielectric bars can be shown to
have the symmetry of a diamond-like structure. The computed density of states (number
of propagating modes per unit frequency interval) is shown in Fig. 8-22b, and is charac-
terized by a robust frequency gap of � 20% of the center frequency. This structure can be
fabricated on the �m scale with conventional lithographic techniques, using a sequence of
steps involving deposition of layers followed by selective etching. In this way, it has been
possible to create structures that have a complete photonic band gap at the important 1.3
�m telecommunications wavelength.

Although these top-down approaches have been successful in creating materials with a
robust photonic band gap, it is not clear if they can be easily scaled up for mass produc-
tion. More promising in this regard are the bottom-up or self-assembly approaches. These
take advantage of the natural tendency of spherical colloids (such as monodispersed SiO2

spheres with diameters ranging from 100 to 1000 nm) to self-assemble in the fcc struc-
ture. The inverse opal structure can be obtained by first injecting a high-index material
into the spaces between the spheres, and then removing the original SiO2 material through
selective etching. The process is somewhat akin to fossilization, with the original opal
material (the “living organism”) serving as a template for creation of the desired inverse
opal material (the “fossil”). By using silicon as the high-index material, complete photon-
ic band gaps with ��/� = 5% have been generated in this way. Although these band gaps
are not as wide as those possible in the diamond-type structures, the simplicity of the
method and the potential for scaling up to mass production make these bottom-up
processes promising for future photonic applications.

PROBLEMS

8.1 The sum in Eq. (8-8) was determined graphically by adding vectors in the complex
plane. An alternative is to use the mathematical identity

1 + x + x2 + . . . + xN–1 =

taking x = exp(–i	). Show that this approach leads to a reflectivity

R = � �
2

8.2 Using the result from Problem 8.1, show that the reflectivity at Bragg resonance is
given by Eq. (8-9). Also use this to show that the wavelength interval from the
Bragg resonance to the first reflection zero on either side is given by Eq. (8-13).

8.3 Use the result from Problem 8.1 to determine the full width at half maximum

sin2(N	/2)
��
sin2(	/2)

�n
�
n

1 – xN

�
1 – x
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(FWHM) of the center peak in the grating reflectivity spectrum. Show that this is
approximately equal to the width �� given in Eq. (8-13).

8.4 The properties of a step index Bragg grating formed by uniformly spaced layers of
GaAs and AlxGa1–xAs are evaluated by illuminating it with broadband light and
measuring the spectrum of reflected light. A Bragg peak with maximum reflectivity
of 5% is found at 900 nm, and the first zero reflection near the Bragg peak is located
at 960 nm. GaAs is known to have n = 3.6, but the refractive index of the
AlxGa1–xAs layers is unknown. Determine (a) the spacing between layers, (b) the
number of layers, and (c) the refractive index of the AlxGa1–xAs layers.

8.5 Using the geometry of Fig. 8.5, show that the Bragg grating spacing in the fiber core
is given by Eq. (8-14).

8.6 A fiber Bragg grating of length L = 1 cm is to be written into silica fiber (n = 1.5) so
that it reflects light of free-space wavelength 1500 nm. It is desired that the peak re-
flectivity be 10%. (a) Determine the spectral width and quality factor Q of the Bragg
resonance. (b) What �n is needed to achieve the desired reflectivity?

8.7 In Problem 8.6, what grating length is required to make the peak reflectivity 98%?
Assume the same value of �n. For this case, calculate both contributions to the res-
onance width given in Eq. (8-21). If the two contributions are the same order of
magnitude, the total width can be obtained by adding the contributions together “in
quadrature” (i.e., add the squares and take the square root).

8.8 A fiber Bragg grating is designed to measure a strain of 2 microstrain. It will use a
Bragg wavelength peak around 975 nm, and the instrumentation can detect a shift of
the peak as small as 10% of the resonance half-width ��. Determine the grating
length required, assuming weak reflection (
L � 1).

8.9 A fiber Bragg grating with �B = 1300 nm is written into the core of a silica fiber.
The fiber used is highly doped with GeO2, and has n = 1.5 and �n = 2.5 × 10–4. How
far will light of wavelength 1300 nm propagate through the fiber grating before the
light wave’s E field is reduced to 1% of its initial value? At this point, how many
grating periods has the light passed through?
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In the preceding chapters we have assumed that light interacts with matter in a linear fash-
ion. A linear interaction is illustrated in Fig. 9-1a, which shows two light waves of differ-
ent frequency intersecting in a material medium. The presence of wave 2 has no affect on
wave 1, and vice versa. The waves are uncoupled, and propagate independently. In con-
trast, a nonlinear interaction is characterized by a coupling of two or more intersecting
waves, as illustrated in Fig. 9-1b. In this case, each wave can modify the properties of the
other, changing, for example, the other wave’s amplitude or phase. One of the waves can
also modify its own amplitude or phase, a phenomenon termed self-action. Still another
possibility in a nonlinear interaction is the generation of new waves with a frequency dif-
ferent from those of the incident beams. This frequency conversion process does not oc-
cur in a linear medium.

In a perfect vacuum, there is no coupling between two light waves because Maxwell’s
equations (which govern the propagation of an electromagnetic wave) are linear in the
electric and magnetic field variables. The superposition principle then applies, which
states that the sum of two solutions is itself another solution to the equations. Coupling
between two light waves is only allowed when light propagates in a material medium, and
it is an indirect type of process. One wave changes the properties of the medium in some
way, and then the second wave is affected by the changed properties of the medium. The
degree of coupling between two light waves, therefore, depends on how strongly the light
wave interacts with the medium.

The interaction between light and matter is normally quite weak. The order of magni-
tude of this interaction can be estimated by comparing the strength of the light wave’s
electric field E� to the electric field Ea in the atoms of the material. Light from the sun, for
example, has a typical field E� � 600 V/m, whereas typical atomic fields are Ea ~ 1011

V/m (see Problem 9.1). Since E� � Ea, the light wave deviates the electrons in the mater-
ial only slightly from their normal positions, which means that the light–matter interac-
tion is weak. It is actually a good thing that nonlinear optical effects are usually negligi-
ble, because linear behavior is necessary for the image-forming property of lenses. To
form a proper image, light from each point of an object must propagate to the image plane
in a manner that does not depend on the presence or absence of light from other points on
the object, which is simultaneously passing through the lens. Nonlinear interactions
would cause a distorted image.

Nonlinear effects are expected to become important only for very high optical intensi-
ty I, where the field E� (given by Eq. 2-9) is large. It is therefore not surprising that the de-
velopement of lasers, which are capable of very high intensities, has spurred on progress
in understanding and applying nonlinear optical phenomena. Indeed, the first important
experimental demonstration of nonlinear optics, that of second-harmonic generation by
Franken and coworkers in 1961, occured just after the demonstration of the first laser in
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1960. Since that time, laser physics and nonlinear optics have matured into two rich and
multifaceted subdisciplines, each evolving in synergy with the other. Today, they are in-
extricably linked, lasers being needed to study nonlinear effects, and nonlinear effects be-
ing needed for the operation of many lasers.

In this introductory survey, space permits us to sample just a few of the many diverse
aspects of nonlinear optics. After first reviewing the mechanisms that give rise to nonlin-
ear effects, we next consider those phenomena in which new frequencies are generated,
and then those in which the frequency remains unchanged, but some other property (such
as phase) is modified. Finally, we consider the electrooptic effects, in which the optical
properties of a material are modified by a static electric field. More complete treatments
of these and other nonlinear optical phenomena will be found in the Bibliography.

9-1. FUNDAMENTAL MECHANISMS

In this section, we describe some of the more important mechanisms that can give rise to
nonlinear optical phenomena. It should be kept in mind that not all of these can occur in
every material, and also that two or more may both play a role in a particular nonlinear
phenomenon. The various mechanisms are each characterized by a response time, which
governs how fast the medium can change its properties in response to the incident light.
This becomes relevant for optical switching applications, in which the medium response
time limits the time response of the switch.
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Figure 9-1 (a) In a linear medium, two waves pass through the same region of space without inter-
acting. (b) In a nonlinear medium, two waves that overlap spatially may each modify the properties of
the other, and create additional waves with different frequencies.
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Electron Cloud Distortion

Perhaps the most universal nonlinear optical mechanism is that which arises from a dis-
tortion of the electron clouds around the atoms in the material. This is illustrated in Fig. 9-
2a, which shows the effect of the light wave’s electric field E (we now drop the subscript
� for simplicity) on the charge distribution within the atom. The effect of E is to cause a
charge separation, in which the positively charged nucleus is displaced in the direction of
E, whereas the negatively charged electron is displaced in the opposite direction. This re-
sults in an electric dipole p for each atom, which is in the same direction as E. If there are
N atoms per unit volume, then there is a polarization density P = Np induced in the medi-
um.

The induced dipoles are forced to oscillate at the frequency of the incident light, as in a
driven harmonic oscillator, with the charges in the dipoles accelerating periodically in the
direction of E. According to a fundamental principle of electricity and magnetism, any ac-
celerated charge radiates in a direction perpendicular to the acceleration vector. The oscil-
lating dipoles therefore radiate light with the same frequency and direction as the incident
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Figure 9-2 (a) An electric field distorts the electron cloud in an atom, creating an electric dipole mo-
ment p. (b) The oscillating dipoles driven by the light wave’s E field radiate additional waves that in-
terfere with the original wave, modifying its propagation speed.

c09.qxd  2/22/2006  2:56 PM  Page 125



light, as illustrated in Fig. 9-2b. The reradiated light is shifted in phase from the incident
light, just as it is in any driven, damped harmonic oscillator. When this phase-shifted light
from the oscillating dipoles is added to the original light wave, the result is a single sinu-
soidal wave of the same frequency, which moves through the medium with a phase veloc-
ity different (usually less) than c, the speed of light in vacuum. The phase velocity is giv-
en by vp = c/n (Eq. 2-6), where n is the index of refraction.

According to this physical picture of the origin of a material’s index of refraction, a
larger degree of polarization would be expected to lead to a larger value of n. This is
borne out by an analysis of Maxwell’s equation in a material medium, in which it is found
that

n = ���r� = ���/��0� = �1� +� �� (9-1)

where � and �0 are the permittivity of the medium and of free space, respectively, �r is the
relative permittivity or dielectric constant (actually not a constant, but a function of fre-
quency), and � is the electric susceptibility, given by

� � (electric susceptibility) (9-2)

Although the susceptibility is actually a tensor quantity (Px may be related to Ey or Ez,
etc.), for simplicity we will treat it here as a scalar.

The origin of optical nonlinearity can be seen in Fig. 9-3a, which shows the potential
energy of an electron as it is displaced from equilibrium by the electric field. When the E
field (and hence the displacement x) is small, the restoring force on the electron varies lin-
early with x, and the potential energy varies quadratically with x. In this regime, the polar-
ization Px is linear with the field Ex, as shown by the dotted line in Fig. 9-3b. For suffi-
ciently large x, however, the restoring force becomes smaller, due to the varying 1/r2

Coulomb force. The potential energy curve flattens out for large x, making it easier to po-
larize the atom. The polarization, therefore, exhibits a nonlinear variation with Ex, as de-
picted by the solid line in Fig. 9-3b. The susceptibility � defined in Eq. (9-2) is now no
longer a constant, but instead increases with increasing field.

Since the deviation from linearity is small for atom–field interactions, it is possible to
expand � in powers of Ex, keeping only a few low-order terms. It is customary to do this
by writing the polarization as

Px = �0(�1Ex + �2Ex
2 + �3Ex

3) (9-3)

where �1 is the usual linear susceptibility, and �2 and �3 are the second- and third-order
susceptibilities, respectively. Terms of higher order than Ex

3 are usually negligible. This is
not the most general starting point for nonlinear behavior, because it assumes a local rela-
tion between P and E; that is, the value of P at one location and time depends on the value
of E at that same location and time. However, most nonlinear optical processes can be un-
derstood using this equation, and in the rest of this chapter we consider a number of such
examples.

One important general result can be deduced right away from Eq. (9-3). Consider a ma-
terial medium that has inversion symmetry; that is, if x is replaced by –x, y by –y, and z by
–z, there is no physically distinguishable change in the material. This would be the proper-
ty of a perfect cubic lattice, for example. Say that a field Ex is applied in the +x direction,

Px
�
�0Ex
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with a corresponding Px in the +x direction. Upon inverting the lattice, there can be no
change in the physical polarization or field, because the new lattice is physically the same.
However, since the x axis has been reversed, the signs of both Ex and Px are reversed. That
is, Ex � –Ex and Px � –Px upon the inversion. This means that Px must be an odd function
of Ex, containing terms Ex, Ex

3, and so on, but not Ex
2. If Px contained a term involving Ex

2, it
would not reverse sign when Ex reversed sign. We therefore come to the important conclu-
sion that for centrosymmetric materials (those with inversion symmetry), �2 must be zero.
For �2 to be nonzero, the material must lack inversion symmetry, and have an asymmetri-
cal Px versus Ex relation, as illustrated in Fig. 9-3c. This restriction will play a key role in
selecting the proper medium for second-order nonlinear optical processes.

One advantage of electron cloud distortion as the nonlinear mechanism is its speed.
The electron distribution in an atom can change on a femtosecond (fs, 10–15 s) time scale,
which corresponds to the semiclassical “orbital” time of an electron around the nucleus.
This means that the nonlinear output can respond to changes in the input on a fs time
scale, much faster than electronic circuit elements. There is the potential, then, for ex-
tremely fast optical switches or modulators.
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Figure 9-3 For a small electric field, in which the displacement x of the electron cloud is small, an
atom’s potential energy varies quadratically with x and the polarization density is linear with Ex. In
larger fields, there are deviations from this linear behavior. In materials that lack inversion symmetry,
the polarization magnitude for applied field E is not the same as that for applied field –E.
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Other Nonlinear Mechanisms

Although distortion of the electron cloud is the most universal type of optical nonlineari-
ty, other mechanisms become important in certain materials and applications. We
overview them briefly here, along with their relevant time scales.

Molecular Orientation

This nonlinearity occurs for asymmetrical molecules that are free to rotate in a liquid. In
the absence of an applied field, thermal agitation will cause the molecules to settle into a
random distribution of orientations, as depicted in Fig. 9-4a. When a strong electric field
is applied, it tends to orient the molecules, due to the interaction of the E field with the in-
duced dipoles. This alignment, shown in Fig. 9-4b, creates a macroscopic asymmetry in
the material that changes its optical properties. A light wave passing through the modified
medium would experience a different refractive index for different orientations of its E
field vector. Generally, the polarizability of the molecules (and hence the refractive in-
dex) is higher when E is parallel to the long axis of the molecules. The result is a field-in-
duced birefringence, in which the refractive index depends on the direction of polariza-
tion of the light wave. Changes in n due to this type of process occur on a picosecond (ps,
10–12 s) time scale, a typical time scale for molecular rotations.

Electrostriction

This nonlinear mechanism is quite common, and like molecular orientation, it arises from
the tendency of an induced dipole to lower its potential energy in an applied electric field.
Instead of accomplishing this by rotation, however, electrostriction involves the transla-
tion of atoms or molecules into a region of higher optical intensity. The potential energy
of a dipole moment p in a field E is given by U = –p · E, as depicted in Fig. 9-5a. This en-
ergy would be lower if the atom were to move from a region of lower intensity (where E
is smaller) to a region of higher intensity (where E is larger). Since systems naturally tend
to relax to a state of lower energy, atoms in an intense optical beam experience a force di-
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Figure 9-4 A strong electric field can orient asymmetrical molecules in a liquid, producing a nonlin-
ear response.
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rected toward regions of higher optical intensity, as illustrated in Fig. 9-5b. This is the
phenomenon of electrostriction, and it occurs quite generally in solids, liquids, and gases.

To the extent that atoms in a material are able to move, electrostriction causes an in-
crease in mass density in the high-intensity region of an optical beam. This increases the
index of refraction, since the polarization density P (and hence � and n) increases with in-
creasing density. The change of refractive index affects not only the original light wave,
but also any other light wave passing through the same region. In a solid, atoms are more
constrained than in a liquid or gas, but they can move a little bit, creating strain in the lat-
tice when they do so. The increased lattice energy from this strain counterbalances the de-
creased potential energy from electrostriction, and this determines how far the atoms will
move. The response time for electrostriction is limited by the transit time of an acoustic
wave across the width of the optical beam. For optical fibers with core diameters of a few
�m, this is on the order of 1 ns, much slower than molecular orientation (ps) or electron
cloud distortion (fs), but still fast enough to play a role in many nonlinear optical phe-
nomena.

Resonant Absorption

In the nonlinear mechanisms discussed so far, there is no actual change in the population of
energy states in the medium. In these situations, the incident photon energy h� does not
match up with any difference �E in the energy levels of the medium, and the atom–field in-
teraction is said to be nonresonant. A different type of nonlinearity can occur when there is
resonance between h� and �E, as illustrated in Fig. 9-6. Incident photons are absorbed by
the material with a probability that is proportional to the number of atoms in the ground
state (level 1). If there are many photons incident simultaneously (high optical intensity), a
large fraction of the atoms will be promoted from the ground state to the excited state (lev-
el 2). The probability of a photon being absorbed is then reduced, as shown in Fig. 9-6b, due
to the reduced number of atoms in the ground state. The absorption probability therefore
decreases with increasing optical intensity, an effect known as optical bleaching. We will
see in Chapter 22 how this can be used to advantage in generating short laser pulses.

In certain materials it is possible for the absorption probability to increase with in-
creasing optical intensity, rather than decrease. Fig. 9-7a shows how this can occur when
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Figure 9-5 (a) A dipole’s energy is lower when it is in a larger E field. (b) Atoms tend to move to the
center of an optical beam, where the E field is highest, a phenomenon known as electrostriction.
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there are three levels interacting with the photons. After the atom has been raised in ener-
gy to level 2 by absorption of a photon, it can subsequently be raised to a higher level 3 by
the absorption of an additional photon. This process is termed stepwise absorption, and
occurs with a probability that is nonlinear in the incident intensity. If the absorption prob-
ability for the 2 � 3 transition is greater than the absorption probability for the 1 � 2
transition, the result will be increased absorption at high optical intensity. This can serve
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Figure 9-6 (a) At low intensity, most atoms are in the ground state 1 and are available for absorbing
a photon. (b) At high intensity, a significant fraction of atoms (50% in this example) are in the excited
state 2 and are unavailable for absorbing a photon. This is optical bleaching, an intensity-dependent
absorption.

Figure 9-7 (a) In a stepwise absorption process, an atom is first raised to level 2 by absorbing a
photon, and then raised to level 3 by absorbing a second photon. (b) In two-photon absorption, the
two photons are absorbed simultaneously, without excitation of any real intermediate level. Both of
these processes can be used to increase the absorption at high intensity.
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as the basis for an optical limiter, which functions to protect people or equipment from
undesired high-power laser pulses.

Another mechanism which increases the absorption probability at high intensity is
that of multiphoton absorption, illustrated in Fig. 9-7b. In this process, two or more pho-
tons are absorbed simultaneously, raising the atom’s energy from level 1 to level 2. By
conservation of energy, 2h� = �E for the two-photon absorption illustrated, where h� is
the energy of one photon and �E is the energy difference between levels 1 and 2. This
process is similar to stepwise absorption in that it occurs with a probability that is non-
linear in the optical intensity—I2 for two-photon absorption and Im for m-photon ab-
sorption. It differs from stepwise absorption, however, in that there is no real intermedi-
ate state between the initial and final levels. Because of the lack of any one-photon
resonance, multiphoton absorption is in general much weaker than stepwise absorption,
and is important only at much higher intensities. It can also serve as the basis for an op-
tical limiter.

The response time for optical bleaching or optical limiting depends on how long the
atom remains in the excited state 2, after the incident light is switched off. This is known
as the excited state lifetime, and varies from milliseconds to nanoseconds, depending on
the material.

Inelastic Scattering

Another type of nonlinear mechanism arises from the Raman and Brillouin scattering
processes discussed earlier in Chapter 5. These involve a type of resonance, since the dif-
ference between incident and scattered photon frequencies must match up with a vibra-
tional frequency of the material. The interaction can be considered nonlinear in the sense
that there is coupling between the electronic and vibrational motions in the molecule or
solid, which generates new frequencies of light. However, under conditions in which the
vibrational amplitude is due mostly to thermal agitation, the probability for scattering to
occur is independent of the light intensity. In this sense, the scattering is a linear phenom-
enon, with the scattered intensity proportional to the incident intensity. The scattering
process becomes nonlinear only when the vibrational amplitude becomes large and de-
pendent on the light intensity. This leads to stimulated scattering and optical gain, as we
will see in Chapter 24. The response time for this nonlinearity corresponds to the period
of vibration in the medium, typically on the ps time scale.

Thermal Effects

The last nonlinear mechanism we will discuss is rather indirect, but it turns out to be quite
important in many applications. When an intense optical beam (from a laser, for example)
passes through a material, some fraction of the beam’s energy is usually absorbed and
converted into heat. This results in a temperature rise, which in turn causes a thermal ex-
pansion. Thermal expansion makes the material less dense (fewer atoms per unit volume),
and this lowers the index of refraction. Each of these processes are themselves linear, so
the net result is that the index n decreases linearly with the beam intensity I.

The optical response is effectively nonlinear because n is not a constant, but rather de-
pends on I. To see what effect this has, consider the propagation of a nearly collimated
optical beam through a partially absorbing medium, as illustrated in Fig. 9-8. The optical
intensity is highest at the beam center, so the decrease in n will be greatest there. Since an
optical wave travels faster in a medium with lower n (vp = c/n), the middle part of the
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wave front will move faster than the edges, making the wave front “bow out” as it propa-
gates. The beam therefore diverges, just as it would if it had passed through a negative
(diverging) lens. This phenomenon is known as thermal blooming or thermal lensing, and
is an issue that must be accounted for in designing high-power solid-state lasers. The time
response of this nonlinearity is much slower than the other mechanisms, since tempera-
ture changes depend on the thermal diffusion of heat. Typical time scales are on the order
of milliseconds or even slower.

9-2. FREQUENCY CONVERSION

The mixing of two different frequencies to obtain a third frequency is common in electri-
cal circuits. This is done when demodulating a radio signal and “tuning in” to different
channels, for example. Certain electronic circuit elements are (or can be made to be) high-
ly nonlinear, and this makes such a mixing process fairly routine. In contrast, the relative-
ly weak nonlinear interaction of optical waves requires that special techniques and materi-
als be used for the optical generation of new frequencies. In this section, we consider
several important examples, showing how they are all related to the nonlinear susceptibil-
ity.

Second Harmonic Generation

Consider an optical wave with frequency � propagating inside a material medium.* At a
fixed position within the material, the light wave’s electric field has a time dependence
given by

E(t) = A cos �t (9-4)

where A is the electric field amplitude, and the phase has been set to zero at t = 0. This
time-varying electric field creates a time-varying polarization density according to Eq. (9-
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Figure 9-8 Heating of a material by an intense optical beam lowers the refractive index near the
beam center. This creates a thermal lens that causes a collimated beam to diverge.

*In the rest of this chapter, we will leave off the word “angular” and simply refer to � as the “frequency.” Also,
we drop the subscript x on E and P for simplicity, keeping in mind that they still refer to components of a vector
along an axis.
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3). Assuming that the medium lacks inversion symmetry, so that �2 	 0, the two lowest-
order terms in Eq. (9-3) give

P(t) = �0�1A cos �t + �0�2A2 cos2 �t (9-5)

for the time-dependent polarization. Using the identity cos2 
 = (1 + cos 2
)/2, this can be
written in the form

P(t) = P0 + P� cos �t + P2� cos 2�t (9-6)

where

P0 = �0�2A2/2

P� = �0�1A (9-7)

P2� = �0�2A2/2

According to Eq. (9-6), the induced polarization varies with time in three distinct
ways. The first term P0 corresponds to optical rectification, in which a static (dc) polar-
ization is produced in response to the rapidly varying electric field of the light wave. Al-
though this can actually be observed by placing the material between the plates of a ca-
pacitor, it is seldom used in practice. The second term, P� cos �t, causes the atoms to
radiate light at frequency �, and this results in the linear refractive index as discussed in
the previous section.

It is the third term, P2� cos 2�t, that is of particular interest here, since the dipoles os-
cillating at frequency 2� will radiate light at that same frequency 2�. This radiated light
is at a frequency twice that of the incident light, and the phenomenon is, therefore, re-
ferred to as second harmonic generation (SHG) or frequency doubling. Its most important
application is in generating new frequencies of laser light, especially in the ultraviolet,
where laser operation is more difficult. Continuously tunable laser light is often desirable,
and frequency doubling provides a convenient way to extend the tuning range of a near-
infrared or visible laser into the blue or ultraviolet regions.

Since second-harmonic generation requires that �2 	 0, it only occurs in materials
that lack inversion symmetry. This eliminates many common materials such as optical
glass, which is isotropic and therefore has inversion symmetry. Only crystals of a par-
ticular type of symmetry are suitable for frequency doubling. Table 9-1 lists the �2 val-
ues for a few representative materials, along with their index of refraction and the range
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Table 9-1 Second-order nonlinear susceptibility �2 for selected crystals

Transparency Linear indexa at � Linear indexa at 2�
Material range (�m) no/ne no/ne �2 (10–12 m/V)b,c

KDP 0.18–1.45 1.495/1.460 1.512/1.471 0.86
LiNbO3 0.4–5.5 2.234/2.155 2.325/2.233 12
AgGaS2 0.5–13 2.316/2.347 2.383/2.341 40
CdGeAs2 2.4–18 3.505/3.591 3.530/3.621 470

aFundamental at 1.064 �m for KDP and LiNbO3, 10.6 �m for AgGaS2 and CdGeAs2.
bFor 1.064 � 0.532 �m SHG (KDP, LiNbO3) and 10 � 5 �m SHG (AgGaS2, CdGeAs2).
cThe parameter d = �2/2 is an often used alternative definition.
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of wavelengths for which they are highly transparent. The numbers given are effective
values that apply to SHG at a particular wavelength. They are intended to illustrate the
order of magnitude of the parameters, and will be somewhat different for other wave-
lengths or applications.

It is seen from Table 9-1 that materials with a higher index of refraction also tend to
have a higher �2, and that their range of transparency is shifted to longer wavelengths.
This correlation can be understood in terms of the bandgap in the material (see Chapter
10). A smaller bandgap leads to a stronger photon–material interaction, which increases
both n and �2. Generally, both n and �2 increase with increasing frequency (decreasing
wavelength) as the photon energy approaches the bandgap energy. This is referred to as
dispersion, and was discussed in Chapter 6 to explain the spreading of a light pulse in
time. It was seen to be a detrimental process, limiting the rate at which data can be sent
down a fiber.

We will see now that dispersion plays a similarly detrimental role in SHG. Consider
how the E fields from the two waves at � and 2� vary with position z as they propagate
together through the material. Recalling from Eq. (6-3) that the propagation constant for
a wave of frequency � is k = n�/c, we can write the two propagation constants k� and
k2� as

k� = = n� (9-8a)

k2� = = n2� (9-8b)

where �� and �2� are the wavelengths in the medium at the two frequencies � and 2�,
and n� and n2� are the corresponding indices of refraction. If n2� = n�, then Eqs. (9-8)
give k2� = 2k� and �2� = ��/2. If this were the case, the field maxima for the fundamental
wave would occur at the same positions z as the field maxima for the second harmonic
wave, as illustrated in Fig. 9-9a. Since the fundamental wave continues to create newly
radiated light as it propagates, this would ensure that the second harmonic light radiated
by atoms at one position z would be in phase with the light radiated by atoms at a different
z. The condition n� = n2�, then, would result in constructive interference of the different
radiated waves, and efficient SHG.

Unfortunately, dispersion generally results in the condition n2� > n�, so that k2� > 2k�

and �2� < ��/2. This situation is depicted in Fig. 9-9b, which shows that the second har-
monic waves from different atoms will now be out of phase. For atoms that are not too far
apart, however, the phases of the second harmonic waves will still be sufficiently in phase
to give efficient SHG. The efficiency will start to decrease when the radiation from differ-
ent atoms is out of phase by more than 180°. This occurs for a propagation distance Lc,
given by

Lc(k2� – 2k�) � Lc�k = � (9-9)

where �k � k2� – 2k� is the wave vector mismatch. Using Eqs. (9-8), the wave vector
mismatch can be written as

�k = (n2� – n�) (wavevector mismatch) (9-10)
2�
�
c

2�
�
c
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�
�2�

�
�
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The optimum SHG conversion is obtained by passing the fundamental wave through a
crystal of length equal to Lc. In most cases, this length is quite small, as illustrated by the
following example.

Light of free-space wavelength 1064 nm from a Nd:YAG laser is passed through a
lithium niobate (LiNbO3) cystal for frequency doubling to 532 nm. The index of re-
fraction at 1064 nm is 2.234, and at 532 nm is 2.325. Determine the optimum crystal
length for SHG.

Solution: The optimum length is

Lc = = = 

where �0 is the free space wavelength of the fundamental wave and �n � n2� – n�.
This evaluates to

Lc =�
4
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Figure 9-9 (a) The upper wave is the fundamental and the lower waves are the second harmonic
waves radiated by different atoms in the material. Constructive interference occurs when the refrac-
tive index is the same at the two frequencies. (b) When the two indices are different, the waves get
out of phase and add by destructive interference.

EXAMPLE 9-1
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The small optimum lengths indicated by the preceding example lead to very inefficient
conversion of the fundamental frequency into the second harmonic. To increase the effi-
ciency, some type of phase matching is usually employed, as explained below.

Phase Matching

For crystals with certain symmetries, the refractive index varies not only with wavelength,
but also with the direction of polarization of the light wave. This birefringence provides a
way of adjusting the indices to be equal at � and 2�. Consider a uniaxial crystal, which has
refractive index no when the light wave’s E field is in the xy plane (an “ordinary” wave), and
index ne when the E field is along the z axis (an “extraordinary” wave). Figure 9-10a shows
a light wave propagating through such a crystal, with its k vector in the yz plane, making an
angle 
 with the z axis. When the wave’s E field is along the x axis, the refractive index is
the ordinary one no. When it is polarized perpendular to this, however, the E field has com-
ponents along both y and z, and the refractive index is intermediate between no and ne. The
effective refractive index for this “extraordinary” wave will then depend on the angle 
.

It is this variation of index with propagation angle that provides a means for phase
matching. Figure 9-10b shows the variation of refractive index with frequency for a pure
ordinary wave, a pure extraordinary wave, and a mixture of the two at some angle 
. If the
fundamental wave is polarized along x and the second harmonic wave polarized perpen-
dicular to this, then phase matching will occur when 
 is adjusted so that no

� = n2�(
). It is
clear from Fig. 9-10b that for phase matching to work, the birefringence (no – ne) must be
greater than the dispersion (no

2� – no
�). Crystals commonly used for frequency doubling in

the visible and near-IR regions are lithium niobate (LiNbO3) and KDP.
The astute reader may object that this scheme should not work, because the fundamen-

tal and second harmonic waves are polarized perpendicular to each other, and as such
should not interact at all. Although this would be true in an isotropic material, where P is
in the same direction as E, it is not the case in the anisotropic materials we are discussing.
Here, the tensor nature of � allows a field in the x direction to give rise to polarization in
any other direction, and this permits the coupling of the two waves.

An alternative approach to phase matching is that of quasi-phase matching, illustrated
in Fig. 9-11. In this method, no attempt is made to match the refractive indices of the fun-
damental and second harmonic waves, and they get out of phase after propagating a dis-
tance Lc. However, the direction of the crystalline symmetry axis is now made to alternate
spatially with a period equal to the coherence length Lc. This reverses the sign of the non-
linear susceptibility in a periodic fashion, and resynchronizes the fundamental and second
harmonic waves when they have gotten out of phase.

The most common material used for quasi-phase matching is lithium niobate (LiN-
bO3), which is ferroelectric (possessing a permanent electric dipole moment). The alter-
nating crystalline symmetry is created by poling, a process in which a high voltage is ap-
plied for a short time to patterned electrodes deposited on the surface. The resulting
structure is known as periodically poled lithium niobate, or PPLN (pronounced “piplin”),
and is commercially available. It can be designed to work with wavelengths that are diffu-
cult to phase match using conventional angle tuning.

Three-Wave Mixing

Second harmonic generation is actually a special case of the more general phenomenon of
three-wave mixing. In this process, two photons interact to give rise to a third photon,
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Figure 9-10 (a) For phase matching, the fundamental and second harmonic waves propagate in
the same direction with wave vector k, but with different polarizations (fundamental along x, second
harmonic perpendular to this). (b) The refractive index varies with frequency for both waves, but
varies with 
 only for the second harmonic. At the proper value of 
, the refractive indices for the two
waves are the same.

Figure 9-11 In quasi-phase matching, a nonlinear material is polled with a high voltage to produce
a periodic variation in the crystalline symmetry. This periodically resets the phase relation between
the fundamental and second harmonic waves so that on average they remain approximately in
phase.
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which may be of different frequency than either of the first two. To see how this works,
consider two light waves with frequencies �1 and �2 that add together at a given point in
a material to give a total electric field

E(t) = A1 cos �1t + A2 cos �2t (9-11)

where A1 and A2 are the amplitudes of the two waves. Assuming that the material has a
nonzero �2, the time-dependent polarization can be evaluated using Eq. (9-3), keeping
terms up to order E2. Writing out the terms and expanding E2 gives

�
�

1

0

� P(t) = �1[A1 cos �1t + A2 cos �2t]
(9-12)

+ �2[A1
2 cos2 �1t + A2

2 cos2 �2t + 2A1A2(cos �1t)(cos �2t)]

The terms involving cos �1t, cos �2t, cos2 �1t, and cos2 �2t give the refractive index, op-
tical rectification, and frequency doubling for the two frequencies �1 and �2, just as in
Eqs. (9-5)–(9-7). The new term here is the cross term (cos �1t)(cos �2t), which can be ex-
panded as

2(cos �1t)(cos �2t) = cos(�1 + �2)t + cos(�1 – �2)t (9-13)

using the trig identity 2 cos 
1 cos 
2 = cos(
1 + 
1) + cos(
1 – 
1).
There are now components of the polarization density oscillating at the sum frequency

�1 + �2 and the difference frequency �1 – �2, and these oscillations give rise to newly
created waves at a third frequency �3 = �1 ± �2. When �3 = �1 + �2, the process is
termed upconversion (the frequency is shifted upward), and when �3 = �1 – �2, the
process is termed downconversion (the frequency is shifted downward). These are depict-
ed in Fig. 9-12.

Although either upconversion or downconversion is possible, only one of these will
normally be efficient in any given situation, due to the need for phase matching. The gen-
eral condition for phase matching can be understood most easily from the quantum point
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Figure 9-12 Two photons of frequencies �1 and �2 incident on a �2 medium can create a new pho-
ton at either frequency �3 = �1 + �2 (upconversion) or �3 = �1 – �2 (downconversion).
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of view by considering momentum conservation for the interacting photons. Since a pho-
ton’s momentum is p = �k, the condition for upconversion becomes

�k1 + �k2 = �k3 (three-photon phase matching) (9-14)

where the magnitude of k is ki = ni�i/c for the ith photon. If the photons are all collinear
(same direction) then this reduces to the scalar equation

n1�1 + n2�2 = n3�3 (9-15)

If there is no dispersion (n1 = n2 = n3), this is automatically satisfied by energy conserva-
tion, which in the quantum view states that the sum of all photon energies is the same be-
fore and after the interaction. For three photons this is

��1 + ��2 = ��3 (three-photon energy conservation) (9-16)

Dispersion is generally present, however, and this necessitates the phase matching meth-
ods discussed in the previous section for efficient operation.

Frequency doubling can be thought of as a special case of upconversion, where �1 =
�2. In this case energy conservation becomes 2��1 = ��3, or simply 2�1 = �3 (the fre-
quency is doubled). Phase matching then reduces to 2n1�1 = n3�3, or simply n1 = n3.

Another important application of three-wave mixing is the optical parametric oscilla-
tor (OPO), depicted in Fig. 9-13. The OPO consists of a �2 medium placed between two
mirrors, with pump light from a laser incident on the medium through one of the mirrors.
Inside the medium, a pump photon at frequency �P is split into a “signal” photon at �S

and an “idler” photon at �I. The distinction between signal and idler waves is arbitrary,
and simply separates the two generated wavelengths into one that is of interest (signal),
and one that is extraneous (idler).

The interaction can be considered to be a downconversion process, with �P and �I

mixing together to generate the difference frequency �S = �P – �I. If there is no light ini-
tially in the crystal at frequency �I, it is the zero-point fluctuations of the idler’s E field
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Figure 9-13 In an optical parametric oscillator (OPO), pump photons are converted into lower fre-
quency signal and idler photons by a nonlinear �2 medium. Phase matching enables lasing at a fre-
quency �S, which depends on the angle 
.
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that mix with the pump to produce light at �S. This process is termed parametric fluores-
cence, and is purely quantum mechanical in nature. Once the idler wave has been estab-
lished, however, then the addition of light to the signal wave can be understood semiclas-
sically, as previously discussed.

The buildup of energy in the signal wave depends not only on the pump and idler pow-
er, but also on the power of the signal wave itself. This is the phenomenon of stimulated
emission, which will be discussed in Chapter 18. The mirrors in the OPO allow the signal
wave to propagate back and forth through the medium many times, all the while increas-
ing in intensity. This can result in laser oscillation at frequency �S if the phase matching
condition of Eq. (9-14) is satisfied. By varying the crystal angle 
, one can change the fre-
quency at which phase matching occurs, and this provides a way of continuously tuning
the laser light. Tunability over a wide frequency range is a key advantage of the OPO over
other types of laser sources.

Four-Wave Mixing

Second harmonic generation and three-wave mixing can only occur in a �2 medium,
which lacks a center of inversion symmetry. For isotropic materials such as glass, the
lowest-order nonlinearity is due to �3, and the time-dependent polarization becomes

P(t) = �0[�1E(t) + �3E3(t)] (centrosymmetric medium) (9-17)

Consider the simplest case of a single wave of frequency � incident on the material, with
a time-dependent E field given by

E(t) = A cos �t (9-18)

Substituting this expression into Eq. (9-17), and using the trig identity cos3 
 = (3 cos 
 +
cos 3
)/4, we have

P(t) = P0 + P� cos �t + P2� cos 2�t + P3� cos 3�t (9-19)

where

P0 = 0

P� = �0A[�1 + (3/4)�3A2]
(9-20)

P2� = 0

P3� = 1–4 �0�3A3

Since P0 = P2� = 0, there is no optical rectification or SHG in the �3 medium. Howev-
er, there is a term oscillating at frequency 3�, which will generate additional light at a fre-
quency three times that of the incident light. This is third harmonic generation or fre-
quency tripling, and can be used to produce even shorter wavelengths than SHG.
However, the efficiency is low, and phase matching is more difficult than in SHG. In
practice, shorter wavelengths are usually obtained by using SHG in successive steps (dou-
bling the doubled frequency, etc.).
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Third harmonic generation is a special case of the more general phenomenon known as
four-wave mixing. In this process, three waves of frequencies �1, �2, and �3 mix together
to generate additional waves at various sum and difference frequencies such as �1 + �2 –
�3, �1 – �2 + �3, and so on. Many third-order nonlinear processes that generate new fre-
quencies can be described in this way, including anti-Stokes Raman scattering (see Prob-
lem. 9.2). A full treatment of these is given in the more advanced texts listed in the Bibli-
ography.

9-3. NONLINEAR REFRACTIVE INDEX

We saw in the previous section that a wave of frequency � incident on a �3 medium will
produce polarization oscillations at 3�. Of equal (or perhaps greater) importance, howev-
er, are the additional polarization oscillations at frequency � that are produced by the �3

nonlinearity. According to Eq. (9-20), the linear susceptibility �1 is replaced by an effec-
tive susceptibility

�
1 = �1 + 3–4 �3A2 (effective �1, optical Kerr effect) (9-21)

which is a change ��1 = 3–4�3A2 from the usual linear susceptibility �1. Since it is the sus-
ceptibility �1 which determines the refractive index, this change in �1 results in a change
in the refractive index. Taking the differential of Eq. (9-1) gives

�n = ��1 = = �3A2 (9-22)

We see that the refractive index change is proportional to the square of the electric field
amplitude, and that the magnitude of this change is governed by �3.

It is common (and useful) to relate the change in refractive index to the light intensity I
rather than to the electric field. Using Eq. (2-9), the square of the electric field amplitude
is

A2 = (9-23)

so the refractive index change becomes

�n = (9-24)

The refractive index can then be written in the simple form

n � n0 + n2I (9-25)

where n0 is the refractive index at low intensity (the usual index of refraction), and

n2 = (nonlinear refractive index) (9-26)
3�3

�
4n2c�0

3�3I
�
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�
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�
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is the nonlinear refractive index. If I is expressed in MKS units of W/m2, then n2 will be
in units of m2/W, so that n2I is dimensionless.* This variation of refractive index with
light intensity is sometimes referred to as the optical Kerr effect.

Table 9-2 lists typical values of n2 for a few representative materials. In general, those
that contain heavier elements such as lead (Pb) and tantalum (Ta) have a higher n2 be-
cause the outer electrons are more weakly bound to the nucleus, and the atoms are there-
fore more easily polarized. In a polymer, electrons are relatively free to move along the
direction of the carbon chain, resulting in high polarizability in that direction. The n2 for
molecular liquids such as CS2 is particularly high due to the contribution from molecular
orientation. CS2 is often used as a standard for determining absolute values of n2 from rel-
ative measurements.

An intensity-dependent refractive index has important consequences for the propaga-
tion of light through a material. The propagation constant now varies with intensity ac-
cording to

k = = + = k0 + �k (9-27)

where k0 � n0�/c is the low-intensity value, and �k � n2I�/c is the change in k at high in-
tensity. When the light propagates a distance L in the material, the intensity causes the
phase to shift by

�� = �kL = L = (9-28)

where �0 = 2�c/� is the free-space wavelength of the light. This intensity-dependent shift
of phase is termed self-phase modulation. It is a type of self-action phenomenon in which
the wave acts on itself, via the material medium. We previously encountered another type
of self-action effect when discussing optical bleaching and optical limiting (Section 9-1).
In that case, it was an absorption that varied with intensity, rather than a phase.

Self-phase modulation has a number of consequences, some of which lead to useful
applications. In the following, we consider a few important examples.

Optical Switching

One potential application of self-phase modulation is in optical switching. Figure 9-14
shows one configuration that will accomplish this, the Mach–Zehnder interferometer. In
this device, an input light wave is split by a 50% reflecting beam splitter and directed
along two different paths. One path contains a nonlinear �3 medium and the other does
not. The two light waves are then combined by a second beam splitter into a single wave,
which is the output of the device.

If the light is coherent (see Chapter 15), the electric fields of the waves from the two
paths will add together constructively or destructively, depending on the relative phase of
the two waves when they recombine. If the E fields of the two waves are both maximum
at the same time, the waves add constructively and the output is maximum. If one wave is
shifted by � radians, however, then a maximum of one wave coincides with a minimum
of the other wave, resulting in destructive interference and zero output. One source of

2�n2IL
�

�0

n2I�
�

c

n2I�
�

c

n0�
�

c

n�
�
c
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*Some authors use the alternative definition n = n0 + n2A2/2, in which case the units of n2 are m2/V2.
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such a phase shift is any difference in path length for the two waves, as they propagate
from the first beam splitter to the second one. A path-length change for one of the waves
of only �0/2 will cause the output to go from maximum to minimum (or vice versa). In-
deed, this sensitivity to path-length difference is the fundamental advantage of interfer-
ometers for measuring small displacements.

The other source of phase shift between the two waves is a change of refractive index
along one of the paths. The light propagating along the lower path through the �3 medium
has its phase shifted by an amount given in Eq. (9-28), whereas light propagating along
the upper path does not. The device output therefore goes from maximum to minimum
when �� = �, and this occurs at an optical intensity I� given by

� =

or

I� = (switching intensity) (9-29)
�0

�
2n2L

n2I�2�L
�

�0
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Table 9-2 Nonlinear refractive indices for selected crystals

Material � (nm) n2 (10–20 m2/W)

Pure silica 1300 2.4
Ge–silica 1300 2.6
Water 500–1000 4
Lead silicate glass 1000 30–70
Ta2O5 800 72
PPV polymer 880 80
As2S3 1320 170
CS2 1000 310
GaAs 1000 3000

Figure 9-14 Self-phase modulation in one arm of a Mach–Zehnder interferometer can result in
switching of the optical beam if the intensity is high enough to cause a 180° phase shift.
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where L here is the length of the nonlinear medium in the direction of propagation. This
method of switching is attractive because it is all optical (the light “switches itself”) and
very fast (fs time scale). However, very high intensities are needed, as seen in the follow-
ing example.

A planar Ta2O5 rib waveguide has transverse dimensions 1 × 3 �m and a length of 1
cm. Determine the optical power needed for all-optical switching of 800 nm light.

Solution: The optical power is P = IA, where A is the cross-sectional area of the wave-
guide. Therefore,

P� = �
2

�

n
0

2

A

L
� = = 167 W

Optical powers this high that are cw (continuous-wave) would not be practical in an in-
tegrated optical circuit. However, if the light is in the form of pulses, the peak intensity
can be high while still maintaining a sufficiently low average power to be compatible
with integrated optics.

Pulse Chirping and Temporal Solitons

If the intensity of a light wave is constant in time (a cw beam), self-phase modulation has
the effect of simply shifting the phase by a constant value. If the intensity varies in time,
however, as it would in an optical pulse, the changing intensity causes a time-dependent
phase shift. To see what effect this has, consider a pulse of frequency �0 that propagates
in the +z direction and enters a �3 medium of thickness L, as shown in Fig. 9-15. We will
take the propagating wave in the medium to be of the form

E(z, t) = A cos(�0t – kz) (9-30)

where

k = (n0 + n2I)k0 (9-31)

and k0 = �0/c. Taking z = 0 to be at the left edge of the medium (labeled point #1), the
electric field there varies in time as

E1(t) = A cos �0t (9-32)

At z = L (point #2), where the wave leaves the medium, the field can be evaluated using
Eqs. (9-30)–(9-31) to be

E2(t) = A cos [�(t)] (9-33)

(8 × 10–7 m)(3 × 10–12 m2)
����
2(7.2 × 10–19 m2/W)(10–12 m)
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where

�(t) = �0t – [n0 + n2I(t)]k0L (9-34)

is the time-dependent phase of the wave.
Writing the time dependence of E2(t) in terms of a time-dependent phase is useful be-

cause, from a fundamental point of view, the frequency is defined as the rate at which the
phase is changing.* The optical frequency is therefore

� � = �0 – n2k0L (instantaneous frequency) (9-35)

If the intensity is constant in time (dI/dt = 0), then � = �0, and the frequency is simply the
coefficient of t in the cosine function of Eq. (9-30). This is the usual notion of frequency
for a sinusoidal wave. If the intensity is changing in time, however, then the frequency of
the wave differs from �0. Furthermore, if dI/dt is itself changing in time, then the frequen-
cy � changes in time. We should therefore interpret Eq. (9-35) as giving the instantaneous
frequency of the wave.

Consider now how this changing frequency affects the pulse of Fig. 9-15 as it passes
through the nonlinear medium. When the leading edge of the pulse enters the medium,
dI/dt > 0, so that � < �0. When the trailing edge of the pulse is passing through the medi-
um, however, dI/dt < 0, and in this case � > �0. The center of the pulse is unshifted in fre-
quency, since dI/dt = 0 there. We can summarize this by saying that the leading edge is
“red-shifted” (shifted to lower frequency, or longer wavelength), while the trailing edge is
“blue-shifted” (shifted to higher frequency, or shorter wavelength). The spatial variation
of the pulse’s E field after it has passed through the medium is depicted in Fig. 9-15.

An observer at a fixed position z who monitored this pulse as it went by would first see
the leading edge, with its lowered frequency, and then the trailing edge, with its increased
frequency. The result would be a measured frequency that changes in time, a phe-
nomonon termed frequency chirp. Since the frequency increases in time in this example,

dI
�
dt

d�
�
dt
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*Remember that in this chapter, “frequency” means angular frequency �.

Figure 9-15 In a nonlinear medium, the instantaneous frequency in a pulse is lowered when the in-
tensity is increasing in time, and raised when the intensity is decreasing. This gives a frequency chirp
to the pulse, in which the leading edge is red-shifted and the trailing edge is blue-shifted.
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it is called a positive chirp. Positive chirp results from our assumption that n2 > 0, which
is usually the case. Negative n2 can occur at frequencies near a strong material resonance,
in which case there would be negative chirp (frequency decreasing in time).

This separation of a pulse into low- and high-frequency regions is reminiscent of the
phenomenon of material dispersion that was discussed in Chapter 6. We found there that
in the normal dispersion regime (�0 < 1300 nm in silica glass), the material dispersion pa-
rameter Dm in Eq. (6-10) is negative. This means that longer wavelengths travel faster and
are shifted toward the leading edge of the pulse, whereas shorter wavelengths travel slow-
er and are shifted back toward the trailing edge. Dispersion, therefore, results in the same
spatial separation of frequencies that we observe in the nonlinear pulse of Fig. 9-15. We
can then think of the nonlinear medium as creating an intensity-dependent dispersion,
which adds to the actual material dispersion to broaden a pulse even further.

For wavelengths longer than 1300 nm in silica glass, the material dispersion is anom-
alous—longer wavelengths travel slower and tend to move toward the trailing edge of the
pulse. The nonlinear index n2 remains positive for these longer wavelengths, however,
and the nonlinearity continues to force longer wavelengths toward the leading edge. At
some critical value of intensity, these two tendencies will cancel, and there will be no
movement of different frequencies to different parts of the pulse. The resulting pulse pre-
serves its shape and frequency distribution as it propagates, and is known as an optical
soliton.

Optical solitons have considerable potential in fiber optic communications because
they eliminate one of the primary limits on span length—that of dispersion. It might be
thought that solitons would be rather fragile entities, breaking up when the light intensity
becomes less than the required value. However, they turn out to be actually rather robust,
since the critical quantity for maintaining the soliton is not the intensity alone, but rather
the product of peak electric field magnitude and pulse duration. As the pulse loses energy
due to attenuation, it broadens slightly in time, but remains a soliton. Periodic replenish-
ment of these energy losses in an optical amplifier keeps the pulse energy and corre-
sponding pulse duration in the desired range.

Pulse Compression

Frequency chirping can be used to reduce the duration of an optical pulse, using the
scheme shown in Fig. 9-16. In this procedure, known as pulse compression, an input
pulse is first broadened and chirped by a �3 medium. This broadened pulse is then sent to
a pair of reflective diffraction gratings that are oriented parallel to each other. Because of
the geometry of the gratings and the diffraction grating condition (Eq. 2-28), longer wave-
lengths must travel a greater distance through the grating pair combination than shorter
wavelengths (see Problem 9.3). The longer wavelengths therefore become relatively more
delayed in time, which has the effect of making the longer wavelength components (ini-
tially near the leading edge) move toward the trailing edge of the pulse. As a result, the
duration of the pulse can be considerably reduced. A pair of prisms can be arranged to
give the same effect.

Using pulses from a Ti:sapphire laser, compressed pulse durations under 5 fs have
been achieved at wavelengths ~ 780 nm. This corresponds to about two cycles of oscilla-
tion of the E field during the pulse, a number small enough to call into question its de-
scription as a wave. The spectral width of such a pulse* is �� ~ 1/�t = 2 × 1014 s–1, which
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*See Appendix B on the Fourier transform.
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corresponds to a wavelength spread �� ~ 400 nm. Pulses this short have such an ill-de-
fined wavelength that they are of limited utility in optical communications. However,
they are very useful for probing rapid physical and chemical processes that occur in pho-
tonic materials.

Self-Focusing and Spatial Solitons

In the previous examples we have seen how a nonlinear refractive index can lead to
changes in the time dependence of an optical pulse. We consider now another conse-
quence of the nonlinear index, in which the spatial profile of a propagating beam is modi-
fied. The basic idea is illustrated in Fig. 9-17, which shows a beam of finite lateral extent
incident on a nonlinear �3 medium. The wavefronts propagate through the medium with
phase velocity

vp = = (9-36)
c

�
n0 + n2I

c
�
n
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Figure 9-16 A chirped pulse can be compressed by a pair of diffraction gratings, due to the differ-
ent path lengths for longer and shorter wavelengths.

Figure 9-17 The variation of optical intensity across a beam’s transverse profile causes a spatially
varying refractive index in a nonlinear �3 medium, and this acts to focus the light.
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where Eq. (9-25) has been used. Since portions of the wave front farther from the beam
axis have a smaller intensity I than portions of the wave front near the axis, they move
relatively faster there, distorting the wave front as shown. The curvature of the wave front
makes the beam converge to a point, just as if a lens had been placed in the path of the
beam. Because of its similarity to the focusing of light by a lens, this phenomenon is re-
ferred to as self-focusing.

Self-focusing has some undesirable effects on the propagation of very high power laser
pulses through a material. As the beam becomes narrower due to self-focusing, the inten-
sity increases (I = P/A with P constant and A decreasing). This leads to even stronger self-
focusing, which in turn narrows the beam more rapidly still. These two effects feed on
each other and soon result in beam breakup and optical damage. This becomes an issue,
for example, in proposed schemes that use high-power lasers to initiate nuclear fusion.
The problem can be minimized by employing laser glasses with a low n2, and by spread-
ing the beam over a large cross-sectional area A to limit the intensity.

Under certain conditions, the collapse of a beam by self-focusing can be controlled and
used to advantage. This is possible because of diffraction, which is the natural tendency
of optical beams to diverge (see Chapter 2, Section 2-3). The smaller the beam diameter
becomes, the more it tries to spread out by diffraction. If the beam intensity has the right
spatial profile, then at some value of beam diameter the two effects of self-focusing and
diffraction can exactly cancel one another. This leads to a beam of constant diameter, as
depicted in Fig. 9-18, which is known as a spatial soliton. It is the spatial counterpart to
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Figure 9-18 The combination of self-focusing and diffraction can lead to a spatial soliton, in which
the beam’s transverse profile remains constant with position.
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the temporal soliton discussed earlier, and has potential for applications in all-optical
switching and signal processing.

Another application that takes advantage of self-focusing is the optical switching
process depicted in Fig. 9-19. An aperture is placed in the path of a diverging beam,
which allows only a small fraction of the light to be transmitted when the optical power is
low. When the optical power is increased, self-focusing narrows the divergence of the
beam, so more light is transmitted through the aperture. As a result, the fraction of light
transmitted by the aperture varies with beam power in the manner shown in Fig. 9-19b.
This power-dependent transmission efficiency is similar to what would be obtained in the
optical bleaching process discussed earlier. Since it depends on the optical Kerr effect,
this type of arrangement is referred to as a Kerr lens shutter. We will see in Chapter 22
how it can be used to create very short laser pulses.

9-4. ELECTROOPTIC EFFECTS

In the preceeding section, we saw how a light wave of high intensity propagating through
a nonlinear medium can change the refractive index of that medium. We turn now to a re-
lated phenomenon, in which a material’s refractive index is changed by applying a static
(dc) electric field. This is known as the electrooptic effect, and can be considered as a spe-
cial case of multiwave interaction in which one of the waves has zero frequency. Depend-
ing on the material, the refractive index can vary linearly with field (Pockels effect) or
quadratically with field (electrooptic Kerr effect). In general, the refractive index varies
with applied field E0 as

n = n0 + aE0 + bE0
2 (9-37)

In the following, we show how the coefficients a and b are related to the nonlinear sus-
ceptibilities �2 and �3, and discuss some typical applications.

Pockels Effect

Consider a light wave of frequency � incident on a nonlinear medium as shown in Fig. 9-
20. The light wave is propagating in the +x direction, and enters the medium of thickness
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Figure 9-19 In a Kerr lens shutter, the fraction of light transmitted through a fixed aperture increas-
es at high beam power due to self-focusing.

c09.qxd  2/22/2006  2:56 PM  Page 149



d and length L. A voltage V is applied across the distance d, creating a static electric field
of magnitude E0 = V/d. The incident light can be polarized at any angle 
, but for now we
assume that it is polarized along the z axis (
 = 0), in the same direction as the static field.
The total field at a point inside the medium can then be written as

E(t) = E0 + A cos �t (9-38)

where A is the amplitude of the light wave’s E field.
The time-dependent electric field creates a time-dependent polarization in the medium,

given by Eq. (9-3). In a material that lacks inversion symmetry, �2 	 0, and the polariza-
tion to lowest order is

P = �0�1(E0 + A cos �t) + �0�2(E0 + A cos �t)2 (9-39)

Writing this in the form of Eq. (9-6), we find that the oscillation in polarization at fre-
quency � has an amplitude

P� = �0�1A + �02�2E0A
(9-40)

= �0�
1A

where the effective susceptibility �1
 here is

�
1 = �1 + 2�2E0 (effective �1, Pockels effect) (9-41)

The effect of the static E field is therefore to change the susceptibility by an amount ��1 =
2�2E0. Following the steps of Eq. (9-22), this changes the refractive index by

�n = �2E0 (9-42)
1
�
n
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Figure 9-20 Light wave polarized in the y–z plane, propagating along the x axis. The change in re-
fractive index is greatest for 
 = 0 and smallest for 
 = 90°.
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The coefficient of E in Eq. (9-37) is therefore a = �2/n. It is customary to write the refrac-
tive index change in the Pockels effect as

�n � 1–2 n3rE0 (index change, Pockels effect) (9-43)

where r is the Pockels coefficient. Comparing Eqs. (9-42) and (9-43), we see that r =
(2/n4) �2.

The analysis leading up to Eq. (9-42) is somewhat simplified, since it assumes that the
susceptibility �2 is a scalar. If this were the case, then an applied static field in the z direc-
tion would only interact with light waves polarized with their E field along z. However, �2

is actually a tensor quantity, which means that in general the applied static field changes
the refractive index for light polarized along either x, y, or z. Furthermore, the refractive
index changes differently for each polarization, so that there is a field-induced birefrin-
gence in the medium.

These polarization-dependent effects are well illustrated by lithium niobate, an impor-
tant electrooptic material. It is a uniaxial crystal, with one axis of symmetry (usually tak-
en as the z axis). The refractive index has the value ne when the light wave’s E field is
parallel to the z axis, and the value no when the light wave’s E field is in the xy plane.*
Assume first that the applied static field is along z. If the light wave’s E field is also along
z, then the appropriate Pockels coefficient is r33 = 30.8 × 10–12 m/V (30.8 pm/V), and the
field-induced change in index is �n = ne

3r33E0/2. If the light wave’s E field is in the xy
plane, however, then the appropriate Pockels coefficient is r13 = 8.6 pm/V, and �n =
no

3r13E0/2.
Other Pockels coefficients describe the index changes for a static field in the xy plane.

For example, if light is propagating along the z axis, there would normally be no birefrin-
gence, since the index is the same (no) for polarization along either x or y. If a static field
is applied in the xy plane, however, it reduces the index for one polarization by no

3r22E0/2
and increases it by the same amount for the other. This results in an index difference be-
tween opposite polarizations (birefringence) of no

3r22E0, where r22 = 3.4 pm/V for lithium
niobate. Certain applications take advantage of this induced birefringence, while others
simply utilize the change in index for one polarization. The value of r to use in Eq. (9-43)
depends on the material as well as on the crystal orientation and the type of application.
Typical values for r are in the range 10–12 � 10–10 m/V (1–100 pm/V).

Figure 9-21 shows an application of the Pockels effect that allows electrically con-
trolled modulation or switching of a light wave in a planar waveguide. Light entering
from the left is split at the Y junction into two paths, one of them (the upper path) passing
through a static electric field region. The field in this region is controlled by the voltage
applied across a pair of parallel electrodes. Light from the two paths then comes together
in the second Y junction, and the two component waves combine to give a single output
wave.

This arrangement constitutes an integrated-optic version of the Mach–Zehnder inter-
ferometer, and the device operates in much the same way as the optical Kerr effect switch
discussed on page 142. In both cases, the output changes from zero to maximum when the
light propagating along one of the paths experiences a phase shift of � radians. The dif-
ference is that here the phase shift arises from an applied static field, rather than from the
intensity of the light itself. From the point of view of the incident light wave, the Pockels
effect modulator exhibits a linear optical response, in the sense that the optical output
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*Subscripts are used here on ne and no, rather than the superscripts ne and no used previously.
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varies linearly with the optical input. It is nonlinear only in the sense that the modulator’s
output is changed by applying a voltage. This optically linear behavior is an advantage in
parallel processing of multiple signals, because each signal can then be processed inde-
pendently without being affected by the presence of other signals. Electrooptic modula-
tors such as this are now commonly used for fast modulation and switching in high-speed
optical communications.

An integrated-optical waveguide modulator uses LiNbO3 (lithium niobate) in a
Mach–Zehnder configuration. The crystal is oriented so that light propagates along the
x axis, with the applied field and the light wave’s field both along the z axis. The wave-
guide width (and spacing of electrodes) is 20 �m, and the length of the electrode re-
gion is 1 cm. Find the voltage V� necessary to switch the output from low to high for
light of free-space wavelength 1500 nm.

Solution: The condition for switching is �kL = �, or

�nL = �

The index change here depends on Pockels coefficient r33, so

� ne
3r33 �L = �

or

V� =
d�0

�
ne

3r33L

V�
�
d

1
�
2

2�
�
�0

2�
�
�0
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Figure 9-21 A Mach–Zehnder interferometer is formed from lithium niobate planar waveguides. A
phase shift in one path changes the amplitude of the output wave, which enables electrical modula-
tion of the light wave.

EXAMPLE 9-3
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Using the value ne = 2.139 at �0 = 1500 nm,

V� = = 9.9 V

This result shows that relatively modest voltages are needed for electrooptic modula-
tion in a planar waveguide configuration.

Another method for modulating a light wave’s amplitude is illustrated in Fig. 9-22. An
electrooptic crystal with electrodes attached (a Pockels cell) is placed between two
crossed polarizers, and oriented with the z axis along the direction of light propagation. If
no voltage is applied between the electrodes, the refractive index of a uniaxial crystal is
the same for any polarization of the light, and this polarization is preserved as it passes
through the crystal. Since the polarizers are oriented with their transmission axes perpen-
dicular to each other, no light is transmitted by the second polarizer.

When voltage is applied, the electric field induces a birefringence in the crystal such
that the indices of refraction along the x and y axes are different. If the incident light’s E
field were initially oriented along either x or y, then it would remain oriented in this direc-
tion, the phase velocity being determined by the corresponding refractive index. Howev-
er, the first polarizer is arranged so that the incident E field is along the axis x
, which is at
45° from the x and y axes. To see how the light propagates in this case, we must decom-
pose the incident E1 vector into components along the crystal axes x and y, and treat the
propagation of each of these components separately.

Just before entering the crystal, the field has components

E1x = (A/�2�) cos �t
(9-44)

E1y = (A/�2�) cos �t

where the incident field magnitude is taken to vary in time as E1(t) = A cos �t. The two
components propagate with different phase velocities, and accumulate a phase difference

(20 × 10–6 m)(1.5 × 10–6 m)
����
(2.139)3(30.8 × 10–12 m/V)(10–2 m)
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Figure 9-22 In a Pockels cell, the applied voltage changes the light’s polarization from linear to el-
liptical. When it is placed between crossed polarizers, this can be used to modulate the transmitted
light intensity.
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�� = �
2

�

�

0

� �nL

(9-45)

= �
2

�

�

0

��no
3r22 �

V

d
��L

after propagating a distance L through the crystal. The field E2 of the light wave exiting
the crystal therefore has x and y components

E2x = (A/�2�) cos �t
(9-46)

E2y = (A/�2�) cos (�t + ��)

where we have suppressed the phase change that the two components experience in com-
mon. A light wave with the time dependence of Eq. (9-46) is termed elliptically polarized
because the direction of the field E2 rotates in time, the tip of E2 tracing out an ellipse in
space. When �� = �/2, the light is said to be circularly polarized.

It is this change in the light’s polarization from linear to elliptical that allows some
light to get through the second polarizer. The elliptically polarized field has some compo-
nent along the transmission axis y
 of polarizer 2, whereas the initial field was linearly po-
larized along x
, and had no component along y
. The component of E2 along y
 can be
evaluated as

E2y
 = E2y – E2x

= [cos (�t + ��) – cos �t] (9-47)

= –A sin ��t + � sin � �
where the trigonometric identity cos � – cos � = –2 sin (� + �)/2 sin (� – �)/2 has been
used. This represents a sinusoidal oscillation of frequency � and amplitude A
 = A sin
(��/2). Since the light intensity is proportional to E2, the fraction of incident light which
is transmitted by the second polarizor is

= � �
2

= sin2� � (9-48)

According to Eq. (9-48), the fraction of light transmitted increases as the phase shift ��
increases from zero. When �� = �, the transmitted intensity becomes a maximum, and
then it decreases when �� is increased further. The condition �� = � is equivalent to a
simple change of sign in Eq. (9-46), with E2y = –(A/�2�) cos �t. This corresponds to linear
polarization for the light field E2, but with a polarization axis 90° different than that of the
incident field E1. Under these conditions, the induced birefringence has rotated the plane of
polarization in just the right way so that all the light is transmitted by the second polarizer.

The voltage V� required to induce a � phase shift is found from Eq. (9-45) to be

V� = (switching voltage, Pockels cell) (9-50)
�0d

�
2no

3r22L

��
�

2

A

�
A

Iout
�
Iin

��
�

2

��
�

2

A
�
2

1
�
�2�

1
�
�2�
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and the transmission characteristics for the Pockels cell modulator can be written in the
form

Iout = Iin sin2� � (Pockels cell transmission) (9-50)

The Pockels cell can be used in two different ways to modulate a light signal. In the
first application, a small-signal modulating voltage Vm(t) is added to a dc bias voltage V0

to give a total voltage V(t) = V0 + Vm(t). If Vm(t) is sufficiently small, the change in optical
output will be linearly proportional to Vm(t), the desired relation for analog signal process-
ing. In the second type of application, the Pockels cell operates in a switching mode,
where V(t) changes in steps of V�. This would be appropriate for digital applications, for
example, in which the “signal” is either on or off. As we will see in Chapter 22, the
switching mode is also useful in generating short laser pulses.

Kerr Electrooptic Effect

The Pockels effect is absent in materials having inversion symmetry, such as liquids and
glasses, because �2 = 0. In these materials, there is still an electrooptic effect, but it is a
higher-order process that depends on �3. To see how it arises, we write the total field in
the material as the sum of a static applied field E0 and the light wave’s field A cos �t, as in
Eq. (9-38). Substituting this into Eq. (9-17) for the time-dependent polarization, it is
straightforward to show (see Problem 9.4) that the component of polarization oscillating
at frequency � has amplitude

P� = �0�
1A (9-51)

where

�
1 = �1 + 3�3 E 0
2 (effective �1, Kerr electrooptic effect) (9-52)

The applied field E0 therefore changes the susceptibility by ��1 = 3�3E 0
2. Following the

steps of Eq. (9-22), we find a corresponding index change

�n = E 0
2 (9-53)

This quadratic variation of refractive index with applied static E field is termed the
Kerr electrooptic effect.* Comparing Eq. (9-53) with the definition �n = bE0

2 from Eq.
(9-37), we identify b = 3�3/(2n). It is conventional to write the change of index as �n =
K�0 E0

2, where K is the Kerr electrooptic coefficient. However, it is b and not K that is
most nearly independent of wavelength, and so b is the more useful parameter when com-
paring different materials. Table 9-3 shows a few typical values of b in selected liquids
and glasses. Glasses have a larger b when they contain heavy metal components that are
highly polarizable, and liquids have a larger b when they contain molecules with a perma-
nent dipole moment.

3�3
�
2n

V
�
V�

�
�
2
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*This should be distinguished from the optical Kerr effect discussed earlier. Unfortunately, both of these are
sometimes referred to as the “Kerr effect.”
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A device in which a material is made birefringent via the Kerr electrooptic effect is
called a Kerr cell, and it can serve the same function as a Pockels cell. The advantage of
the Kerr cell is that it can use a variety of isotropic materials such as liquids and glasses.
The disadvantage is that the response is not linear with applied voltage, and that very high
voltages are needed. Most electrooptic modulators today utilize Pockels cells rather than
Kerr cells.

PROBLEMS

9.1 Estimate the rms value of the electric field in sunlight having intensity 1 kW/m2, us-
ing Eq. (2-9). (Erms = Epeak/�2�). Compare this with a typical atomic electric field
obtained from Coulomb’s law at a distance 0.1 nm from a single proton charge.

9.2 Two light waves with frequencies �L and �S are incident on a nonlinear �3 material,
with �L > �S. If the combined E field in the crystal is taken as E(t) = AL cos �Lt + AS

cos �St, use Eq. (9-17) to show that there is a generated lightwave of frequency �AS

= �L + (�L – �S). This can be used to describe anti-Stokes Raman scattering.

9.3 Use Eq. (2-28) to show that longer wavelengths take a longer path through the grat-
ing pair in Fig. 9-16.

9.4 Show that Eqs. (9-51) and (9-52) follow from substituting the field E(t) = E0 + A cos
�t into Eq. (9-17).

9.5 Both the Kerr electrooptic coefficient K and the nonlinear refractive index n2 are re-
lated to the third-order susceptibility �3. Obtain a relation between b and n2, and use
this to compare the values given for water in Tables 9-2 and 9-3. Explain any differ-
ence by considering the time response of the different contributions to �3 (such as
electronic, molecular rotations, etc.).

9.6 A He–Ne laser beam of power 1 mW is focused to a beam diameter of 0.2 mm in a
LiNbO3 crystal. Use Eq. (2-9) to calculate the peak E field in the crystal (use the or-
dinary index no), and use this value of E to calculate P� and P2�. How do they com-
pare?

9.7 For the previous problem, calculate the ratio P3�/P�, and compare this with the ratio
P2�/P�. Assume that the value of n2 for LiNbO3 is the same as that for Ta2O5.

9.8 In our description of second harmonic generation, we considered only the conver-
sion of a strong wave at � into a new wave at 2�. However, this new wave at 2� can
subsequently interact with the original wave at �, generating still additional waves.
Explore this phenomenon by considering a total E field in the material given by 

E(t) = A� cos �t + A2� cos(2�t + �)

156 Chapter 9 Nonlinear Optics

Table 9-3 Kerr electrooptic properties for some materials

Material b = K� (10–20 m2/V2)

Nitrobenzene 206
Water 1.85
Glass 10–2–1
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Show that this leads to additional polarization oscillations at � and 3�, and that the
new wave at � can interfere constructively or destructively with the original wave at
�, depending on the phase angle �.

9.9 In writing the power series expansion for polarization given in Eq. (9-3), it is as-
sumed that �2E � 1. This assumption may break down, however, for sufficiently
high optical intensity. (a) For LiNbO3 illuminated with 1 �m light, determine the
optical intensity at which �2E = 0.01. (b) If the beam is focused to a diameter of 2
�m in the material, what optical power does this represent? (c) If the light source
consists of pulses of duration 10 ns, what is the corresponding energy per pulse?

9.10 A crystal of CdGeAs2 is used for second harmonic generation of 10.6 �m light. De-
termine the wave vector mismatch �k between the waves at � and 2� if the light
propagates along the z axis. From this, determine the crystal length at which the effi-
ciency of SHG reaches a maximum.

9.11 Light at 1.064 �m is converted to 0.532 �m by SHG in a KDP crystal. Phase match-
ing is achieved using the scheme illustrated in Fig. 9-10. As the angle 
 is varied by
tilting the crystal, the index n� = no

� remains constant, whereas the index at 2� is
given by 

� �
2

= � �
2

+ � �
2

Use this equation, along with the data in Table 9-1, to determine the proper tilting
angle 
 for phase matching.

9.12 Two optical beams with wavelengths 800 and 650 nm interact in a �2 material, gen-
erating a frequency-upconverted output beam. Determine the wavelength of the new
beam.

9.13 The arrangement of Fig. 9-14 for optical switching is used, with a long optical
fiber as the �3 medium. The pulses to be switched have a peak power of 100 mW
at wavelength 1300 nm. Assume that the light uniformly fills the 8 �m diameter
core of the fiber. (a) Assuming that Ge–silica fiber is used, determine the fiber
length required to switch the beam. (b) Repeat the calculation if As2S3 fiber is
used instead of silica.

9.14 Light with wavelength 1064 nm is switched using the Pockels effect, as shown in
Fig. 9-21. The lithium niobate crystal is oriented with the z axis aligned with the ap-
plied static field, and the light is polarized with its E field perpendicular to the static
field. The electrode spacing and length are 15 �m and 0.75 cm, respectively. Deter-
mine the voltage required to switch the optical output from zero to maximum.

9.15 A Pockels cell is configured as in Fig. 9-22 to modulate the intensity of a 500 mW
Nd:YAG laser beam. Using lithium niobate with the z axis along the direction of
propagation, it is found that the transmitted power goes from zero to maximum
when the applied voltage V goes from zero to 1.4 kV. (a) Determine the power of the
transmitted laser beam when V = 300 V. (b) If the applied voltage is modulated ac-
cording to V(t) = 300 + 10 cos(5 × 103t), determine the minimum and maximum
transmitted power of the transmitted laser beam. (c) Characterize the degree of dis-
tortion in the output waveform by calculating the fractional difference between the

sin 

�
ne

2�

cos 

�
no

2�

1
�
n2�(
)
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positive-going and negative-going amplitudes of the output power oscillations. (d)
Determine the L/d ratio for this Pockels cell modulator.

9.16 We saw in Section 9-3 that an intense optical beam changes the index of refraction
seen by that same beam, a phenomenon known as self-phase modulation. It is also
possible for one intense beam to change the refractive index seen by a second, weak-
er beam, and this is termed cross-phase modulation. Consider a strong beam of fre-
quency �1 and a weak beam of frequency �2 copropagating in a �3 medium, with
the total electric field at a point in the crystal given by 

E(t) = A1 cos �1t + A2 cos �2t

Show that the change of index seen by the weaker beam is 

�n =

which is twice the value for self-phase modulation given in Eq. (9-24). 

3�3I1
�
2n2c�0
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The previous chapters of this book have been concerned with how light behaves as it
propagates, either in free space or in a waveguide geometry. In general, the propagation
of light can be understood by considering it to be a wave. We turn now to a study of de-
vices in which light is generated or detected. The generation or detection of light involves
the interaction of light with matter, and it is here that the particle nature of light (quantum
viewpoint) becomes relevant. Quantum mechanics is also important for understanding the
properties of matter such as semiconductors, which are key materials for use in light emit-
ters and detectors. In this chapter, we briefly review those aspects of semiconductors that
are essential for an understanding of light generation and detection.

10-1. UNIFORM SEMICONDUCTOR

We begin by ignoring the boundaries between different materials and consider a semicon-
ductor that is infinite in extent, with properties that do not vary from place to place within
the material (i.e., a uniform material). The simplest treatment of semiconductor physics
considers only the allowed energies of electrons in the material. A more refined treatment
includes the effects of electron momentum. Both viewpoints are useful in understanding
the optical properties of semiconductors.

Energy Bands

One of the fundamental principles of quantum mechanics is that the energy of a system can-
not take on arbitrary values but is quantized (that is, can only take on discrete values). The
electrons in a free atom (such as hydrogen with one electron or oxygen with eight) must re-
side in one of these “sharp” energy levels, with the restriction that not more than two (one
with spin up, one with spin down) can be in any one level. This restriction is known as the
Pauli exclusion principle. Electrons can make a transition from one energy level to anoth-
er unocuppied level by absorbing or emitting a photon. In such a process, the photon ener-
gy h� must equal the difference in energy of the two levels to satisfy energy conservation.
The study of atomic absorption and emission spectra (such as the familiar Balmer series in
hydrogen) played an important role in the development of quantum mechanics.

When two atoms come together to form a molecule, there is an interaction between the
electrons and nuclei of the two atoms that causes the energy levels to change. This
process is illustrated in Fig. 10-1a, which shows how the energy of an atomic energy lev-
el varies as the interatomic separation R decreases. At large R, there are two energy levels,
one for each atom, which have the same energy. The levels are then said to be degenerate.
As R decreases, the two levels split, one going to lower energy (the “bonding” level) and
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the other going to higher energy (the “antibonding” level). These two levels are not asso-
ciated with either atom individually, but are rather associated with the combined two-
atom system. As R continues to decrease, eventually the bonding level also increases in
energy, due to Coulomb repulsion by the two nuclei. Since systems have a natural tenden-
cy to settle into the lowest energy configuration, the equilibrium separation of the atoms
in the molecule will be R0 as shown.

The energy levels in a solid can be understood in a similar way. Instead of two degen-
erate levels at large separation, however, there are some 1023 degenerate levels corre-
sponding to the ~ 1023 atoms in a macroscopic solid of centimeter dimensions. As the in-
teratomic separation a decreases in the solid, these levels split to form a quasicontinuous
band of allowed electron energies, as shown in Fig. 10-1b. Although in principle the indi-
vidual levels in the band are still discrete, the small spacing between them and the natural
width of each one leads to a range of electron energies that for all practical purposes is
continuous. The equilibrium separation a0 will correspond to the configuration in which
the combined energy of all electrons is minimized.

Fig. 10-1 depicts the splitting of a single degenerate energy level into a band. Each atom
in the solid has other energy levels as well, which are similarly split into bands. These bands
may be completely filled with electrons, partially filled, or empty. In semiconductors, the
highest-energy filled band is termed the valence band, and the band above this (which is
empty at zero temperature) is termed the conduction band. In between these is the bandgap,
as illustrated in Fig. 10-2. The energy separation between the top of the valence band and
the bottom of the conduction band is known as the bandgap energy Eg, and is typically ~ 1
eV. Table 10-1 gives values of Eg for a few important semiconductor materials.

160 Chapter 10 Review of Semiconductor Physics

Figure 10-1 (a) Splitting of degenerate atomic energy levels as atoms come together to form a mol-
ecule. (b) Splitting of many degenerate atomic energy levels as atoms come together to form a solid,
giving rise to a quasicontinuum of levels, or energy band.
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Using the band picture of solids, it is easy to obtain a simple understanding of how
light is absorbed by a semiconductor. Consider light with photon energy h� incident on a
semiconductor of bandgap energy Eg, as shown in Fig. 10-2b. If h� � Eg, the photon has
sufficient energy to promote an electron from the valence band to the conduction band.
When this occurs, there is not only an extra electron in the conduction band, but also a
deficit of one electron in the valence band. This deficit of one electon is termed a hole,
and acts in many ways like a positive particle. The hole can be visualized as a particle that
represents the absence of an electron, in the same way that a bubble in water acts like a
particle. The net result of this process is the absorption of a photon (the photon disap-
pears), and the creation of an electron–hole (e–h) pair.

The excess energy h� – Eg in an absorption process gives the electron and hole some
kinetic energy in the conduction and valence bands, which is quickly lost by inelastic col-
lisions. As the electron loses kinetic energy, it settles to the bottom of the conduction

10-1. Uniform Semiconductor 161

Figure 10-2 (a) The valence band (VB) is filled with electrons at low temperature, and the conduc-
tion band (CB) is empty. (b) In a photodiode detector, a photon of energy h� is absorbed, creating an
electron–hole pair. (c) In an LED or laser diode, an electron–hole pair recombines, creating a photon.

Table 10-1 Bandgap energy Eg and relative dielectric constant �r for selected semiconductors.

Material Eg (eV) Type of gap �r

Si 1.12 indirect 11.9
Ge 0.66 indirect 16
GaAs 1.42 direct 13.2
AlAs 2.15 indirect 10.1
Al0.3Ga0.7Asa 1.85 direct 10.2
InAs 0.33 direct 15.2
In0.53Ga0.47Asb 0.74 direct 12.5
InP 1.35 direct 12.6
GaP 2.27 indirect 11.1
GaN 3.44 direct 10.4/9.5c

aBecomes indirect for more than 35% Al.
bThis composition lattice matched to InP.
cBirefringent.
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band, whereas the hole settles to the top of the valence band. To understand the behavior
of the hole, it should be kept in mind that diagrams such as Fig. 10-2 depict the energy of
an electron, with increasing energy upward. The energy of a hole then increases down-
ward, since to move the hole downward requires electrons to move up in energy. One can,
therefore, think of holes as naturally “floating” to the top of the valence band, just as a
bubble naturally rises in a liquid.

Once the electron and hole (collectively called charge carriers) are created by absorp-
tion of a photon, they are free to move in the conduction and valence bands, respectively.
If there is an electric field in the semiconductor, the charge carriers will move in response
to this field and give rise to a photocurrent, which can be measured in an external circuit.
This is the basis for photodiode detectors, to be discussed in Chapter 14. It is clear from
this discussion that if h� < Eg, the photon cannot be absorbed, since there are no available
energy levels for the electron in the bandgap. This leads to the important feature of photo-
diode detectors that there is a minimum photon energy for photodetection, h�min � Eg.
Since � = c/�, this condition can be written as a maximum wavelength for photodetection,
�max � hc/Eg.

Compare the long wavelength detection limit for a Si photodetector with that of an
In.53Ga.47As detector. Which is suitable for a fiber optic communications system in the
1.5 �m band?

Solution: Using the values from Table 10-1, for Si,

�max = = = 1110 nm

and for In.53Ga.47As,

�max = = 1675 nm

The In.53Ga.47As detector will be suitable for 1500 nm, but the Si detector will not.
This particular mixture of 53% In and 47% Ga is often chosen so that the atomic spac-
ing matches that of InP, a commonly used substrate.

The energy band picture can also be used to understand the emission of light by a
semiconductor, which is the basis for operation of the LED (light emitting diode) and
laser diode. If electrons are somehow promoted into the conduction band, these electrons
can recombine with holes in the valence band, as indicated in Fig. 10-2c. Since the elec-
trons and holes will settle to the band edge before recombining, the energy of the photon
generated is h� = hc/� � Eg. For example, GaAs has a bandgap of 1.42 eV, so the corre-
sponding emission wavelength is � 870 nm. This material is historically important for
photonics, since it was used as a light source in the earliest optical communications sys-
tems.

(6.63 × 10–34 J · s)(3 × 108 m/s)
����

(0.74 eV) (1.6 × 10–19 J/eV)

(6.63 × 10–34 J · s)(3 × 108 m/s)
����

(1.12 eV)(1.6 × 10–19 J/eV)

hc
�
Eg
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Energy and Momentum

The picture presented in the previous section based on energy alone is not complete, be-
cause the electron has momentum as well as energy. According to quantum mechanics,
the momentum p of a particle is associated with a wavelength known as the de Broglie
wavelength, given by

� = (de Broglie wavelength) (10-1)

where h is Planck’s constant. It is convenient to define a wave vector magnitude k = 2�/�
for the electron, just as for light, so the electron’s momentum can be expressed as

p = = � �� � = �k (10-2)

where � � h/2�. The kinetic energy of a free electron can then be written

E(k) = = (10-3)

which is shown graphically in Fig. 10-3a. The wave nature of the electron is described
mathematically by the wave function �(x, t), which for a freely propagating electron is a
plane wave of the form

�(x, t) = Aei(kx–	t) (10-4)

where A is a normalization constant and 	 = E/�. The wave function gives a complete de-
scription of our knowledge about the electron’s behavior. Most importantly, the square of
the wave function |�|2 gives the relative probability that the electron will be found at a
particular value of x at time t when a measurement is made. For the plane wave of Eq.
(10-4), |�|2 is independent of x, which means that the particle could be anywhere. This is
in accord with the Heisenburg uncertainty principle (see Appendix B), since a momen-
tum that is precisely known leads to a position that is completely unknown.

For the electron to be localized, it is necessary to add together plane waves having
slightly different values of k and 	. The velocity of the electron then corresponds to the
group velocity of the wave packet, as given by Eq. (2-7). Written in terms of energy this
becomes

v = = (10-5)

It is left as an exercise (Problem 10.1) to show that this velocity is consistent with the mo-
mentum in Eq. (10-2).

When the electron is in a solid, it is no longer perfectly free to propagate, because of
interactions with the atoms in the solid. Thinking of the electron as a propagating wave
with de Broglie wavelength �, the situation is analogous to that of a light wave scattering
off a periodic array of refractive index “bumps.” As we saw in Chapter 8, this gives rise to
efficient reflection of the wave at the Bragg condition:

dE
�
dk

1
�
�

d	
�
dk

�2k2

�
2m

p2

�
2m

2�
�
�

h
�
2�

h
�
�

h
�
p
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2a = n� (Bragg condition) (10-6)

where a is the spacing between scattering centers (in this case the interatomic spacing)
and n is an integer. The electrons in the solid will, therefore, be highly reflected (i.e., they
cannot propagate) at discreet values of k given by

kn = = n (10-7)

At the values kn where efficient Bragg scattering occurs, the electron’s wave function
does not propagate, but rather takes the form of a stationary standing wave. This corre-
sponds to an electron that does not move, having a group velocity of zero. But a zero
group velocity for the electron implies that the slope dE/dk of the E(k) curve is zero, ac-
cording to Eq. (10-5). We therefore expect the E(k) curve to take the form shown in Fig.
10-3b. The curve deviates from the free-electron parabola of Fig. 10-3a only when k is
close to a multiple of �/a, the condition for Bragg reflection.

The deviation of the E(k) curve near k � n(�/a) has the important consequence that the
energy of the electron can no longer take on any arbitrary value. There are now forbidden
energy regions, which correspond to the bandgaps discussed previously. The allowed en-
ergy regions are a series of bands, most easily visualized in the reduced zone scheme
shown in Fig. 10-4. In this scheme, each part of the E(k) curve is translated by an integer

�
�
a

2�
�
�n
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Figure 10-3 (a) For a free electron, E(k) is parabolic, and the electron can have any energy. (b) In a
solid, the E(k) is distorted around multiples of �/a due to Bragg scattering of the electron’s wave
function.
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multiple of 2�/a so that the entire curve is within the range – �/a 
 k 
 �/a. Such trans-
lations are allowed due to the periodicity of the lattice. Each point on the E(k) curves of
Fig. 10-4 corresponds to a particular quantum state for the electron, which may be occu-
pied by an electron, or unoccupied. In the valence band at T = 0 K, all the available states
are occupied, and in the conduction band all states are vacant.

If an electron is promoted into one of the states of the conduction band, with a va-
cancy (hole) in one of the states of the valence band, the electron and hole can recom-
bine radiatively to generate a photon. This was discussed previously in terms of energy
conservation, but now we add the restriction that momentum be conserved in the re-
combination process. Consider a transition in which the k of the electron changes by �k
as illustrated in Fig. 10-5. The electron momentum is �k, so the change in momentum
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Figure 10-5 In a direct radiative transition, the k of the electron must change by an amount �k that
balances the momentum of the emitted photon.

Figure 10-4 In the reduced zone scheme, the allowed energy regions of the E(k) curves correspond
to the energy bands shown in Fig. 10-2.

c10.qxd  2/22/2006  3:03 PM  Page 165



is ��k. To conserve momentum, the photon that is produced must have this same mo-
mentum, or

pphoton = = ���
2

�

�
�� = ��k

(10-8)

�
2

�

�
� = �k

where � here is the photon wavelength. To get a sense of how large the �k must be for a
typical photon of wavelength ~ 1 �m, it can be compared with the maximum range of k
values for each band, which is 2�/a. Taking a typical atomic spacing of a = 1 × 10–10 m,

= ~ = 10–4

which means that on the scale of a diagram such as Fig. 10-4, the transition must be es-
sentially vertical. If the electron and hole initially have very different values of k, they
must first each settle to the bottom and top of their respective bands, before recombining
in a vertical transition.

The band structure depicted in Fig. 10-5 is said to have a direct gap, since the bottom
of the conduction band is directly over the top of the valence band, allowing a vertical ra-
diative transition. Some materials instead have an indirect gap, illustrated in Fig. 10-6, in
which the conduction and valence bands are offset. In this case a vertical transition is not
allowed, because the states in the valence band directly below the electron in the conduc-
tion band are already filled. The transition must, therefore, be indirect, with the electron’s
momentum change ��k much larger than that of the photon. Since this does not satisfy
momentum conservation, radiative decay of the electron and hole is largely suppressed. It

10–10 m
�
10–6 m

a
�
�

�k
�
2�/a

h
�
�
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Figure 10-6 In an indirect radiative transition, the �k of the electron is too large to balance the pho-
ton’s momentum. A phonon simultaneously emitted or absorbed can allow momentum to be con-
served.

�
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can be weakly allowed, however, by the simultaneous emission or absorption of phonons
(the quanta of atomic vibrations in the solid) which serve to conserve momentum. Since
the probability of occurance for a quantum process decreases when the number of objects
involved increases, the efficiency of these “indirect transitions” is quite low, typically
some four to six orders of magnitude smaller than direct (vertical) transitions.

It is unfortunate that the elemental semiconductors silicon and germanium, so impor-
tant and well developed for the electronics industry, happen to be indirect-gap materials.
This makes them unsuitable as light emitters, at least in the traditional crystalline form.
Research on nanostructured silicon has shown an improved efficiency due to the break-
down of translational symmetry and consequent relaxation of the momentum require-
ment. However, this technology is not yet mature, and it remains true that an efficient
light emitter requires a direct-gap material.

Many binary semiconductors such as GaAs have a direct gap, as indicated in Table 10-
1, whereas others such as AlAs have an indirect gap. If GaAs and AlAs are mixed togeth-
er to form the ternary alloy AlxGa1–xAs, the material has a direct gap for x < 0.35 and an
indirect gap for x > 0.35. Throughout the direct-gap range, the bandgap energy varies with
x as

Eg = 1.424 + 1.427x + 0.041x2 eV (AlxGa1–xAs bandgap) (10-9)

so the emission wavelength of the material can be chosen by selecting different composi-
tions. The alloy AlxGa1–xAs has the added advantage that its lattice constant (separation
between atoms) is nearly independent of x, which allows layers with different bandgaps to
be grown on top of each other without a lattice mismatch. Not all ternary semiconductors
behave so nicely, however. For example, InxGa1–xAs is lattice-matched to the substrate
InP only for x = 0.53, resulting in the bandgap energy Eg = 0.74 eV. To obtain a different
bandgap energy, while at the same time keeping the lattice constant matched to InP, an
additional element can be added to form the quaternary alloy InxGa1–xAsyP1–y. If proper
combinations of x and y are chosen, this material can have an emission wavelength any-
where in the range 920 < � < 1650 nm, with the same lattice constant as InP. InGaAsP has
proved to be quite useful for fiber optic communications, since its wavelength range in-
cludes the important second and third telecommunications windows around 1.3 and 1.5
�m.

Although indirect-gap materials such as Si make poor light emitters, they are actually
good materials (and commonly used) for photodetectors. To understand why, compare the
emission process shown in Fig. 10-6 with the absorption process shown in Fig. 10-7. In
either case, a fundamental requirement (the Pauli exclusion principle) is that the final
state for the electron be unoccupied (i.e., a hole must be there). For the emission process,
the final state for the electron is in the valence band, and since any holes in the valence
band will be near the top, vertical transitions are not allowed. For absorption, however,
the final state for the electron is in the conduction band, which is nearly empty (i.e., full of
holes). In this case, vertical transitions for a wide range of photon energies are allowed,
restricted only by energy conservation.

Radiative Efficiency

If the only way that an electron and hole could recombine were radiatively (i.e., by emit-
ting a photon), one might imagine that even indirect-gap materials might emit efficiently,
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because all the energy put into the material to create e–h pairs would eventually come out
as light. There are other processes, however, by which the charge carriers can lose their
energy without producing a photon. These nonradiative decay processes compete with ra-
diative recombination and limit the radiative efficiency.

One nonradiative mechanism, illustrated in Fig. 10-8a, is the transfer of the electron’s
energy to a trap state located in the band gap. Trap states can be associated with impuri-
ties or defects in the volume of the semiconductor, or with defects (unsatisfied “dangling”
bonds) found at the surface. Surface losses can be quite significant, although they can be
reduced by proper treatment (passivation) of the surface. A typical passivation process is
to grow an oxide layer on the surface, which serves to satisfy the bonding requirements of
atoms at the surface.

Another nonradiative mechanism is Auger recombination, illustrated in Fig. 10-8b. In
this process, an electron and hole recombine, but the recombination energy does not go
into creating a photon, but is rather transferred as kinetic energy to another electron in the
conduction band. This kinetic energy is quickly dissipated as heat by collisional process-
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Figure 10-7 Vertical absorption transitions can readily occur even in an indirect-gap material.

Figure 10-8 An electron can decay nonradiatively by (a) energy transfer to a trap state, or (b) the
Auger process.
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es, so the net result of the Auger process is conversion of the e–h energy into heat. Since
this process requires that there be excess electrons in the conduction band, it becomes es-
pecially important for laser action, in which a large number of charge carriers are injected
into a small recombination region.

A quantitative measure of the radiative efficiency can be obtained by considering the
rate at which radiative and nonradiative decay processes occur. An electron can decay ra-
diatively only when a hole is in close proximity. The probability per unit time that the
electron will recombine with a hole is, therefore, proportional to the number of holes that
are sufficiently close, which in turn is proportional to the number of holes per unit vol-
ume, denoted by p. We can therefore write the radiative transition rate for the electron as

� Wr = Brp (10-10)

where Br is a constant of proportionality. Typical values for Br are 10–11 to 10–9 cm3/s for
direct transitions and 10–15 to 10–13 cm3/s for indirect transitions. For example, GaAs has Br

� 7 × 10–10 cm3/s. At sufficiently high hole concentration this relation breaks down, be-
cause the transition rate becomes limited not by the availability of a nearby hole, but rather
by the intrinsic rate at which an electron can recombine with a hole. The transition rate,
therefore, saturates at some maximum value, which in the case of GaAs is ~ 3 × 109 s–1.

The radiative rate below saturation can also be written in terms of electron density. In a
laser diode, an equal number of holes and electrons are injected into a recombination re-
gion, so p � n, where n is the number of free electrons per unit volume. The radiative rate
for an electron can therefore also be written Wr = Brn.

Nonradiative decay of an electron to a trap requires that a trap state be in close proxim-
ity to the electron but does not involve any other charge carriers. The probability per unit
time for this process, designated Anr, is therefore proportional to the number of trap states
per unit volume, but independent of the density of charge carriers n and p. An electron de-
caying by the Auger process, on the other hand, requires not only a hole for recombina-
tion, but also another electron in the conduction band. The probability of encountering a
hole is � p, and the probability of encountering an electron is � n, so the joint probability
is � pn � n2 (since p � n for laser action). We then have

WAuger = CAn2 (10-11)

where the proportionality constant CA is the Auger constant.
There are then three different processes by which the electron can decay out of the

conduction band: radiative decay, nonradiative decay to traps, and Auger relaxation.
Since the probabilities for independent processes add, the total probability that an electron
decays per unit time is given by

Wtotal = Anr + Brn + CAn2 (10-12)

where Eqs. (10-10) and (10-11) have been used, along with the condition p � n for laser
action. The radiative efficiency 
i is defined as the fraction of all decays that are radiative.
This is equal to the radiative probability divided by the total probability, or


i = = (radiative efficiency) (10-13)
Brn

��
Anr + Brn + CAn2

Wr
�
Wtotal

probability of recombination
���

unit time
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It is seen from Eq. (10-13) that 
i increases with carrier density n, up to a point. At suffi-
ciently high n, however, the Auger process degrades the efficiency, and this is one contri-
bution to the limits on output power in semiconductor lasers.

Compare the radiative efficiencies for GaAs (Eg = 1.42 eV) and In.53Ga.47As (Eg =
0.74 eV), for the same electron density of n = 5 × 1018 cm–3. Take Auger constants of 5
× 10–30 cm6/s and 1 × 10–28 cm6/s, and Br values of 7.2 × 10–10 and 4 × 10–11 cm3/s for
GaAs and InGaAs, respectively.

Solution: For GaAs, the radiative and Auger rates are

Wr = Brn = �7.2 × 10–10 �(5 × 1018 cm–3) = 3.6 × 109 s–1

WAuger = CAn2 = �5 × 10–30 �(5 × 1018 cm–3)2 = 1.25 × 108 s–1

For In.53Ga.47As the corresponding rates are

Wr = Brn = �4 × 10–11 �(5 × 1018 cm–3) = 2 × 108 s–1

WAuger = CAn2 = �1 × 10–28 �(5 × 1018 cm–3)2 = 2.5 × 109 s–1

Note that all these rates are much larger than the nonradiative decay rate to traps, Anr ~
107 s–1. Therefore, the efficiency for the two materials is

GaAs: 
i = = 0.97

InGaAs: 
i = = 0.074

This example illustrates the general trend that Auger losses are more significant in
smaller-bandgap materials.

10-2. LAYERED SEMICONDUCTORS

The boundary between different semiconductor layers plays a fundamental role in the op-
eration of many photonic devices. Junctions can occur between semiconductors of similar
or different compositions, and also between semiconductors and metals. We consider here
these different types of junctions and their important applications.

2
�
25 + 2

36
��
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�
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The p–n Junction

A pure semiconductor material such as Si is known as an intrinsic semiconductor because
electrons in the conduction band are present intrinsically, due to thermal excitation of e–h
pairs. When Si is doped with an impurity such as Al or P, there are one too few (Al) or
one too many (P) electrons in the dopant atom, relative to the number needed for bonding
with Si. In the case of P doping of Si, the extra electron is easily ionized from the P atom,
becoming an additional electron in the conduction band. The dopant atom here is said to
be a donor, because it donates an electron. Since the dopant P atom was initially electri-
cally neutral, this ionization leaves behind a positively charged P+ ion core.

For Al doping of Si, just the opposite occurs. In this case, an electron from the va-
lence band joins the Al atom to form the negatively charged ion core Al–, leaving an
electron vacancy, or hole, in the valence band. The dopant here is said to be an accep-
tor, since it accepts an electron. Semiconductors doped with either donors or acceptors
are termed extrinsic, since the electron and hole concentrations are determined by an ex-
trinsic factor such as doping level. An extrinsic semiconductor with extra free electrons
is referred to as p-type, and one with extra free holes is referred to as n-type, as indicat-
ed in Fig. 10-9.

The basic features of the p–n junction can be understood by imagining that the p and n
type materials shown in Fig. 10-9 are grown separately and then brought together into
physical contact. Although p–n junctions are not actually made this way in practice (they
are grown by a successive deposition of thin layers), the conclusions arising from this
simple viewpoint are still valid. When the materials come into contact, the free electrons
and free holes have a natural tendency (known as diffusion) to move around so as to fill
the entire (now larger) material uniformly. As the electrons and holes move across the
boundary, they start to recombine there, creating a region near the boundary known as the
depletion region, which is depleted of free charge carriers. One might think that this de-
pletion region would continue to increase in width until all the free electrons and holes
had recombined. However, there is a net charge density created inside the depletion re-
gion, due to the positive and negative ion cores that remain after the electons and holes re-
combine. This charge density creates an electric field, as indicated in Fig. 10-10, that is in
a direction so as to oppose the diffusion of free holes into the n-type material, and of free
electrons into the p-type material. The recombination process is thus self-limiting, and re-
sults in a depletion region of finite width.
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Figure 10-9 Before coming into contact, the p- and n-type materials have free holes and electrons
uniformly distributed.
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Associated with the electric field in the depletion region is a change in electric po-
tential across the junction, which has the effect of changing the relative energies of the
conduction and valence bands on opposite sides of the junction. To see how this works
quantitatively, consider a simplified model in which the charge density � is independent
of position x on either side of the junction, located at x = 0. To simplify further, assume
a p+–n junction, in which the p-type material is much more heavily doped than the n-
type material. The charge density in the p-type portion of the depletion region can be
written �p = –eNA, and in the n region �n = eND, where NA and ND are defined as the
number of acceptors and donors per unit volume in the p and n regions, respectively.
The charge density �(x) then has the position dependence given in Fig. 10-11a, with dp

and dn the width of the depletion region in the p and n regions. Since electrons and
holes must recombine in pairs, the total charge on either side of the junction must be the
same, or

|�pdpA| = |�ndnA|
(10-14)

eNAdp = eNDdn

where A is the cross-sectional area of the junction (in the y–z plane). Eq. (10-14) is equiv-
alent to saying that the area under the curve of Fig. 10-11a must be the same on each side
of x = 0. Since we assume NA � ND, then dp � dn, and the total junction width is d = dp +
dn � dn. The junction width is, therefore, determined mostly by the lightly doped materi-
al.

In a region where � is independent of x, it is easy to show using Gauss’s law (see Prob-
lem 10.5) that the x component of the electric field varies with x as

Ex(x) = Ex(0) + x (10-15)

where � is the dielectric permitivity. In a material medium, � = �r�0, where �0 is the di-
electric permitivity of free space and �r is the relative dielectric constant. In Si, for exam-
ple, �r = 11.9. The constant Ex(0) in Eq. (10-15) can be determined by the condition that
the field must go to zero outside the depletion region. This will be true because the elec-
trical conductivity outside the depletion region is high due to the free carriers there. The

�
�
�
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Figure 10-10 Electrons and holes recombine in the depletion region, leaving ion core charges that
create an electric field.
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situation is similar to that of a capacitor, in which the electric field exists only between the
plates of the capacitor. Requiring that Ex = 0 at x = dn gives

0 = Ex(0) + �
eN

�
D

� dn

(10-16)

Ex(0) = – �
eN

�
Ddn
�

The field in the n region can then be written

Ex(x) = – �
eN

�
D

� dn + �
eN

�
D

� x

(10-17)

= – �
eN

�
D

�(dn – x)
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Figure 10-11 The (a) charge distribution in an ideal p–n junction, along with the corresponding (b)
electric field and (c) electric potential. (d) The energy bands are offset on either side of the junction,
due to the changing electric potential.
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which is shown graphically in Fig. 10-11b. Note that Ex(x) < 0, so the field points from
the n region toward the p region, as expected. The change in electric potential is equal to
the area under the Ex(x) graph, or

V(x) = –�x

0
Ex(x�)dx�

(10-18)

= �
eN

�
D

��dnx – �
x

2

2

��
which is graphed in Fig. 10-11c. The total change in potential across the n-type part of the
depletion region is then

�Vn � V(dn) – V(0) = (10-19)

There is also a potential change �Vp across the p-type part of the depletion region, but
since dp � dn, this is negligible compared with �Vn. The total potential change across the
junction is then V0 = Vp + Vn 	 Vn, where V0 is known as the built-in potential of the junc-
tion. The built-in potential is that which exists between the two sides of the p–n junction
when there is no externally applied voltage. Using the approximation d � dn, the width of
the depletion region then becomes

d 	 
� (width of depletion region) (10-20)

This expression will be useful in understanding the response times for photodetectors.
The effect of the changing electric potential V(x), shown in Fig. 10-11c, is to change

the potential energy of the electrons in both the valence and conduction bands. This is il-
lustrated in Fig. 10-11d, where the band energies are plotted as a function of distance
across the junction. Note that since the electron has negative charge, the electron energy
increases when the electric potential decreases. This kind of diagram is quite useful in un-
derstanding how p–n junctions operate, and provides another way to see why the elec-
trons and holes do not continue to recombine after the depletion region is formed. The
electrons on the n side would need to be given additional energy to get to the p side; that
is, they would have to go “uphill” over an energy barrier. Similarly, the holes would need
extra energy to get into the n region (remember that the hole energy increases downward).
The p–n junction thus serves to keep the electrons and holes apart.

The analysis so far has been of an “unbiased” p–n junction, that is, with no external ap-
plied voltage. When a positive voltage is applied to the n side, and a negative voltage to
the p side, the junction is said to be reverse biased. Under these conditions, the electron
energy on the two sides becomes even more different, as shown in Fig. 10-12, and the
electrons and holes are prevented even more from crossing the junction. The p–n junction
acts like an open circuit for an applied voltage of this polarity.

With an applied voltage of the other polarity (positive potential applied to the p side),
the junction is said to be forward biased. In this case, the bands on the two sides of the
junction come more into alignment, as illustrated in Fig. 10-13. The potential energy bar-
rier is now low enough that electrons from the n region can diffuse into the p region, and
vice versa. This process is referred to as minority carrier injection, because the electrons

2�V0
�
eND

dn
2

�
2

eND
�

�
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that make it into the p region are in the minority there (holes being the majority carrier in
the p region). The injected electrons can now recombine with the many holes available in
the p region, resulting in light emission. This is the basis for LED and laser diode opera-
tion, to be discussed further in subsequent chapters.

The current i that flows through the junction will be quite different for forward and re-
verse biases, and this gives the p–n junction its rectification property, so useful in elec-
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Figure 10-12 When the p–n junction is reverse biased, the bands on either side become more
widely separated.

Figure 10-13 When the p–n junction is forward biased, the bands on either side come into align-
ment, allowing current to flow.
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tronic circuits. A device containing a p–n junction for rectification is called a diode. The
dependence of current i on applied voltage V can be written

i = i0�exp� � – 1� (diode equation) (10-21)

where kB is Boltzmann’s constant, T is the absolute temperature, and � is the diode ideal-
ity factor. Fig. 10-14 shows a graph of this equation, along with the sign convention for V
and i. This expression can be understood by considering that the current flow through the
junction is a result of electrons and holes “jumping over” an energy barrier. For zero-ap-
plied bias voltage (V = 0), the height Eb of this barrier is Eb = eV0, where V0 is the built-in
potential. It might be supposed that if V = 0, then the built-in potential should be forced to
zero, since V is directly applied across the p–n junction. The reason this is not the case is
that there are additional voltage drops across the junctions between the metal wires and
the semiconductor, and it is the sum of these voltage drops plus the built-in potential V0

that must equal the applied voltage V. When V = 0, the sum of the metal–semiconductor
voltage drops is exactly equal and opposite to the built-in potential. The nature of these
metal–semiconductor junctions is discussed further in beginning on p. 178.

When the applied voltage V � 0, the barrier height becomes Eb = E(V0 – V), with V
taken as positive for forward bias. Charge carriers can jump over the energy barrier with a
probability proportional to the Boltzmann factor exp (–Eb/kBT), which in turn is � exp
(eV/kBT). To ensure that I = 0 when V = 0 (a necessary condition; see Problem 10.8), the
net current is � [exp(eV/kBT) – 1]. The proportionality constant is denoted as i0.

This argument assumes that electrons and holes must jump across the entire barrier re-
gion in order to recombine; that is, they are injected minority carriers. If instead, they
mostly recombine with each other in the depletion region, then they only have to “jump
over” half the energy barrier, on average, and the net current is � [exp(eV/2kBT) – 1]. The
diode ideality factor �, therefore, ranges from 1 to 2, depending on whether e–h recombi-
nations occur primarily outside or inside the depletion region.

The constant i0 is known as the reverse saturation current, since under a large reverse
bias (V � –kBT/e), i saturates at � – i0. Physically, i0 arises from thermal generation of e–h
pairs in and near the depletion region, which occurs with a probability � exp(–Eg/kBT).
Therefore, i0 � exp(–Eg/kBT), which increases at higher temperature. The fundamental
quantity is actually the reverse saturation current density J0 = i0/A, since the total number of
thermally generated e–h pairs will be proptional to the junction cross-sectional area A. A
typical value for a Si p–n junction at room temperature is J0 � 1.5 × 10–8 A/cm2.

eV
�
�kBT
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Figure 10-14 The current versus voltage relation for an ideal diode. The sign convention for voltage
and current are indicated on the left.
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Semiconductor Heterojunctions: The Quantum Well

The type of p–n junction discussed in the previous section is termed a homojunction, a
boundary between two regions of the same semiconductor material, one doped with
donor impurities and the other with acceptors. The energies of the valence and conduc-
tion bands shift by the same amount due to the electric potential change across the junc-
tion, and the band gap on either side of the p–n junction is the same. We now consider
another type of boundary, the heterojunction, in which the semiconductor composition
and corresponding band gap are different on either side. For example, GaAs and
AlxGa1–xAs have different band gap energies (see Table 10-1), and are lattice-matched
for any value of x. If they are grown in a layered structure, with a thin layer of GaAs
sandwiched between two thick layers of AlxGa1–xAs, the conduction and valence
band energies will vary with position, as shown in Fig. 10-15. Any charge carriers that
find themselves in the GaAs material will encounter a large potential energy barrier
when they reach the boundary on either side, and are therefore “confined” to the GaAs
layer.

When the thickness d of the GaAs layer is made sufficiently small, quantum mechani-
cal effects become important, and the structure is called a quantum well. In the simplest
model for the quantum well, the walls of the well can be considered infinitely high, so
that there is no probability of the charge carrier getting out. This corresponds to the clas-
sic “particle in a box” problem in quantum mechanics, which can be understood by con-
sidering the electron to be a wave with deBroglie wavelength � = h/p = �k. The condition
for the allowed wavelengths in the box is the same as that of a string stretched between
two supports: an integer number of half-wavelengths must fit in the box, so that the vibra-
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Figure 10-15 In a quantum well structure, the energy levels in the conduction and valence bands
depend not only on the bandgap of the material, but also on the thickness d of the middle layer.
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tional amplitude is zero at the ends. For a quantum well of thickness d, this condition be-
comes

n = d

where n = 1, 2, 3 . . . . The allowed values of k = 2�/� are then

kn = (10-22)

and the corresponding allowed energies are

En = (quantum well energies) (10-23)

where Eq. (10-3) has been used. In a solid, the electron or hole acts like a particle having
an effective mass m* which is different than the mass m of a free electron, due to interac-
tions with atoms of the solid. The energy still has a quadratic dependence on momentum,
however, as expressed in Eq. (10-3). In GaAs, for example, me* � 0.067m for the electron
and mh* � 0.48 m for the hole.

Equation (10-23) is only approximately correct for a real quantum well, since the po-
tential barrier that the electron sees is not really infinite. The effect of a finite barrier
height is that the energy levels are somewhat lower than predicted, and the electron has a
small probability of being found outside of the well. However, for the lowest energy lev-
els in the well, which are far from the band energy of the surrounding material, Eq. (10-
23) provides a good approximation.

A most interesting and useful feature of the quantum well is that the energy difference
between states in the conduction and valence bands now depends on the well width d. The
photon created by a transition from the lowest conduction band state to the highest va-
lence band state will have energy

h� = Eg + + (10-24)

where Eg is the normal bandgap energy of the material in the well. This has important ad-
vantages in laser applications, since it allows the emission wavelength to be tuned by
changing the quantum well thickness. Similarly, the absorption response of photodetec-
tors can be optimized for a particular wavelength by adjusting d.

Another application of quantum well materials is in voltage-controlled modulation of
light. The shift of energy levels with applied electric field is known as the Stark effect, and
in a quantum well this shift (known as the quantum-confined Stark effect, or QCSE) is par-
ticularly large. Devices based on the QCSE have seen rapid development in recent years.

Metal–Semiconductor Junctions

The junctions discussed so far are those between two semiconductors with different dop-
ing levels and/or compositions. Junctions between a semiconductor and a metal are also

h2
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possible; in fact, they are always necessary for connecting a semiconductor device to an
external circuit. Metal–semiconductor junctions also have applications as photodetectors,
and as unidirectional circuit elements (diodes). The semiconductor can be either n-type or
p-type, but for simplicity we will confine our discussion here mostly to n-type semicon-
ductors.

Energy Levels

Consider first the allowed electron energies in the two materials just before they are
joined, as depicted in Fig. 10-16. In the metal, the highest energy electrons occupy a par-
tially filled band, up to an energy known as the Fermi level. At zero temperature, all states
below the Fermi level are occupied, and all states above are unoccupied. At finite temper-
ature, this transition from filled to unfilled states occurs over an energy range ~ kBT,
where kB is Boltzmann’s constant and T is the absolute temperature.

In the n-type semiconductor, the valence band is filled and the conduction band is
nearly empty. The free electrons that are found in the conduction band are mostly due to
the doped donor atoms that have been ionized by thermal agitation at finite temperature T.
If the temperature were lowered to 0 K, all these free electrons would become bound to
the positively charged donor core ions, decreasing their total energy due to a lower elec-
tric potential energy. Therefore, the Fermi level in the n-type semiconductor is just below
the bottom of the conduction band.

To compare the electron’s energy in the metal and semiconductor, we need a common
reference energy that applies to both materials. This is conventionally taken to be the
“vacuum level,” which is the energy the electron would have if it were removed from the
material and were at rest (no kinetic energy). Energy must be given to the electron to re-
move it (otherwise the material would spontaneously lose electrons), so the vacuum level
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Figure 10-16 Energy of electrons in a metal and semiconductor before they are joined, using the
vacuum level as a common reference. The Fermi levels are different in the two materials because
they are not in contact and not in thermal equilibrium.
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must be higher than the highest occupied energy level. For a metal, the minimum energy
needed to remove an electron is known as the work function, designated as W. Since elec-
trons have energies up to the Fermi level, the work function is the energy difference be-
tween the vacuum level and Fermi level.

For a semiconductor, the work function can be similarly defined as the energy differ-
ence between the vacuum level and Fermi level. However, since there are usually very
few electrons actually at the Fermi level in a semiconductor, it is customary instead to
specify �, the electron affinity, which is the energy required to raise an electron from the
bottom of the conduction band to the vacuum level. For most metal–semiconductor com-
binations, W > �, and the relative energy positions are as illustrated in Fig. 10-16.

So far, we have considered the energy levels of a separate metal and semiconductor.
Imagine now moving them gradually together until their surfaces make contact. A similar
type of “thought experiment” was used in our discussion of the properties of the p–n junc-
tion. For the metal–semiconductor junction, it is clear from Fig. 10-16 that electrons in
the conduction band of the semiconductor have a higher energy than electrons in the met-
al. Electrons in the metal will not spontaneously jump over into the semiconductor, be-
cause to do so they would have to surmount a barrier energy Eb = W – �, which is usually
� kBT. On the other hand, electrons in the semiconductor can easily jump over into the
metal, since they would be lowering their energy in doing so. Therefore, we conclude that
just after the surfaces make contact, there will be a flow of electrons from the semicon-
ductor to the metal.

This transfer of electrons is only momentary, however, because the charge separation
that is produced creates an electric field that opposes the motion of the electrons. The gen-
eration of this built-in field, illustrated in Fig. 10-17, can be understood in the manner dis-
cussed previously for a p–n junction. Electrons leaving the semiconductor uncover posi-
tive ion cores of donor atoms, resulting in a positive space-charge density � to the right of
the junction. The electrons accumulate on the surface of the metal, giving a negative spike
to the charge density there. The electric field points from the positive charge to the nega-
tive charge, which in this case is to the left (Ex < 0). The force on the negatively charged
electron is therefore to the right, opposite to the direction of electron flow.

The quantitative analysis of Ex(x) and V(x) in the semiconductor is identical with that
given previously in Eqs. (10-14)–(10-20) for the n-type side of a p–n junction. The metal
now takes the place of the highly doped p-type semiconductor, and the limit dp � 0 be-
comes a very good approximation. Inside the metal, the net charge density must be zero
because of the high conductivity, and therefore Ex = 0 and V(x)= constant. The variation
of electric field and potential with position are illustrated in Fig. 10-17, which should be
compared with the corresponding graphs for a p–n junction given in Fig. 10-11.

As a result of the charge separation and associated electric field, there is a difference in
electric potential between the metal and semiconductor, denoted by V0. This is referred to
as the built-in potential, similar to that of a p–n junction. Since the electron is negatively
charged, its electric potential energy decreases as it moves from the metal surface into the
semiconductor, where the electric potential is higher. Combining this electric potential
energy change with the potential energies that existed without the E field (Fig. 10-16), we
obtain the total potential energy curve for the electron shown in Fig. 10-18.

It is seen from Fig. 10-18 that the effect of the internal E field is to lower the Fermi
level in the semiconductor, bringing it into alignment with the Fermi level in the metal.
According to a general principle of statistical mechanics, a system in thermal equilibrium
has a Fermi level that is uniform throughout the material. This requirement that the Fermi
levels come into alignment is what determines the magnitude of the built-in potential V0.
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10-2. Layered Semiconductors 181

Figure 10-17 When the metal and semiconductor are brought into contact, electrons move from
the semiconductor to the metal. The resulting charge separation creates an internal electric field and
change of electric potential across the junction.

Figure 10-18 The energy bands in the semiconductor are bent due to the field in the depletion re-
gion. In thermal equilibrium, the Fermi levels in the metal and semiconductor are brought into coinci-
dence by the built-in potential V0.
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Since the Fermi level in the semiconductor is close to the bottom of the conduction band,
eV0 � Eb. A similar analysis can be done for a p–n junction, which shows that eV0 � Eg,
where Eg is the bandgap energy of the semiconductor.

Schottky Diode

According to the energy diagram of Fig. 10-18, electrons on either side of the junction en-
counter a potential barrier of magnitude Eb � eV0, which inhibits their movement across
the junction. Those few that do jump across by thermal excitation do so with equal proba-
bility in either direction, so that the net current through the junction is zero in thermal
equilibrium. To produce a net current, an external voltage needs to be applied, as depicted
in Fig. 10-19. When positive potential is applied to the metal and negative to the semicon-
ductor (forward bias, V > 0), the energy barrier for electrons jumping right to left across
the junction is reduced. There is still the large energy barrier Eb for electrons jumping left
to right, however, so the net result is electron flow to the left (conventional current is to
the right).

182 Chapter 10 Review of Semiconductor Physics

Figure 10-19 A forward bias reduces the barrier for electrons attempting to jump from the semi-
conductor to the metal, whereas a reverse bias increases this barrier. This results in the unidirection-
al properties of a diode.

�
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For the opposite polarity of applied voltage (reverse bias, V < 0), the barrier for elec-
trons jumping right to left becomes even larger than it was for zero bias. This results in a
small net electron flow to the right (current to the left), which is independent of applied
voltage. The metal–semiconductor junction, therefore, acts as an electrical diode, con-
ducting current efficiently in one direction only. Such a device is termed a Schottky diode,
and it shares the rectifying property and other behavior of a p–n junction. For example,
the i–V curve has the shape given in Fig. 10-14 for the p–n junction. One difference is that
the Schottky diode is a majority-carrier device—there are no minority carriers such as
electrons in a p-type region or holes in an n-type region. The lack of minority carrier dif-
fusion in the Schottky diode leads to a faster response time, which is a key advantage in
applications such as high-speed electronic signal processing and high-speed photodetec-
tion (see Chapter 14).

Ohmic Contacts

When connecting a semiconductor device to the metallic wires of an external circuit, the
rectifying property of a Schottky diode is generally undesirable. The ideal contact is one
in which the voltage drop across the junction is small and proportional to the current.
Junctions having this property are termed ohmic contacts, since they obey Ohm’s law.

One way to achieve ohmic contacts is to increase the donor concentration in the semi-
conductor. According to Eq. (10-20), the junction thickness d decreases as the donor con-
centration ND increases. If d becomes sufficiently small, electrons can pass through the
energy barrier by the quantum mechanical process of tunneling. Values of ND > 1019 cm–3

are generally needed for this tunneling process to dominate.

PROBLEMS

10.1 Using the expression for E(k) in Eq. (10-3), calculate a particle’s velocity accord-
ing to Eq. (10-5), and show that it leads to a momentum consistent with Eq. (10-2).

10.2 A slab of AlxGa1–xAs is illuminated with light of variable wavelength, and it is
found that the transmission through the slab decreases rapidly for wavelengths
shorter than 770 nm. Determine the Al fraction x in this material.

10.3 A sample of GaAs has a lifetime for nonradiative decay to traps of �nr = 10 ns,
where �nr � 1/Anr. Using the value of Br from Example 10-2, determine the hole
concentration at which the radiative efficiency for an electron in the conduction
band will be 20%.

10.4 Use Eq. (10-13) to determine the electron concentration that maximizes the radia-
tive efficiency. (a) Express your answer symbolically in terms of Anr, Br, and CA.
(b) Use the data in Example 10-2 to evaluate this optimum concentration for GaAs
and In.53Ga.47As. Assume Anr = 107 s–1 for both materials. (c) Determine the radia-
tive efficiency for the concentrations determined in part b.

10.5 Derive Eq. (10-15) by applying Gauss’s law �E · dA = qenc /�0 to a rectangular vol-
ume of length x and constant charge density �. Remember that the area vector dA
points from the inside toward the outside of the volume.

10.6 A silicon diode has a p–n junction with donor density of 1016 Sb atoms per cm3 on
the n side, and acceptor density of 1014 B atoms per cm3 on the p side. This results
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in a built-in potential of V0 = 0.56 V. (a) Determine the junction width. (b) Deter-
mine the maximum electric field in the junction region.

10.7 (a) Give arguments to show that the capacitance of a p–n junction can be obtained
using the formula for a parallel-plate capacitor with plate spacing d. (b) Determine
the capacitance of the diode of Problem 10.6, assuming a junction area 1 mm2.

10.8 Show that the current through a diode must be zero when the voltage across it is
zero. Hint: consider the circuit of Fig. 10-14 with the voltage source replaced by a
resistor.

10.9 Eq. (10-20) was derived under the assumption that ND � NA. Relax this assumption
and derive a more general expression for the depletion width in terms of the dopant
concentrations on both sides of the junction.

10.10 A GaAs quantum well is sandwiched between layers of AlxGa1–xAs, as illustrated
in Fig. 10-15. (a) Determine the well thickness d required to shift the usual GaAs
transition wavelength from 870 nm to 830 nm. (b) What restrictions are needed on
the Al fraction x in the surrounding layers in order to make this a practical device?
Assume that the well depths are the same in the valence and conduction bands.

10.11 Determine the transition energy (in eV) from the n = 2 level in the conduction band
to the n = 1 level in the valence band for a quantum well in GaAs of thickness 10
nm. Compare this with the n = 1 to n = 1 transition in the quantum well, and with
the transition in bulk Al0.3Ga0.7As. Take the GaAs bandgap energy as 1.425 eV.

184 Chapter 10 Review of Semiconductor Physics

c10.qxd  2/22/2006  3:03 PM  Page 184



The previous chapter reviewed the fundamental processes by which light is emitted or ab-
sorbed by semiconductors. We continue in this chapter by examining the principles and
operating characteristics of two light-emitting devices: the LED and the laser diode.

11-1. THE LED

When a diode is forward biased, as shown in Fig. 11-1a, current flows readily through the
device. The current consists of holes in the p region, and electrons in the n region, both
moving toward the p–n junction. When the electrons and holes meet in the vicinity of the
junction, they recombine and emit photons of energy h�. A device in which useful light is
emitted in this way is termed a light-emitting diode or LED. We consider here some fun-
damental aspects of LED operation.

Biasing and Optical Power

The optical power generated in an LED is related in a simple way to the current i flowing
through the device. Since each electron contributing to the current in the n region recom-
bines with a hole at the junction, the number of recombinations per unit time is equal to
the number of electrons entering the junction per unit time, i/e. The optical power Popt is
therefore

Popt = ��reco
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= ��
e

i
�� �ih�

where �i is the internal efficiency given by Eq. (10-13). For wavelengths in the range of
interest for fiber optic communications (0.8 < � < 1.5 �m), the quantity h�/e evaluates to
~ 1 W/A, so the optical power in mW is roughly equal to the current in mA multiplied by
�i.

The optical power can also be related to the electrical power Pelec = iVd supplied to the
LED. The voltage Vd applied to the diode must shift the energy bands on either side of the
junction by ~ Eg for significant current to flow (see Fig. 10-13). The emitted photon ener-
gy is then h� � Eg ~ eVd, and Eq. (11-1) can be written as

Popt ~ �iPelec (11-2)
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The electrical-to-optical conversion efficiency is thus ~ �i. Values of �i can be close to
unity, making light generation a very efficient process in the LED.

A more accurate analysis of the light generation efficiency can be obtained by deter-
mining the actual diode voltage Vd, rather than using the approximation Vd ~ Eg/e. Figure
11-1a shows a simple circuit for biasing an LED, using a series combination of source
voltage Vs and resistance R. Defining the polarities as shown, the voltages and current are
related by Vd = Vs – iR, or

i = (Vs – Vd) (11-3)

This equation, known as the load line, gives the diode current i versus voltage Vd relation
for the resistor/voltage source part of the circuit. It must be consistent with the i versus Vd

relation for the diode itself, given in Eq. (10-21) and Fig. 10-14. The solution for i and Vd

can be obtained by setting Eq. (11-3) equal to Eq. (10-21), with V = Vd. However, this re-
sults in a transcendental equation, which must be solved numerically. An alternative ap-
proach is to plot both the load line and the diode curve on the same graph, as shown in Fig.
11-1b. The intersection of the two curves then gives the operating point for the circuit.

The load line analysis provides a simple way of understanding how changes in the bias

1
�
R
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Figure 11-1 (a) A simple circuit for biasing an LED. (b) The operating point for this circuit occurs
where the load line (dashed) intersects the diode curve (solid).
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resistor effect the circuit. The load line has a slope of –1/R, and passes through the fixed
point Vs on the Vd axis. As R increases, the slope becomes smaller and the intersection
point lies lower on the diode curve, giving a smaller operating current. In the limit of infi-
nite resistance, I = 0 as expected. As R � 0, the current gets very large, and is ultimately
limited by the resistance of the semiconductor material itself. The optical power generat-
ed is, therefore, easily adjusted by changing the bias resistance.

A GaAs LED is designed to generate 15 mW of light in a series
circuit with a 3 V battery and load resistor. Assume that the emission wavelength is
860 nm, T = 293 K (room temperature), �i = 0.80, the reverse saturation current densi-
ty is 1 × 10–8 A/cm2, and the junction area is (1 mm)2. Determine the required load re-
sistance.

Solution: Using Eq. (11-1), the required current is

i = = = 0.0130 A

Using i0 = (10–8 A/cm2) (10–2 cm2) = 10–10 A, Eq. (10-21) gives the diode voltage,

Vd � ln � � = ln � � = 0.473 V

Note that this assumes � = 1. For � = 2, Vd will be twice this, or 0.965 V. The resis-
tance is then found from Eq. (11-3),

R = �
Vs –

i

Vd
� = �

3 –

0.

0

0

.

1

4

3

73
� = 194�

Time and Frequency Response

In certain applications, it is required that the LED be turned on and off quickly. This is es-
pecially true in optical communications, where the rate at which data can be sent depends
(among other things) on the time response of the light source. A simple circuit that modu-
lates the LED output is shown in Fig. 11-2. The transistor serves as a switch, offering a
low-resistance path between emitter and collector only when the input voltage Vin is suffi-
ciently high. The speed with which the LED output responds to the input voltage depends
not only on the LED itself, but also on the transistor and associated circuitry. We will fo-
cus here only on the effect of the LED on the time response.

One limit to the time response that is always present to some degree is due to capaci-
tance. The capacitance C of the p–n junction, in combination with the load resistance R,
gives a response time equal to the time constant RC. We will find in Chapter 14 that this is
often significant for photodiode detectors, where R can be quite large. In the case of LEDs,
R is typically small, and the RC time constant does not usually dominate the time response.

More important for the LED time response is the electron lifetime in the conduction

0.0130
�
10–10

(1.38 × 10–23)(293)
��

1.6 × 10–19

i
�
i0

kBT
�

e

(1.6 × 10–19)(8.6 × 10–7)(1.5 × 10–2)
����

(0.8)(6.63 × 10–34)(3 × 108)

e�Popt
�

�ihc
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band, �. If the current i in Fig. 11-2 is switched on and off instantaneously by the transis-
tor, the light emitted by the LED will not follow the switched current exactly, but will ex-
hibit a delayed response as depicted in Fig. 11-3. This can be understood by considering
that light is emitted whenever there are e–h pairs available for recombination. The popu-
lation of e–h pairs cannot change instantaneously, however, but rather increases and de-
creases with the characteristic time �.

To analyze the time response quantitatively, we define the number of excess electrons
in the recombination region as �. This is related to the electron density n by � � nAd,
where A is the junction area and d is the recombination region thickness. The electron
population � satisfies the rate equation

= – �(t)Wtot (11-4)

where Wtot is the probability of decay for a single electron per unit time, given by Eq. (10-
12). This equation basically says that the net change in � per unit time is equal to the

i(t)
�

e

d�(t)
�

dt
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Figure 11-3 The response of the LED can be described by (a) a relaxation time that rounds off
edges in the time waveform, or (b) a frequency bandwidth, above which the amplitude of a sinusoidal
waveform is attenuated.

Figure 11-2 The current through the LED can be modulated by inserting a transistor into the circuit.
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number added by injected current minus the number taken away by e–h recombinations
or other losses. The solution for i(t) = 0 is given by

�(t) = �(0)e–Wtott

(11-5)
= �(0)e–t/�

which is easily verified by substituting into Eq. (11-4). The electron lifetime � has been
defined here as � � 1/Wtot. According to Eq. (11-5), when the current is abruptly cut off,
the electron population decreases exponentially with a time constant �. Since the light
generated by the LED is 	 �, it will decay exponentially in the same way.

When i(t) is switched from zero back to a constant value, the solution for �(t) is an ex-
ponential rise with the same time constant � (see Problem 11.2). The situation is analo-
gous (indeed mathematically identical) to the charging and discharging of a capacitor in
an RC electrical circuit. The result is a rounding of the leading and falling edges of light
pulses from the LED, as illustrated in Fig. 11-3.

To produce light pulses that accurately follow the input current, a small value of � is
desirable. If the electron decay is primarily radiative (�i � 1), then Eq. (10-10) gives

= Wr = Brp (11-6)

where p is the number of holes per unit volume in the recombination region. At low injec-
tion-current levels, most of the holes available for recombination come from the dopant
acceptor atoms in the p-type material, with concentration NA. In this case p � NA, and

� � (electron radiative lifetime) (11-7)

For the fastest response, NA should be as large as possible, up to a certain limit. One
reason for the limit comes from the creation of nonradiative trap sites that decrease the ra-
diative efficiency �i [see Eq. (10-13)]. For dopants such as Ge, C, and Be in GaAs, �i

starts to decrease for NA in the range 1018 to 1019 cm–3. Increasing NA above this range
makes the LED response faster, but at the expense of decreased output efficiency.

Another reason for the limit is that the radiative recombination rate Wr does not in-
crease indefinitely with NA, but rather saturates at a maximum rate characteristic of the
material. For electrons in GaAs, the maximum radiative rate is � 3.3 × 109 s–1, with a cor-
responding minimum response time �min � 0.3 ns. Using Br = 7.2 × 10–10 cm3/s, this min-
imum response time would be reached at an acceptor concentration of ~ 5 × 1018 cm–3. In
practice, response times as short as 0.1 ns have been measured in heavily (7 × 1019 cm–3)
Be-doped GaAs. It is thought that the improved time response is due to Auger processes
contributing to the decay rate.

The speed with which an LED responds to switching is often expressed in terms of
modulation bandwidth rather than response time. The basic idea is illustrated in Fig. 11-
3b, which shows a sinusoidal current driving the LED at modulation frequency f = 
/2�.
Here 
 is the angular frequency of the modulation. If the modulation amplitude is not too
large, the optical output will also vary sinusoidally at the same frequency. Over some
range of frequencies, the response (ratio of output to input amplitudes) is approximately
constant, independent of 
. At some value 
 = 
0, the response decreases to half its low-

1
�
BrNA

1
�
�
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frequency value, and the corresponding f0 = 
0/2� is known as the modulation band-
width.

To see how the bandwidth f0 is related to the response time �, we will solve Eq. (11-4)
for a sinusoidally modulated current of the form

i(t) = i0e j
t (11-9)

where i0 is real and j � �–	1	. In this analysis, it is assumed that when there is a complex
quantity, the real part of the expression corresponds to the actual physical quantity. For
example, the actual current is i(t) = �[i0 exp ( j
t)] = i0 cos (
t). The electron population
� is expected to oscillate at frequency 
 with some amplitude A, so we write

�(t) = Aej
t (11-9)

The amplitude A will in general be complex, to account for a phase difference between
i(t) and �(t). Substituting Eqs. (11-8) and (11-9) into Eq. (11-4) gives

j
A = – 

or

A = (11-10)

The numerator of Eq. (11-10) is real, and corresponds to the low-frequency limit for
the amplitude A. The denominator is complex, and can be written as

1 + j
� = �1	 +	 (	
	�)	2	 e j�

where tan � = 
�. Eq. (11-9) can then be expressed as

�(t) = e j(
t–�) (11-11)

Since the optical power generated is 	 �(t), it will have a modulated amplitude Pmod

which depends on frequency according to

Pmod(
) = (LED frequency response) (11-12)

There are two commonly used definitions for the bandwidth of the LED. The 3 dB elec-
trical bandwidth is conventionally defined as the frequency at which the electrical power is
reduced by a factor of two. Since the power in an electrical circuit is proportional to V2 or
i2, the 3 dB bandwidth occurs at the frequency at which i2 is reduced by a factor of two. If
the LED is thought of as an optoelectronic circuit element that generates optical power in
proportion to current, it makes sense to define the 3 dB electrical bandwidth fe = 
e /2� by

� �
2

= = 
1
�
2

1
��
1 + (
e�)2

Pmod(
e)
�
Pmod(0)

Pmod(0)
��
�1	 +	 (	
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i0�/e
��
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Solving for fe gives 
e� = 1 or

fe = (3 dB electrical bandwidth) (11-13)

Using a typical minimum lifetime of �min � 0.3 ns, this equation gives a maximum modu-
lation bandwidth for the LED of 530 MHz.

The other definition for bandwidth recognizes that the light output of the LED is a
power, and so the 3 dB point should occur at the frequency at which this optical power is
reduced by a factor of two. Defining the optical bandwidth as fo = 
o/2�, we have

= = 

which yields 
o� = �3	, or

fo = (3 dB optical bandwidth) (11-14)

The relation between response time and bandwidth can also be understood in terms of
the uncertainty relation (see Appendix B). According to this viewpoint, the time wave-
form can be reconstructed by a linear superposition of many sinusoidal waves with a dis-
tribution of frequencies 
. When only frequencies in a range 

 are allowed in the recon-
struction, the edges of any pulse will arrive with an uncertainty in time given by by 
t ~
1/

. This is consistent with Eqs. (11-13) and (11-13) if we associate 

 with the band-
width and 
t with the response time �.

Emission Efficiency

In Section 10-1, we considered the efficiency with which e–h pairs recombine to give
light. This is the internal efficiency, and can be quite high (�i ~ 1). However, photons that
are generated still have to make it out of the LED to count as useful output power. The
fraction of generated photons that escape from the LED is known as the external efficien-
cy, �ext, and is generally much lower than �i.

There are two principal causes of reduced �ext. The first is reabsorption of emitted pho-
tons by the semiconductor material, shown in Fig. 11-4a. Photons generated by e–h re-
combination have an energy h� � Eg that is large enough to promote an electron back up
across the bandgap energy Eg in an absorption process. When this happens, the photon is
lost. One solution to this problem is to make the active region very thin, and sandwich it
between two buffer layers with a larger band gap, as in Fig. 11-4b. The photon energy h�,
which is determined by the band gap of the thin active region, is now too small to cause
absorption across the larger band gap in the buffer layers. This will be discussed further in
connection with diode lasers.

The other principal reason for reduced external efficiency in LEDs is total internal re-
flection at the semiconductor-air interface. Figure 11-5 illustrates this problem by show-
ing light emitted inside the semiconductor, propagating at different angles � to the surface
normal. For angles greater than the critical angle (� > �c), the light is totally reflected back
into the semiconductor and does not “escape” from the LED. The critical angle depends

�3	
�
2��

1
�
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1
��
�1	 +	 (	
	o�	)2	

Pmod(
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�
Pmod(0)
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on the indices of refraction as sin �c = n2/n1, from Eq. (2-18). For example, a GaAs–air in-
terface has n1 = 3.6 and n2 = 1, giving �c � 16°. Therefore, of all the light that is emitted
inside the GaAs material, only the fraction emitted within a cone of half-angle 16° es-
capes to become useful output.

An estimate of this fraction that escapes can be made using the concept of the solid an-
gle (see Appendix A). Assuming that light is emitted uniformly into all 4� steradians in-
side the material (isotropic emission), the fraction emitted into the solid angle � of the
cone is

�ext = T (external efficiency) (11-15)

where T accounts for Fresnel reflection losses at the interface. A useful approximation
here is � � � � c

2, valid when �c � 1, with �c in radians. It is also a good approximation
to use the normal incidence reflectivity of Eq. (2-14) in determining T when �c � 1.

�
�
4�
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Figure 11-4 (a) Emitted light is reabsorbed by the semiconductor from which it originated. (b) In a
layered structure, this reabsorption is reduced.

Figure 11-5 Light emitted inside the semiconductor suffers total internal reflection when the angle
of incidence on the surface exceeds the critical angle �c.
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Estimate the external efficiency for a GaAs LED emitting into air.

Solution: Light is emitted into a cone of half-angle 16° = 0.28 rad. The solid angle is

� = �� c
2 = �(0.28)2 = 0.246 sr

and the Fresnel transmission is

T = 1 – � �
2

= 1 – � �
2

= 0.68

The external efficiency is then

�ext = �
0.

4

2

�

46
�(0.68) = 0.013

The above example shows that the external efficiency of an LED is naturally quite
low. There are, however, ways to improve this efficiency for certain applications. When
the goal is simply to get photons out into the air, as in an indicator light, the semiconduc-
tor can be encapsulated in a plastic dome structure, as shown in Fig. 11-6. The critical an-
gle for the semiconductor–plastic interface is larger than that of a semiconductor–air in-
terface, giving a larger � and �ext. In this design, the Fresnel losses at the dome–air
interface are also minimized because all emitted rays pass through at normal incidence. A
higher refractive index material for the dome, such as another semiconductor, would give
an even greater improvement in �ext. However, this represents a manufacturing challenge,
and takes away one of the key advantages of LEDs: they are inexpensive.

For coupling LED light into an optical fiber, a “Burrus” type geometry is often used. As
illustrated in Fig. 11-7, the end of the fiber is brought into close proximity to the emission
region by etching a well in one side, and fixing the fiber with an index-matching epoxy. The

3.6 – 1
�
3.6 + 1

n1 – n2
�
n1 + n2
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Figure 11-6 Total internal reflection losses are reduced by encapsulating the semiconductor in a
dome-shaped structure with high refractive index.

EXAMPLE 11-2
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emission region is restricted to a small part of the p–n junction by an insulating SiO2 mask
that confines the current flow laterally. If there is good optical contact between the fiber and
semiconductor, the critical angle is determined by the refractive indices of the semicon-
ductor and glass fiber. Using Eq. (11-15), �ext is then � 0.04, which is still fairly low but
higher than the value �ext � 0.01 for emission into air. However, only a small fraction of
this light is coupled into guided modes of the fiber, as shown in Problem 11.7.

An LED in the Burrus geometry is termed a surface emitter, since the light emission is
perpendicular to the p–n junction surface. Alternatively, the LED can be operated as an
edge emitter, as illustrated in Fig. 11-8. The emission region here is a thin active layer,
sandwiched between two layers of lower refractive index. This structure forms a planar
waveguide (see Chapter 3), and allows light in the various modes to propagate with little
loss. When light is generated inside the active layer, some of it is trapped by the wave-
guide, eventually exiting through the edge of the material. If the refractive index differ-

194 Chapter 11 Light Source

Figure 11-7 In the Burrus geometry, emission from the surface of the p–n junction is collected by a
fiber attached to the diode.

Figure 11-8 In an edge-emitting LED, the structure creates a planar waveguide that traps some of
the light generated in the active layer. This light is then emitted from the edge with a narrow angular
distribution.
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ence between the semiconductor layers is not very large, a fairly small fraction of the light
generated will be trapped by the waveguide (see Problem 11.8), resulting in a low output
power. However, the light that is emitted will have a narrow angular distribution when it
leaves the LED, and will be efficiently coupled into an optical fiber. This is especially
beneficial for fibers with a low NA, which accept light only over a narrow range of an-
gles. The efficiency of coupling light into a fiber is further discussed in Chapter 12.

11-2. THE LASER DIODE

In an LED, light is generated by electrons and holes as they recombine radiatively, in a
process known as spontaneous emission. The electron decay rate is given by Eq. (10-10),
and depends on the number of holes per unit volume but not on the light intensity. In a
laser diode, on the other hand, light is generated by a different process known as stimulat-
ed emission. In this process, first proposed by Albert Einstein in 1917, the probability that
a photon is generated depends on the number of photons already present, that is, on the
light intensity. The result is an amplification of the light, with additional photons being
produced by those already created. This amplification can be made self-sustaining by
adding reflective elements to the ends of the device. As the light makes multiple passes
through the semiconductor, it is increasingly amplified until laser light is produced.

There are many interesting facets of laser physics to explore. In this section, we give a
first overview of laser characteristics, focusing especially on the contrast between LEDs
and laser diodes. We also describe a number of specific types of semiconductor lasers that
have been developed, along with their applications. A more detailed accounting of laser
principles and operation will be given in Chapters 15–23.

Properties of Lasers

Threshold

One fundamental aspect of laser operation is that of threshold: lasing does not occur until
a minimum amount of power is injected into the material. This behavior is illustrated in
Fig. 11-9, which compares the power output versus drive current characteristics for a laser
diode and LED. Although the laser diode does emit light spontaneously below threshold,
just like an LED, this spontaneous emission is much weaker than the laser light emitted
above threshold. Above threshold, the power output Pout increases approximately linearly
with drive current i according to

Pout = �s(i – ith) (11-16)

where ith is the threshold current. The slope of the curve is �s, which relates the increment
in output power 
Pout to the increment in drive current 
i according to �s = 
Pout/
i.

To derive an estimate for �s, we must understand how the additional photons are gen-
erated above threshold. A fascinating feature of stimulated emission is that the additional
photons generated above threshold are duplicates, or “optical clones,” of those that al-
ready exist. This means that if light is already propagating in the modes of an edge-emit-
ting diode structure (Fig. 11-8), the additional photons generated will be emitted into
those same modes. Loosly speaking, stimulated emission has the effect of channeling ad-
ditional photons into a particular path, that of the waveguide modes. Since the extraction
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efficiency of these guided modes can be quite high, the extra optical power output 
Pout is
approximately the same as the extra optical power generated, 
Popt. Using Eq. (11-1), we
then have

�s � � � �i (11-17)

which for wavelengths ~ 1 �m and �i = 1 evaluates to �s ~ 1 mW/mA. For example, if ith
= 40 mA and i = 140 mA, the output power would be Pout � 100 mW. Note that although
Eq. (11-1) predicts a similarly high conversion of current into light for an LED, most of
this light does not escape the LED as useful output.

The higher output power of a laser diode compared to an LED is one of its practical ad-
vantages. A downside is that the laser diode does not respond linearly to i over the entire
range. Therefore, if linear modulation of the output is desired, special circuitry is needed
to keep the laser diode biased well above threshold.

Directionality

A property of lasers that is quite useful for many applications is the highly directional na-
ture of the emitted light. For a nonlaser source such as an LED, the angular distribution of
emitted light often obeys the relation

Pout(�) 	 cos � (LED, Lambert’s law) (11-18)

This is known as Lambert’s law, and will be discussed further in Chapter 12. In contrast,
the angular distribution of light from a laser can be modeled approximately as

Pout(�) 	 cosn � (laser, approximate) (11-19)

h�
�
e


Popt
�


i


Pout
�


i
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Figure 11-9 The output power versus drive current for a laser diode exhibits a threshold behavior,
whereas that for an LED does not.
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where n is a large number. This becomes highly directional for large n, as shown in Fig.
11-10. It should be noted that Eq. (11-19) is not derived from fundamental principles, but
is rather just a convenient form for modeling the laser output.

The physical origin of the laser’s directionality lies in the optical cloning process that
occurs during stimulated emission. Each photon is added to the beam with the same
phase, so that the entire optical wavefront is oscillating in a synchronized fashion. In such
a situation, the angular spreading of light is given by the diffraction condition � ~ �/D of
Eq. (2-25). When light is emitted from the edge of a laser diode, as in Fig. 11-11a, the ef-
fective aperture dimension D can be taken to be the active region thickness d. The angular
spread of light in a direction perpendicular to the layer will then be


�� ~ (half-width perpendicular to layer) (11-20)

where � is the wavelength after leaving the diode, and 
�� is the half-width of the distri-
bution. There will also be a spreading of the beam parallel to the layer, given by


�|| ~ (half-width parallel to layer) (11-21)

where w is the width of the active region parallel to the junction. Since d < w for most
laser diodes, the angular distribution is asymmetrical, with greater spreading in the direc-
tion perpendicular to the layers. This creates complications for coupling laser diode light
into symmetrical elements like optical fibers, although special aspherical lenses can help
to circularize the beam. The problem of coupling laser light into optical fibers is treated
further in Chapters 12 and 17.

A GaAs laser diode emitting at 830 nm (free-space wavelength) has an angular width
of 18° (full width at half maximum, or FWHM) perpendicular to the plane of the junc-
tion. Determine (a) the thickness of the active region, and (b) the value of n in the cosn

� angular dependence perpendicular to the junction.

Solution: (a) The half-width is 
�� = 9° = 0.157 rad. The active layer thickness is then

d � = 5.3 �m
0.830 �m
��

0.157

�
�
w

�
�
d
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Figure 11-10 The angular distribution pattern is much more directional for a laser than for an LED.
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(b) We require that

= cosn(9°)

which can be solved for n by taking the log of both sides:

ln(0.5) = n ln(cos 9°)

or

n = �
ln

l

(

n

c

(

o

0

s

.5

9

)

°)
� � 56

Spectral Purity

In addition to having a narrow angular distribution, laser light also has a narrow spectral
distribution, as illustrated in Fig. 11-12a. Typical spectral linewidths for a diode laser are
~ 2 nm, in contrast to typical widths of ~ 50 nm for an LED. This is another consequence
of the “optical cloning” process. The photons generated by stimulated emission all have
the same phase, and add constructively to produce a larger amplitude wave with well-de-
fined frequency and phase. This property of laser light is known as coherence, and will be
discussed in detail in Chapter 15.

1
�
2
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Figure 11-11 For laser light, the half-width 
� is inversely related to the emitting region’s dimen-
sions, and is widest in the direction perpendicular to the plane of the junction.
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At sufficiently high resolution, the laser diode spectrum is seen to have a mode struc-
ture, as depicted in Fig. 11-12b. A detailed discussion of the nature and origin of these
modes is presented in Chapter 16. The spacing of the modes in frequency is c/(2nL),
where n is the refractive index and L is the laser cavity length. The corresponding spacing
in wavelength is �2/(2nL), with � the free-space wavelength. If light is emitted in several
modes (multimode operation), the effective linewidth is the width of the distribution of
light in the various modes, as indicated in Fig. 11-12b. If only one mode is allowed to os-
cillate (single-mode operation), the linewidth becomes that of a single mode, and can be
in the megahertz range in frequency. Methods for obtaining single-mode operation are
discussed later in this chapter.

The narrow linewidth of a laser source is an advantage in certain applications. For ex-
ample, the spreading in time of a light pulse in fiber optic communications is proportional
to the spectral linewidth (see Chapter 6), and is therefore much less of a problem for a
laser diode source than for an LED. A narrow spectral width is also desirable for wave-
length division multiplexing (WDM), in which information can be sent simultaneously on
a number of closely spaced frequency channels in an optical communications system. The
narrower the linewidth, the more channels can fit into the finite available bandwidth.
Clearly, single-mode lasers are preferred for this application.

Response Time

We found earlier that the response time of an LED is limited by the spontaneous lifetime
� of an electron in the conduction band. In a laser diode, the response time can be faster
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Figure 11-12 (a) Light from a laser diode has a narrower spectral distribution than that from an
LED. (b) Laser light has a mode structure, with peaks separated in wavelength by �2/(2nL).
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than this. As illustrated in Fig. 11-13, stimulated emission provides an additional way for
the electron to decay out of the conduction band. The total decay rate Wtot expressed in
Eq. (10-12) can be generalized to include stimulated emission as well as the spontaneous
processes. When this is done, the resulting lifetime � = 1/Wtot becomes shorter, indicating
an improved time response. The time response of the laser diode is best at high excitation,
where the stimulated emission rate is large. Response times in the range 15–30 ps can be
obtained in this way.

The modulation of laser diode output power by varying the drive current is termed
gain switching. While this is quite practical (and commonly used) at lower modulation
rates, there is a complication at the highest rates. The optical frequency of the laser output
is found to vary with time at the beginning of a pulse, a phenomenon known as frequency
chirping. This is undesirable because it can create cross talk in optical communications
systems that utilize closely spaced frequency channels (dense wavelength division multi-
plexing, or DWDM). An alternative approach that avoids frequency chirping is to run the
laser diode in continuous-wave (cw) mode, and switch the beam on and off using an ex-
ternal modulator (see Chapter 9). Still another method is that of mode locking, discussed
in Chapter 22. Mode-locked lasers can produce pulse widths in the femtosecond (fs)
regime—much faster than is possible with gain switching.

Types of Semiconductor Lasers

Laser diodes have many applications, ranging from optical communications and optical
sensors to high-power optical pumping of other lasers. In all these, it is desirable to have
the conversion of electrical to optical power as high as possible. For certain applications,
other attributes are desirable as well, such as narrow spectral linewidth, symmetrical an-
gular distribution, or reliability in manufacturing. In the following, we take a look at how
the different types of semiconductor lasers have evolved to meet these different needs.

Double Heterostructure Laser

The simplest semiconductor laser is the homojunction laser, consisting of a single junc-
tion between n- and p-type semiconductors of the same material. As electrons and holes
are injected across the junction, they form a gain region in which light can be amplified.
The width of this gain region is determined by how far from the junction the electrons and
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Figure 11-13 In a laser diode, light interacts with the semiconductor via absorption (upward arrow),
spontaneous emission (downward arrow), and stimulated emission (downward thick arrow).
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holes diffuse before recombining, a typical length being ~ 1 �m. Light propagating paral-
lel to the junction will be amplified more than light propagating in other directions, so the
light distribution tends to follow the junction, a phenomenon known as gain guiding. The
depletion region provides some index guiding as well, because the free electrons and
holes in the n and p regions lower the refractive index there, making the depletion region
a weak optical waveguide. Both gain guiding and index guiding must compete, however,
with the natural tendency of light to spread out by diffraction. The result is a weakly guid-
ed light distribution, as illustrated in Fig. 11-14, with a width much larger than that of the
gain region.

Because of the poor overlap of the light distribution with the gain region, the gain per
unit length is low in the homojunction laser, and the part of the lightwave that is outside
the gain region suffers absorption rather than gain. The threshold current densities for las-
ing are therefore quite high, ~ 105 A/cm2, and highly temperature dependent, features that
are undesirable.

The double heterostructure (DH) laser overcomes these limitations. As shown in Fig.
11-15, this structure involves junctions between different semiconductor materials,
known as heterojunctions. It also involves two junctions, hence the “double” heterostruc-
ture. In the example shown, one junction is between n and lightly doped p, and the other is
between this lightly doped p and a more heavily doped p (p+). The energy bands in the
different sections shift due to the bandgap differences between materials, as well as the
p–n junction potential. With the proper choice of composition and doping in each of the
three sections, the energy bands in the three sections can be arranged as in Fig. 11-16,
with electrons and holes overlaping only in the middle section. This results in a well-de-
fined gain region, the width of which can be readily controlled by changing the thickness
of the middle region.

The DH laser has a number of important advantages over a homojunction laser. Opti-
cal confinement is much stronger and independent of current and temperature, because it
arises from index guiding in the planar waveguide formed by the higher-index GaAs and
the lower-index AlxGa1–xAs. An additional advantage is that the tail of the lightwave dis-
tribution extending into the lower-index material will not be absorbed there, due to the
higher bandgap energy of that material. As a rule, higher band gap materials have lower
refractive index, so this will be generally true for all such heterostructure devices. A spe-
cial advantage of the GaAs-AlxGa1–xAs heterostructure is that the lattice constants are
nearly the same for any x, so that layers can be grown on top of each other without strain-
induced defects.

The threshold current for a DH laser can be estimated by considering the simple model
shown in Fig. 11-17. Electrons and holes enter an active region of thickness d, where they
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Figure 11-14 In a homojunction laser, the light distribution is not well guided, and suffers absorp-
tion losses outside the gain region.
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recombine and emit light. Under steady-state conditions, the number � of electrons in the
active region is found by setting d�/dt = 0 in Eq. (11-4). This gives

= n(Lwd) (11-22)

where n is the number of electrons per unit volume in the active region, and the junction
cross-sectional area is A = Lw. Assuming primarily radiative decay, the lifetime is ob-
tained from Eq. (11-6), giving

i = eBrn2Lwd (11-23)

where we have also taken p � n. This assumption is justified under high excitation,
where equal numbers of electrons and holes are injected into the gain region from op-

1
�
�

i
�
e
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Figure 11-15 The light distribution is more confined in a double heterostructure (DH) laser, due to
index guiding in the waveguide structure.

Figure 11-16 In a DH laser, the energy bands are shifted so as to permit overlap of free electrons
and holes in a well-defined active region.
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posite sides, decaying in pairs by e–h recombination. The current density at threshold is
then

Jth = = eBrn2
thd (11-24)

where nth is the electron density required to achieve lasing.
One may well wonder why there needs to be a certain minimum electron density for

light amplification and lasing; after all, light is emitted whenever there are any electrons
and holes in the gain region. The most fundamental reason is that there are absorption as
well as emission processes in a semiconductor (see Fig. 10-2). Whether a propagating
light wave will be amplified or attenuated will then depend on which of these two
processes predominates. Under weak excitation conditions, the absorption process wins
out and lasing does not occur.

ith
�
Lw
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Figure 11-17 (a) Electrons and holes enter a recombination region of thickness d from opposite
sides. (b) Band filled by the injected carriers separates the average energies of absorbed and emitted
photons, resulting in net gain for certain photon wavelengths.
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To see how a higher electron density improves the balance between emission and ab-
sorption, consider Fig. 11-17b, which shows various absorption and emission transitions
that are possible when the conduction band contains n electrons per unit volume. As elec-
trons are added to the conduction band, they must go into unfilled energy states, accord-
ing to the Fermi exculsion principle. They therefore fill the conduction band from the bot-
tom upward, a phenomenon known as band filling. The boundary between filled and
empty states is not perfectly sharp, but rather is spread out over an energy range ~ kBT.

An optical transition, either absorption or emission, must take an electron from a filled
state to an empty state. For absorption, the photon energy must therefore be h� � Eg +

Efill, where 
Efill is the combined filling energy in the conduction and valence bands.
For emission, on the other hand, photons in the range Eg < h� < Eg + 
Efill are possible.
The result is that the average energies for absorption and emission become more different
as n increases. Above some minimum value of n, the probability of stimulated emission
becomes greater than the probability of absorption, and net gain is achieved.

When the probabilities for stimulated emission and absorption just become equal,
there is no net change in the intensity of propagating light. The material is then said to be
transparent, and the value of n for which this occurs is the transparency density, ntr. For
GaAs at room temperature, ntr ~ 1018 cm–3. In practice, n needs to be somewhat higher
than ntr to achieve lasing, because there must be a finite positive gain to balance the other
losses that are always present. The nature of these losses and their effect on laser perfor-
mance will be discussed in detail in Chapter 20. For the present purpose, we make the ap-
proximation nth � ntr, which is adequate for making rough estimations.

It is clear from Eq. (11-24) that the threshold current for lasing is reduced when d is
made smaller. If d is made too small, however, diffraction causes a large fraction of the
lightwave distribution to extend outside of the inner guided region. Since it is only the
portion of the lightwave inside the waveguide that gets amplified, this results in weaker
amplification and requires a higher current for lasing. The balance between these two ef-
fects occurs around d ~ 0.1 �m for a GaAs DH laser.

It is not just the current density J that should be minimized at threshold, but also the
actual current i. According to Eq. (11-23), this means that the cross-sectional area Lw of
the active region should be minimized. This can be done by using the stripe geometry, il-
lustrated in Fig. 11-18, in which the width w of the active waveguide is reduced. In addi-
tion to lowering the threshold current, this also serves to stabilize the transverse mode dis-
tribution of the laser output, preventing irregularities in the light versus current response.
It is not generally feasible to significantly reduce the other dimension L, because then
light propagating a distance 2L in a round-trip of two passes through the gain medium
would no longer be sufficiently amplified to balance the round-trip losses. Typically, L ~
1 mm for a DH laser. When the active region is surrounded on all sides by other conduct-
ing or insulating materials, the laser is said to have a buried heterostructure.

A GaAs DH laser has an active region of thickness 0.1 �m, width 8 �m, and length 1
mm. Determine (a) the threshold current density, and (b) the threshold current.

Solution: (a) The threshold current density can be estimated from Eq. (11-24) as

Jth � (1.6 × 10–19 C)�7 × 10–10 �(1018 cm–3)2(1 × 10–5 cm) = 1.1 × 103
A

�
cm2

cm3

�
s
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This calculated value is in good agreement with experimental current thresholds for
DH lasers, which are ~ 103 A/cm2.

(b) The cross-sectional area for current flow is

A = Lw = (10–1 cm)(8 × 10–4 cm) = 8 × 10–5 cm2

so the threshold current is

ith = �1.1 × 103 �
c

A

m2
��(8 × 10–5 cm2) = 0.088 A = 88 mA

The typical numbers presented above are for room temperature. It is found that the
threshold is a fairly strong function of temperature, varying as ith 	 exp(T/T0), where T0 is
the characteristic temperature. This can be understood qualitatively by remembering that
the boundary between filled and unfilled states is spread out over an energy ~ kBT. At
lower temperatures, the electron and hole distributions are more sharply defined, resulting
in less spectral overlap between absorption and emission. Less band filling is then needed
to achieve transparency, so that ntr and Jth are reduced. Similarly, ntr and Jth increase at
higher temperatures. A typical value for a GaAs DH laser is T0 � 100 K, so that ith dou-
bles when T is raised ~ 70°C above room temperature.

Quantum Well Laser

We saw for the DH laser that an active region thickness d smaller than ~ 0.1 �m is not
beneficial, because the lightwave mode cannot stay confined to such a small dimension.
However, if d is reduced still further to the ~ 10 nm range, the picture changes. A quan-
tum well is formed (see p. 187), and the motion of the electron (or hole) perpendicular to
the layer is constrained by the well, resulting in discrete energies as shown in Fig. 10-15.
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Figure 11-18 In the stripe geometry laser, the waveguide width w is reduced for improved mode
stability. Shown is the buried heterostructure configuration, with the active GaAs region surrounded
by other materials.
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The electrons and holes can still move freely parallel to the layers, however, making the
movement of charge carriers effectively two-dimensional.

The probability for electron–hole recombination, as for any quantum mechanical tran-
sition, depends on the number of unoccupied states having energies in the immediate
vicinity of the transition energy, a quantity known as the density of states. This density of
states is enhanced in the quantum well compared with a bulk semiconductor, because the
energy levels are more well defined. Therefore, the gain is correspondingly higher in a
quantum well, and this partially offsets the weaker optical confinement that arises from
the extremely small values of d.

To improve the optical confinement in a quantum well laser, separate optical confine-
ment layers (OCL) may be added on either side of the quantum well, as shown in Fig. 11-
19. These layers have an energy gap and index intermediate between that of the quantum
well and the surrounding layers and this forms an optical waveguide for confining the op-
tical mode. Lasers incorporating such structures are termed separate confinement het-
erostructure (SCH) lasers.

Another way to increase the effective optical confinement is to simply add more quan-
tum wells, as shown in Fig. 11-19b. This arrangement is termed a multiple quantum well
(MQW) structure, in contrast to the single quantum well (SQW) of Fig. 11-19a. In the
MQW, e–h pairs in each individual well interact with the same optical mode, increasing
the net gain. This comes, however, at the expense of an increased threshold current, be-

206 Chapter 11 Light Source

Figure 11-19 (a) In a separate confinement heterostructure laser, the light wave is guided by optical
confinement layers (OCLs), whereas the electrons and holes are confined inside the quantum well.
(b) In a multiple quantum well (MQW) device, electrons and holes in each quantum well interact with
the same light field.
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cause the n for each individual well must be brought to the transparency value ntr. One
benefit of the MQW structure is that more of the injected carriers go into the wells, and
fewer stay in the OCLs. This results in higher efficiency and a faster time response.

Quantum well lasers have a number of advantages over traditional DH lasers. For ex-
ample, the lasing wavelength can be adjusted simply by selecting the value of d, accord-
ing to Eq. (10-24). This provides considerable flexibility in manufacturing laser diodes
for particular applications. The properties of the laser can also be fine-tuned by selecting
materials for the layers that are mismatched in lattice constant. This gives rise to lattice
strain, which in thicker layers would result in defects, leading to losses and device failure.
One of the remarkable discoveries about quantum wells during their development was
that strain is no longer a problem, but can actually make the devices work better.

Another advantage of quantum well lasers is the very small current thresholds made
possible by the small values of d. Current density thresholds of ~ 50 A/cm2 have been ob-
tained in strained InGaAs SQW lasers. The threshold also tends to increase less strongly
with temperature in a quantum well laser, with characteristic temperatures > 250 K. This
weaker temperature dependence arises from the more well-defined energies of the quan-
tum well levels, with less blurring of the filled–unfilled energy boundary. The QW laser
has so many advantages that it has largely supplanted the DH laser for everyday applica-
tions.

Single-Frequency Laser

As discussed earlier, the spectral linewidth of a free-running laser diode is ~ 2 nm, com-
pared with ~ 50 nm for a typical LED. Although this is a significant improvement, it is
not sufficient for certain applications. For example, the commonly used C-band for
telecommunications spans the range 1530 < � < 1560, giving an available bandwidth of
30 nm. With 2 nm per channel, this would allow only ~ 15 channels to propagate without
interference. To increase the number of channels so that each fiber is used most efficient-
ly, it is necessary to decrease the laser linewidth.

The method commonly used to narrow the linewidth of a semiconductor laser utilizes a
Bragg grating built into the structure of the device. This grating, indicated schematically
by the undulating line in Fig. 11-20, can be formed by continuously varying the thickness
of one of the layers in the structure. The evanescent field of the optical waveguide mode
interacts with this periodic modulation, causing some of the light to be scattered in the
backward direction. When light that is scattered from different undulation peaks adds to-
gether constructively with the same phase, the lightwave is nearly entirely reflected, just
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Figure 11-20 In a distributed feedback (DFB) laser, single-frequency operation is obtained by
Bragg reflection from corrugations near the gain region.
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as in a fiber Bragg grating (see Chapter 8). If the spacing between undulations is �, this
occurs for wavelengths satisfying the Bragg condition

� = m (11-25)

where � is the free-space wavelength, n is the refractive index of the semiconductor, and
m is an integer. Light within some range 
� around this center wavelength � will be effi-
ciently reflected, as discussed in Chapter. 8. When 
� is less than the mode spacing
�2/(2nL), single-mode operation is obtained.

A GaAs laser has a cavity length of 0.8 mm, and operates at 860 nm. The refractive in-
dex of GaAs is 3.6. Determine the modulation period for a Bragg reflector in this laser,
and the maximum allowable width of the grating reflection spectrum.

Solution: For first-order diffraction, m = 1, so

� = = 119 nm

The patterning of a semiconductor surface on this length scale is feasible, but it pre-
sents a manufacturing challenge. The width of the reflection spectrum must be smaller
than


�max = = 0.128 nm

The structure described in Fig. 11-20 is referred to as a distributed feedback (DFB)
laser, because the reflections from the grating (the feedback) are distributed along the en-
tire gain region. An alternative structure is the so-called distributed Bragg reflector
(DBR) laser, depicted in Fig. 11-21. This is similar in concept, except that the gain and
feedback regions are kept separate, with the two Bragg grating regions acting effectively
as mirrors. The reflection from these mirrors does not occur at any one point, but is dis-
tributed over the grating instead.

Single-frequency diode lasers have advantages in addition to the narrower linewidth.
They are in general less sensitive to changes in temperature, and have a more linear out-
put power versus current relation. Both of these characteristics are due to the lack of mode
hopping, a phenomenon in which small perturbations in current, temperature, or other en-
vironmental factors cause the laser light energy to jump from one mode to another. Mode
hopping is eliminated in a single-frequency diode laser by the stabilizing influence of the
Bragg grating.

Vertical Cavity Surface-Emitting Laser

All the diode laser types discussed so far are edge emitters, in which light is amplified
while propagating parallel to the layers. Of course, light can also be emitted perpendicular

(860 nm)2

���
2(3.6)(8 × 105 nm)

860 nm
�
2 (3.6)

(�/n)
�
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to the layers, as in a surface-emitting LED. The problem with this scheme for a laser is
that the amplification of light in one pass through the thin active layer is very small, insuf-
ficient to overcome the reflectivity losses of ordinary mirrors. For this reason, the devel-
opment of surface-emitting lasers initially lagged behind that of edge emitters.

What made surface emitters finally successful was the use of Bragg grating reflectors
both above and below the active layer, as illustrated in Fig. 11-22. Each Bragg reflector
consists of alternating layers of semiconductors with different band gaps, such as GaAs
and AlxGa1–xAs. By adjusting x and the layer thicknesses, the reflectivity can be made
very high (R > 0.995). The loss per bounce off the mirrors is then < 0.5%, which is small
enough that the amplification per pass through the active layer (~ 1%) produces a net
round-trip gain. A device operating in this way is termed a vertical cavity surface-emit-
ting laser, or VCSEL (pronounced “vick-sel”). The active layer of the VCSEL often con-
sists of a quantum well.

There are a number of features of VCSELs that make them ideal for certain applica-
tions. The output beam is inherently symmetrical, with emission into a diffraction-limited
cone of half-angle typically ~ 7–10°. This makes for more efficient coupling into optical
fibers, and in general facilitates manipulation of the beam. The small width of the VCSEL
reduces capacitive effects, which enables high-speed modulation (> 10 GHz). It also re-
duces the threshold current (< 1 mA), and results in high efficiency (> 50%). The small
cavity length L naturally promotes single-frequency operation, since the mode spacing
�2/(2nL) is greater than the width of the gain spectrum.

Some of the biggest advantages of VCSELs over edge emitters come from practical
considerations rather than fundamental device properties. These advantages arise from
the manufacturing method, in which many individual VCSELs are deposited simultane-
ously on a single semiconductor wafer. This leads to efficiency and cost savings in pro-
duction, with the lasers individually testable in situ. Another benefit is that 2-D arrays of
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Figure 11-21 In a distributed Bragg grating (DBG) laser, single-frequency operation is obtained by
reflection from Bragg gratings that are separate from the gain region, and which act like mirrors.


 
 


c11.qxd  2/22/2006  3:16 PM  Page 209



VCSEL’s can be naturally created in this way, each laser being individually controllable.
The laser wavelengths in the array can be designed to be the same, or made different by
careful control of the individual cavity lengths L. Laser diode arrays have applications in
optical switching, optical processing, and interconnects between different integrated opti-
cal circuits.

Quantum Cascade Laser

A common feature of the light sources discussed so far is the recombination of electrons
and holes to produce light. In this process, the electron falls from the conduction band to
the valence band, a so-called interband transition. Light can also be emitted when an
electron goes from one energy level in a quantum well (QW) to another level in the same
QW. This intraband transition provides the basis for an entirely different kind of semi-
conductor laser, in which the wavelength is determined solely by the spacing of the QW
energy levels in the conduction band. Since there is no e–h recombination involved, the
wavelength does not depend on the band gap of the semiconductor.

Figure 11-23 illustrates one realization of such a laser, known as the quantum cascade
laser (QCL). It consists of alternate layers of higher and lower band gap material, forming
a series of closely spaced QWs. A voltage is applied across the device, which causes the
electron’s potential energy to vary linearly with position as shown. There is no p–n junc-
tion, so in a circuit the device behaves much like a resistor. It is termed a unipolar circuit
element, because its operation depends on only one type of charge carrier (i.e., the elec-
tron). Conventional laser diodes, in contrast, are bipolar circuit elements.

As electrons flow through the QCL, they lose potential energy due to their motion
opposite to the electric field direction. However, they lose this energy not continuously,
but in steps, as they jump from one QW to the next. Electrons in the lowest energy lev-
el of a given QW see a potential barrier on both sides, and according to classical me-
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Figure 11-22 In a vertical cavity surface-emitting laser (VCSEL), the laser cavity is perpendicular to
the active layer, with feedback provided by Bragg reflectors.
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chanics they would be trapped there indefinitely. For example, a marble rolling in a
bowl does not spontaneously jump out of the bowl. But in quantum mechanics, where
the electron is described by a wave, there is a finite probability that it will jump over the
potential barrier, a process known as tunneling. The probability for tunneling is higher
when the barrier is thinner and lower, and in a QCL this probability can be designed to
be high.

The principle of QCL operation is then as follows. An electron tunnels from one QW
to a different energy level in an adjacent QW. It then falls to a lower energy level in this
QW, emitting a photon of energy h�. From that lower level, it again tunnels through a bar-
rier into the next QW, where it falls to a lower energy level, emitting another photon. This
process is repeated many times (typically 20–25) during the transit of a single electron
across the device, so that a single electron gives rise to many individual photons. The sit-
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Figure 11-23 (a) A quantum cascade laser (QCL) is formed by alternating layers with higher and
lower band gaps. (b) In a QCL, an electron tunnels between adjacent quantum wells, and drops from
one QW level to another, emitting a photon. The process is repeated some 20–25 times for a single
electron (only three wells are shown for simplicity).
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uation is similar to that of water cascading down steps in a stream, which inspired the
name “quantum cascade” laser.

The most important application of the QCL is as a light source in the mid-IR wave-
length range (4–12 �m). For a conventional diode laser, this would require working with
materials with a very small band-gap energy, which is undesirable due to the high levels
of thermally generated electrons and holes. Since the photon energy in the QCL is inde-
pendent of the band gap, wide band-gap materials can be used in the layers for better per-
formance. The lasing wavelength can be selected simply by choosing the proper QW
width and spacing. In fact, it is possible to operate the QCL laser at multiple wavelengths
simultaneously, by varying the QW energy levels across the device.

The concept for the QCL was originally proposed by Kazarinov and Suris in 1971, but
practical devices were not developed until the work of Capasso and Faist at Bell Labs in
1994. Commercial devices are now available, operating in pulsed mode at room tempera-
ture in the wavelength ranges 5–6 �m and 10–11 �m. These wavelength ranges are im-
portant for applications such as remote sensing and trace detection of contaminants, since
many molecules have characteristic absorption and emission features in those spectral re-
gions.

PROBLEMS

11.1 A GaAs LED that emits at 860 nm is connected as shown in Fig. 11-1, and driven
with a current of 20 mA from a supply voltage of 9 V. (a) Calculate the voltage
drop across the diode, assuming � = 2 and i0 = 150 pA. (b) Determine the load re-
sistor needed. (c) If �i = 0.85, determine the optical power generated. (d) Compute
the overall electrical to optical conversion efficiency (optical power divided by
electrical power supplied by battery).

11.2 Solve Eq. (11-4) for the electron population �(t) when the current is switched
from zero to a constant value. That is, take i(t) = 0 for t < 0, and i(t) = ic for t � 0.
Assume �(0) = 0.

11.3 The 3 dB electrical bandwidth of an LED is 80 MHz. (a) If the output power at low
modulation frequency is 10 mW, what is the output power at 250 MHz? (b) Deter-
mine the carrier lifetime, assuming that this is what limits the bandwidth. (c) De-
termine the corresponding 3 dB optical bandwidth.

11.4 An LED circuit has an optical 3 dB bandwidth of 750 kHz. Determine the modula-
tion frequency at which the LED output is reduced to 20% of the low-frequency
value.

11.5 A GaAs LED has the dome configuration shown in Fig. 11-6. In designing the
LED, three different types of plastic are considered, with index n2 = 1.5, 1.9, or
2.9. (a) For each choice of n2, calculate the fraction of light transmitted through
both interfaces (i.e., consider only Fresnel reflection losses here, and assume a
close to normal angle of incidence). (b) For each choice of n2, calculate the frac-
tion of all light generated within the GaAs material that is within the solid angle
for transmission through the first interface (i.e., that is not internally reflected). (c)
Combine the results of parts a and b above to determine the net external efficiency
of the LED for each value of n2. (d) Organize your results above into a table, show-
ing the different contributions to the external efficiency for the assumed values of
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n2. What is the best choice for n2 in terms of maximizing efficiency? How do the
results compare with a GaAs LED that has no plastic cap?

11.6 The GaAs material of an LED is in direct contact with a glass medium on one side.
Calculate the fraction of all light generated inside the GaAs that escapes into the
glass medium (at any angle in the glass). For simplicity, use the normal incidence
relation Eq. (2-14) in calculating the Fresnel loss. Take n = 1.5 for glass.

11.7 In the Burrus geometry of Fig. 11-7, calculate the fraction of all light emitted in-
side the GaAs material that is coupled into guided modes of the fiber. The fiber has
core index 1.5 and NA = 0.25. Assume that the distance from the emitting region
to the fiber end is much less than the fiber core diameter, and also assume that the
GaAs material is in direct contact with the fiber core (neglect the effect of the
epoxy filler between). How does this compare with the results of Problem 11.6?

11.8 A planar waveguide consists of a layer of index n1 sandwiched between two layers
of lower-index n2, as depicted in Fig. 11-8. Light is emitted from the interior of the
inner layer, and some of this light is trapped in the waveguide by TIR. Determine the
fraction of all emitted light that becomes trapped in the waveguide. Give your an-
swer in terms of the relative index difference 
 = (n1 – n2)/n1 for small 
. Also com-
pute this fraction for a GaAs/Al0.3Ga0.7As waveguide structure with n1 = 3.6 and n2

= 3.4. (Note: Not all of this trapped light comes out as useful output in an edge-emit-
ting LED, because some of it is going in the backwards or sideways directions.)

11.9 A laser diode has a threshold current of 10 mA and an output power of 18 mW
when driven with a current of 30 mA. (a) Determine �s for this laser. (b) Calculate
the laser output power if i = 40 mA. (c) The drive current is now modulated ac-
cording to i(t) = 15 + A cos 
t. Sketch the time-dependent optical power P(t) for A
= 10 mA, A = 5 mA, and A = 2 mA.

11.10 For the laser diode in Problem 11.9, assume that the forward voltage drop across
the laser diode is 2.5 volts. (a) What is the slope efficiency of the laser diode, de-
fined as the change in output power divided by change in pumping power above
threshold? (b) What is the electrical to optical conversion efficiency at an operat-
ing current of 20 mA (defined as the output power divided by the pump power)?

11.11 The angular distribution from a diode laser has half-widths of 15° and 4° in the
vertical and horizontal directions, respectively. (a) If the laser operates at 808 nm,
what do these angular spreads tell you about the dimensions of the laser’s active
region and its orientation? (b) If the angular distributions are approximated by a
cosn(�) function, determine the values of n for the two directions.

11.12 (a) A He–Ne laser has a cavity length of 15 cm. If light is emitted by the gas atoms
over a frequency range of 1.7 GHz, how many modes can lase simultaneously?
Take n = 1. (b) A GaAs edge-emitting laser diode has a cavity length of 1 mm and
a center operating wavelength of 850 nm. If light is emitted over a wavelength
range of 5 nm, how many modes can lase simultaneously?

11.13 The threshold current for a GaAs DH stripe laser is 80 mA at room temperature
(20° C). Determine the threshold current at 150° C.

11.14 A GaAs DH laser operates at 850 nm, and has an active region of thickness 500
nm, stripe width 8 �m, and length 300 �m. (a) Estimate the current threshold at
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room temperature. (b) What would the current threshold be if the laser were oper-
ated at liquid nitrogen temperature (77 K)? (c) Determine the longitudinal mode
spacing in picometers.

11.15 Determine the modulation period for the Bragg reflector in an InGaAsP DFB laser
diode that operates at 1500 nm. Take the refractive index of InGaAsP to be 3.35 at
this wavelength.

11.16 A quantum cascade laser is to operate on a transition between the two lowest quan-
tum well levels in the conduction band of a GaAs/AlxGa1–xAs structure. (a) If an
operating wavelength of 8 �m is desired, what must be the GaAs layer thickness?
(b) For this layer thickness, what is the minimum value of x in the AlxGa1–xAs
composition such that the energy of the second quantum well level is no higher
than the well depth (so that the level is still “in the well”)? Assume that the well
depths are the same in the conduction and valence bands.
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We have seen in previous chapters how light propagates in a waveguide, and how the
light can be generated by an LED or laser diode. A related issue is the efficiency with
which light can be coupled from a light source into a waveguide. In this chapter we exam-
ine this efficiency for sources with different degrees of directionality. It will be seen that
the coupling efficiency is greater for more directional sources.

12-1. POINT SOURCE

Consider first isotropic emission, in which light appears to emanate from a point. We
would like to calculate the fraction of emitted power that is collected by an optical fiber,
as illustrated in Fig. 12-1. If a point source emitting a total power Ps is embedded in a uni-
form medium of refractive index n0 outside the fiber, it will radiate light equally into all
4� steradians of solid angle, with an emitted power per unit solid angle of Ps/4�. As dis-
cussed in Chapter 4, however, only those rays making an angle � < �max with the fiber
axis will be trapped by the fiber, where sin �max = NA/n0 and NA is the numerical aper-
ture of the fiber [Eq. (4-2)]. From Appendix A Eq. (A-2), the solid angle within which
light will be trapped is

� = 2� (1 – cos �max)

= 2� (1 – �1� –� s�in�2���m�ax�)
(12-1)

= 2� (1 – �1� –� (�N�A�/n�0)�2�)

� 2� � �
2

= �

where in the last step the expansion (1 + x)n � 1 + nx has been used, along with the ap-
proximation (good for most optical fibers) NA2 � 1.

Since the light is distributed uniformly with angle, the power Pin coupled into the fiber
is given by

Pin = � �Ps (12-2)

which leads to the coupling efficiency

�c � = = (point source coupling efficiency) (12-3)
NA2

�
n0

2

1
�
4

�
�
4�

Pin
�
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�
�
4�

NA2

�
n0

2

NA
�
n0

1
�
2
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This result shows that higher numerical aperture fibers accept a larger fraction of the
emitted light from a point source. It should be noted that we have assumed the point
source to be very close to the end of the fiber. When it is too far away, the solid angle for
collection is limited by the core diameter rather than the NA (see Problem 12.1).

12-2. LAMBERTIAN SOURCE

Many practical light sources such as the LED are best treated as extended sources, in
which light is emitted over some surface area As. The emitting surface is characterized by
a brightness (see Appendix A), defined as the power emitted per unit solid angle, per unit
surface area. This brightness is found in many cases to vary with direction as

B(�) = B(0) cos � (Lambert’s law) (12-4)

where � is the angle to the surface normal. A light-emitting surface with an angular distri-
bution given by Eq. (12-4) is known as a Lambertian source.

The origin of the cos � dependence can be understood by referring to Fig. 12-2, which
shows light being generated inside a high refractive index material and emitted into air.
Inside the material, light is emitted isotropically, with an equal amount of light radiated
into each differential solid angle d� = 2� sin � d� [see Eq. (A-1)]. Because of refraction
at the boundary, however, the corresponding solid angle on the air side, d� = 2� sin � d�,
becomes proportionately larger as � increases. Since the same optical power is spread out
over a larger solid angle as � increases, the brightness decreases. This argument can be
made quantitative by using Snell’s law to relate the two solid angles (see Problem 12.2).
The resulting brightness (including Fresnel reflection losses at the boundary) is

B(�) � cos � (12-5)

where Ps is the total power emitted inside the material, and As is the emission surface area.
It is assumed in deriving this that the index of refraction n is large (n > 2.5), which is valid
for most semiconductors.

Ps
��
�Asn(n + 1)2
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Figure 12-1 Light rays from a point source making a sufficiently small angle � with the fiber axis are
coupled into the fiber core (shaded area). The solid angle of this cone compared with 4� sr gives the
coupling efficiency.
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An alternative view of Lambert’s law is to define an “apparent brightness” Beff as the
power per solid angle emitted in a certain direction, divided by the projected (apparent)
area of the surface when viewed from that direction. From Fig. 12-2b, this projected area
is A�s = As cos �, so the apparent brightness is

Beff = = = (12-6)

If Beff is independent of �, then B(�) 	 cos �, which is Lambert’s law. We can say, then,
that a Lambertian surface is one for which the apparent brightness is independent of view-
ing angle.

To determine the coupling efficiency into a fiber, we first calculate the total power P0

emitted from the Lambertian surface. Integrating Eq. (12-4) over one hemisphere, we
have

P0 = As ��/2

0
B(�) d�

= As ��/2

0
[B(0) cos �] [2� sin � d�] (12-7)

= 2� AsB(0) ��/2

0
cos � sin � d�

Using the substitution u = sin �, du = cos � d�, this can be evaluated as

P0 = 2�AsB(0) �1

0
u du

= 2�AsB(0) 1–
2 u2|01 (12-8)

= �AsB(0)

B(�)
�
cos �


P
��
As
� cos �


P
�
A�s 
�
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Figure 12-2 (a) Light emitted isotropically inside a high-index medium becomes distributed accord-
ing to Lambert’s law after refraction at a boundary. (b) When viewed off-axis, light from an emitting
surface appears to come from the projected area A�s.
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Combining this with Eq. (12-5) for � = 0 gives

P0 � (12-9)

The ratio P0/Ps corresponds to the LED external efficiency �ext defined in Eq. (11-15).
For GaAs (n = 3.6), Eq. (12-9) gives �ext � 0.013. This should be compared with the val-
ue for �ext obtained earlier in Example 11-2.

The power Pin coupled into the fiber is calculated in the same way as the total power,
except that the upper limit on � is �max rather than �/2. The upper limit on u in Eq. (12-8)
is then sin �max rather than 1, giving

Pin = �AsB(0) sin2 �max
(12-10)

= P0 sin2 �max

where Eq. (12-8) has been used. The coupling efficiency is then

�c = = sin2 �max = � �
2

(Lambertian source coupling efficiency) (12-11)

This efficiency is the same as for a point source, except that it is four times higher. The
difference comes from the more directional emission of the Lambertian source, with a
greater fraction of the emitted light lying within the angular acceptance range of the
fiber.

For an extended source like an LED, the coupling efficiency also depends on the size
of the emitting area compared with the core area of the optical fiber. As seen in Fig. 12-3,
light that is emitted outside of the core area will not be accepted by the fiber, regardless of
emission angle. Only the fraction �a2/As will be accepted by the fiber if �a2 < As. In this
case, the coupling efficiency will be

�c = � �
2

(coupling efficiency when �a2 < As) (12-12)
NA
�
n0

�a2

�
As

NA
�
n0

Pin
�
P0

Ps
�
n(n + 1)2
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Figure 12-3 Light striking the fiber outside the core area is not coupled, regardless of angle. This
decreases the coupling efficiency when the emission area As is greater than the fiber core area �a2.
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When �a2 > As, the coupling efficiency depends only on emission angle, and Eq. (12-11)
applies. These formulae for �c assume negligible spacing between source and fiber. It
should be noted that edge-emitting LEDs have a smaller emission area, making them
more efficient for coupling into an optical fiber.

A GaAs LED with a square emitting area of side 0.2 mm emits light through air into an
optical fiber with core index 1.5, fractional index difference 
 = 0.008, and core diam-
eter 50 �m. Determine (a) the coupling efficiency, and (b) total efficiency with which
light generated inside the LED material is coupled into the fiber.

Solution: (a) The numerical aperture is given by Eq. (4-5) as

NA � n�2�
� = (1.5)�2�(0�.0�0�8�)� = 0.190

and the ratio of areas is

= = 0.049

Eq. (12-12) then gives

�c = (0.049)(0.19)2 = 1.77 × 10–3

(b) Using Eq. (12-9),

= = = 0.013

The total efficiency is then

�tot = = (0.013)(1.77 × 10–3) = 2.32 × 10–5

This illustrates how inefficient the LED actually is in getting light generated within the
material into an optical fiber. The laser, as we will see, does a much better job.

12-3. LASER SOURCE

In the previous section, we saw that light obeying Lambert’s law is coupled more efficient-
ly into an optical fiber than light from a point source, due to increased directionality in the
angular distribution. We would expect laser light to be even more efficiently coupled, due
to its high degree of directionality (see Fig. 11-10). To make a quantitative estimate of this
improved coupling efficiency, the angular variation of a laser’s brightness is taken to be

B(�) = B(0) cosm � (12-13)

Pin
�
Ps

1
�
3.6(4.6)2

1
��
n(n + 1)2

P0
�
Ps

�(25 × 10–6)2

��
(2 × 10–4)2

�a2

�
As
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where m is large, and not necessarily an integer. Although this is not the actual angular
distribution for a laser, it can be a close approximation when the proper value of m is cho-
sen, and it makes the calculations simpler.

As for the Lambertian emitter, we first calculate the total power emitted,

P0 = As ��/2

0
B(0) cosm� 2� sin � d�

(12-14)

= 2 �AsB(0) ��/2

0
cosm� sin � d�

which can be evaluated using the substitution u = cos �, du = –sin � d� as

P0 = 2�AsB(0) �1

0
um du

= 2�AsB(0)	 

0

1
(12-15)

= AsB(0)

The power coupled into the fiber is determined in the same way, except that the upper
limit on � is �max, which leads to a lower limit on u of

umin = cos �max = �1� –� s�in�2���m�ax� = �1� –� (�N�A�/n�0)�2�

The power into the fiber is then

Pin = �
m

2

+

�

1
� AsB(0) (1 – umin

m+1)

(12-16)

= �
m

2

+

�

1
� AsB(0)	1 – �1 – �

N

n

A

0
2

2

��
(m+1)/2



which corresponds to a coupling efficiency

�c = = 1 – �1 – �
(m+1)/2

(12-17)

For small NA and m not too large, the binomial expansion (1 + x)n � 1 + nx can be used
to obtain the simplified result

�c � � �
2

(laser coupling efficiency) (12-18)

This last expression must be used with some caution, since it is obviously not true for
arbitrarily large m (see Problem 12.7). However, it illustrates the improvement in cou-
pling efficiency for a laser source as m increases and the beam becomes more direc-
tional.
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�
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A laser beam has an angular distribution with a full width at half maximum (FWHM)
of 20°. Determine the value of m for this distribution, and calculate the coupling effi-
ciency into a large core area optical fiber with NA = 0.22.

Solution: The half width is 10°, so m is found from

1–
2 = cosm 10°

Taking the natural log of both sides yields

ln (0.5) = m ln(cos 10°)

so

m = = 45.3

Putting this into the approximate expression Eq. (12-18) gives the result

�c � (0.22)2 = 1.12

which is clearly not exact since �c must be < 1. To get an accurate result here, it is
neccesary to use Eq. (12-17):

�c = 1 – [1 – (0.22)2]46.3/2 = 0.683

This efficiency is, as expected, much higher than that for an LED.

In the preceding example we neglected to account for the overlap of the laser beam
area with the fiber core area. This is often a good approximation because, as we shall see
in Chapter 15, a laser has (or can be made to have) a very small effective emitting area.
The coupling efficiency can, therefore, be improved by using a lens to make the beam
even more directional. There are special considerations for coupling into a single-mode
fiber, which are discussed in Section 17-3.

PROBLEMS

12.1 A point light source is located on the fiber axis a distance ds from the end of a mul-
timode fiber of core radius a. Determine the value of ds at which the coupling effi-
ciency starts to depend on a and numerical aperture NA. Derive an approximate ex-
pression for �c when ds is large.

12.2 Use Snell’s law to relate the angles � and � in Fig. 12-2, and use this to derive Eq.
(12-5).

46.3
�

2

ln (0.5)
��
ln(cos 10°)
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12.3 A large-core, multimode step- index fiber of radius a is excited by a surface-emit-
ting LED with area As < � a2. The fiber has NA = 0.2 and loss coefficient 4 dB/km.
The LEDs total output power is 5 mW. Compute the power propagating in the
fiber core at 1 m, 1 km, and 10 km. Repeat this problem if the fiber has instead NA
= 0.5 and a loss of 20 dB/km.

12.4 A source has a half-power emission angle of 32.8° as measured from the normal to
the emitting surface. Compute the coupling efficiency into a multimode SI fiber
having NA = 0.2.

12.5 For a Lambertian emitter, calculate the angle with respect to the surface normal at
which the emitted intensity is (a) 50% of the peak intensity, (b) 20% of the peak in-
tensity, and (c) 5% of the peak intensity. (d) What is the full width at half maxi-
mum (FWHM) of the Lambertian radiation pattern?

12.6 In Example 12-1, the light from the LED was assumed to be first emitted into the
air, and then coupled from the air into the fiber. Consider the situation in which the
GaAs material of the LED is in direct optical contact with the core of the fiber. As-
sume that light is emitted isotropically within the GaAs material, and determine
the fraction of generated light that ends up being coupled into the guided modes of
the fiber. Using all the same parameters as in that example, determine what effect
this has on �tot.

12.7 Derive Eq. (12-18) from Eq. (12-17). Why can’t Eq. (12-18) be valid for arbitrari-
ly large m? What is the maximum value of �c for which the approximate expres-
sion in Eq. (12-18) differs from the exact expression in Eq. (12-17) by no more
than 10%?

12.8 Two multimode fibers with the same core diameter but different numerical aper-
ture are butt-coupled together with no lateral, angular, or longitudinal offsets.
Light is transmitted from fiber 1 (numerical aperture NA1) into fiber 2 (numerical
aperture NA2). Show that the coupling efficiency is �c = (NA2/NA1)2 if NA2 <
NA1, and �c = 1 if NA1 < NA2. Assume that the angular distribution of light emit-
ted from the fibers is Lambertian up to the maximum angle, and zero past this an-
gle.

12.9 It might seem that a lens could be used to increase the efficiency with which light
from an LED can be coupled into a fiber. Determine whether this is possible by
considering a lens of focal length f inserted between an LED and fiber that are sep-
arated by a distance d. The LED has surface area As and brightness Bs(�), and the
fiber has core radius a and numerical aperture NA. Assume the lens collects most
of the light from the LED.

12.10 Consider a surface that emits light with a “flat-top” brightness distribution, such
that B(�) = B0 for � < �0 (with B0 a constant), and B(�) = 0 for � > �0. Determine
the efficiency with which light from this surface is coupled into a multimode fiber
having core radius a, core index n1, and numerical aperture NA. Write your results
in general form, and also in an approximate form valid when NA � 1 and �0 � 1.
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In Chapter 11 we saw how an electric current can give rise to light emission in semicon-
ductor devices such as LEDs and laser diodes. Equally important for photonics applica-
tions is the counterpart to this, in which light is detected and converted into an electrical
signal. Optical detectors may be classified as either thermal or photon detectors, depend-
ing on how the electrical signal is generated. In a thermal detector, the optical power is
absorbed by a sensor element, causing a rise in the element’s temperature which is then
converted into a voltage. In a photon detector, the light absorbed in the detector material
directly creates charge carriers, which give rise to a photocurrent and signal voltage.

Each of these two detector types has advantages and disadvantages. Thermal detectors
tend to be slow and not very sensitive, but they generally detect light over a very wide
wavelength range. Photon detectors have essentially the opposite properties, being faster
and more sensitive, but with a more restricted wavelength range. In this chapter, we con-
sider the fundamental operating principles of thermal and photon detectors, and show
how they give rise to these complementary properties.

13-1. THERMAL DETECTORS

There are several ways to convert a temperature rise into an electrical signal, any of which
could be used in a thermal detector of light. We will describe two such methods common-
ly used in light detectors, based on the thermoelectric effect and the pyroelectric effect.
Before looking at these specific devices, however, we consider in general how the flow of
heat limits the time response and sensitivity in thermal detectors.

Time Response

The time response of a thermal detector can be determined using the simplified model
shown in Fig. 13-1. Light is incident on a sensor element of mass m, thickness d, and
area A, which is connected by some support structure to a large object (the heat sink).
The temperature of the heat sink is assumed to remain at the constant value T0, where-
as the temperature of the sensor element increases by an amount � due to heating by the
absorbed light. There will then be a temperature gradient in the support structure that re-
sults in a flow of heat energy from the sensor element to the sink. For small �, the heat
leaving the sensor element per unit time will be given by G�, where G is the thermal
conductance of the support structure. If the support structure is made of thermally insu-
lating material, and has a small cross-sectional area for conducting heat, G can be made
very small. We say in this case that the mass m is thermally well insulated from its sur-
roundings.
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The net change in the sensor element’s heat energy in a time �t is then given by

�increase in� = �light energy� – � heat lost �heat energy absorbed by conduction (13-1)

mC �� = (Pin – G�) �t

where C is the specific heat (heat capacity per unit mass) of the sensor material, and �� is
the change in sensor element temperature in time �t. Dividing by �t and letting �t � 0,
this becomes

+ � = (13-2)

which is a simple linear first-order differential equation, similar in form to Eq. (11-4).
Like any such equation, it has exponential time-dependent solutions when the driving
term (Pin/mC in this case) is constant in time.

The solution to Eq. (13-2) is depicted graphically in Fig. 13-2, for an incident light
power that switches from zero to a constant value Pin. It can be expressed analytically as

�(t) = �max(1 – e–t/�) (13-3)

where the response time � and maximum temperature rise �max are defined by

� = �
m

G

C
�

(13-4)

�max = �
P

G
in
�

This solution can be verified by direct substitution of Eq. (13-3) into Eq. (13-2). 

Pin
�
mC

G
�
mC

d�
�
dt

224 Chapter 13 Optical Detectors

Figure 13-1 Model for temperature rise in a thermal detector. Heat flows along the temperature
gradient from the sensor element to the heat sink, in proportion to the temperature difference �.
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It can be seen from Eq. (13-4) that the choice of G in the detector design involves a
trade-off between speed and sensitivity. If G is small, the sensitivity is good, because
there is a large temperature change �max for a given incident power, and this makes it eas-
ier to measure small powers. However, � will then be large, which means that it takes a
long time for the detector to respond to a change in input power, that is, it has a slow time
response. The detector can be made to respond faster by increasing G, but this will lower
the sensitivity. The value of G can be adjusted by changing the geometry of the support
structure, so as to optimize the performance for a particular application.

The other variable under design control is the mass of the sensor element. Since m only
appears in the expression for � (not �max), a smaller mass gives an improved time re-
sponse without degrading the sensitivity. The mass of the sensor element can be reduced
by simply making it smaller in size. However, if the sensor element is made small in all
dimensions, it will not intercept as much of the incident light, and Pin is then effectively
reduced. The optimum geometry for the sensor element is, therefore, that of a thin disk,
which allows the sensor element to intercept as much light as possible, while still having a
small mass. Detectors used as laser power meters are often designed in this way. The disk
is coated with a black layer that absorbs light equally over a wide wavelength range.

Thermoelectric Detector

One method for converting the temperature rise of the sensor element into an electrical
signal uses a thermocouple, which is formed by the junction of two dissimilar metals. The
electric potential is found to be different on the two sides of the junction, by an amount
that varies with temperature, a phenomenon known as the thermoelectric effect. A practi-
cal way to incorporate thermocouples into a thermal detector is shown in Fig. 13-3. One
thermocouple formed by wires A and B is attached to the sensor element, and a second,
identical thermocouple between wire types B and A is attached to a point in the detector
housing that is held at fixed temperature. Because the relative order of the materials is op-
posite for the two junctions (A � B for the first, B � A for the second), the potential dif-
ferences have opposite polarity, and cancel when the two junctions are at the same tem-
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Figure 13-2 The temperature in a thermal detector rises exponentially when the incident optical
power has a step-function time dependence.
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perature. When the sensor temperature increases relative to the reference, there will be a
voltage between the two wire leads of type A, which can be read by a voltmeter or other
electronic circuit element. Typical thermocouple sensitivities around room temperature
are ~ 40 �V/°C. To increase this sensitivity, thermocouples can be configured in series so
that the voltages across the individual thermocouples add. Such a device is termed a ther-
mopile. Detectors based on this principle are commonly used for measuring absolute opti-
cal power for continuous-wave (CW) lasers.

Pyroelectric Detector

Another method for detecting the temperature rise of the sensor element uses special crys-
talline materials known as ferroelectrics. Inside a ferroelectric crystal, there is a sponta-
neous displacement of charge, creating electric dipoles inside the material. At the edge of
the material, there are unbalanced charges, as depicted in Fig. 13-4, which effectively act
as bound surface charges. If the ferroelectric is sandwiched between two parallel metallic
plates, these bound charges induce free charges +Q and –Q on the plates.

The net dipole moment in the ferroelectric is found to decrease with increasing temper-
ature, as shown in Fig. 13-5, going to zero above a critical temperature Tc. This behavior
is analogous to that of a ferromagnet with a temperature-dependent spontaneous magneti-
zation. In both cases, the decrease in net dipole moment is due to the competition between
a naturally ordered state and thermally induced disorder.

When a change in temperature causes the net polarization to change, the induced
charge on the plates changes, and this results in a flow of current through an external cir-
cuit connected to the plates. If the current flows through a load resistor RL, a voltage Vsig =
iRL is developed across the resistor, which can be measured. This conversion of tempera-
ture changes into an electric current or voltage is known as the pyroelectric effect, and is
the basis for operation of the pyroelectric detector.

It is important to note that current only flows when the temperature is changing, since
�Q = 0 when the temperature (and hence the polarization) is constant. Therefore, when
the light power being detected is constant in time, there is no change in temperature and
no signal from the detector. This insensitivity to a constant background light level can be
a useful feature for certain applications. For example, in thermal IR imaging, the display
screen will show only changes in the image, providing a greater contrast for observing
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Figure 13-3 In a thermoelectric-type detector, the voltage difference across a series combination
of two thermocouple junctions measures the temperature increase of the sensor element.
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small changes in a scene. When the detector is used in an intrusion or fire alarm, it natu-
rally suppresses a slowly varying ambient light level, and responds only to the target-in-
duced light signal that is changing in time. This type of detector is also well suited for use
in power meters for pulsed lasers.

Typical ferroelectric materials used for pyroelectric detectors include LiNbO3 (lithium
niobate) and LiTaO3 (lithium tantalate). One surface is coated with a thin black film, and
incident light is absorbed in this film after passing through a transparent electrode. The
sensitivity of the pyroelectric detector decreases at lower temperatures, where the slope of
Fig. 13-5 is smaller. Therefore, unlike many other types of detectors, there is no advan-
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Figure 13-5 Below some critical temperature Tc, a ferroelectric material has a spontaneous electric
dipole moment that increases with decreasing temperature.

Figure 13-4 A ferroelectric material has spontaneously aligned electric dipole moments, which in-
duces a charge on nearby metallic electrodes. When the induced charge changes in time, a current
is generated through an external circuit.
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tage to cooling the detector. Although the sensitivity becomes quite large near Tc, there is
also increased detector noise due to fluctuations near the critical temperature. This is gen-
erally not a problem unless Tc is close to room temperature.

The pyroelectric detector is best suited for measuring time varying light levels, but it
can also be used to measure light that is constant in intensity. To do this, the light can be
passed through a rotating slotted blade that alternately passes and blocks the beam. The
beam intensity then has an artificially induced time dependence, to which the pyroelectric
detector will respond.

13-2. PHOTON DETECTORS

In contrast to the thermal-type detectors discussed in the previous section, photon detec-
tors operate by the direct conversion of photons into charge carriers (electrons and/or
holes). In this section, we discuss several types of photon detectors based on photoemis-
sion (ejection of an electron by an absorbed photon) and photoconductivity (change in
electrical conductivity due to an absorbed photon). The other important type of photon
detector, the photodiode, will be discussed in Chapter 14.

Photoelectric Effect

The basic principle of light detection using photoemission can be understood by consider-
ing the photoelectric effect, a phenomenon discovered toward the end of the 19th century.
Negative charge was found to be emitted by a clean metallic surface when illuminated
with ultraviolet light, and the kinetic energy of the emitted electrons was found to depend
not on the optical power, but rather on the frequency of the light wave.

In 1905, Einstein proposed an elegant explanation of this effect, which has had a pro-
found and lasting influence on our conceptual understanding of light. In this view, light
consists of discrete energy packets called photons, and in an absorption process the entire
photon energy is given to an electron in the material. The energy of each photon is h�,
where h is Planck’s constant and � is the frequency [see Eq. (2-1)]. The kinetic energy of
the photoejected electron can then be determined by referring to the energy diagram of
Fig. 13-6. Inside a metal, the electrons have a distribution of energies up to some maxi-
mum value, referred to as the Fermi level. This Fermi level is lower than the electrons’
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Figure 13-6 In the photoelectric effect, photons with energy greater than the work function W are
ejected from a metal with maximum kinetic energy h� – W.
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energy in a vacuum outside the material, the difference being known as the work function
W (see section on metal–semiconductor junctions, p. 178). For an electron to escape from
the metal, it must be given a minimum extra energy W, so the photon energies that will re-
sult in photoemission are

h� > W (photon energy for photoemission in metal) (13-5)

For photon energies greater than the work function, the electron will be ejected with kinet-
ic energies Ek � h� – W. Kinetic energies less than the maximum occur because some of the
electrons absorbing a photon of energy h� have an initial energy less than the Fermi level.

Although the condition h� > W ensures that photoemission is energetically possible, it
does not mean that all electrons absorbing a photon will actually be ejected. Unless the
electron is initially close to the surface, it must travel a certain distance through the metal
to reach the boundary. Along the way, it will suffer inelastic collisions with the many oth-
er electrons in the metal, which tend to decrease its kinetic energy. In practice, the frac-
tion of electrons that make it out is quite small in an elemental metal, typically ~ 10–3.
These metals also have an inconveniently large work function (W > 2 eV), and are there-
fore not suitable for detection of near-IR wavelengths. For these reasons, elemental met-
als are seldom used as photodetector materials.

Metallic alloys are much more suited for photoemission-type detectors. The alloy com-
positions of interest are actually semiconductors, with the energy level structure shown in
Fig. 13-7. The energy difference between the bottom of the conduction band and the vacu-
um level is termed the electron affinity, and denoted by �. This represents the energy re-
quired to eject an electron initially in the conduction band. Since most of the electrons are
initially in the valence band, the photon energies that will result in photoemission are

h� > Eg + � (photon energy for photoemission in semiconductor) (13-6)

where Eg is the band-gap energy.
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Figure 13-7 In a semiconductor, photoemission takes place when the photon energy exceeds the
sum of the band-gap energy and electron affinity �.
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The escape efficiency for semiconductors is much higher than for metals, because
there are very few free electrons in the conduction band to cause collisions with the eject-
ed electron. There will still be some collisions with lattice vibrations (phonons), however,
so the efficiency is less than unity. Efficiencies in the 10–20% range are typical at room
temperature.

Metallic alloys also have the advantage that the threshold energy Eg + � can be much
lower than for any elemental metal. For example, the widely used composition
Na2KSb:Ce (containing small amounts of Ce) has a good response out to a wavelength of
800 nm, which corresponds to a theshold photon energy h�th = Eg + � � 1.55 eV. Metal-
lic alloys used in photodetectors often contain atoms from group I of the periodic table,
because their outermost electrons have smaller binding energies, leading to a smaller
bandgap energy for the semiconductor.

It is possible to reduce the effective �, and even make it negative, by depositing a thin
film of Cs on the surface of a highly p-doped semiconductor such as GaAs. The Cs atoms
easily donate their outer electron to the acceptor ions in the GaAs, creating a space-charge
region near the surface, as indicated in Fig. 13-8. The electric field in this space-charge re-
gion bends the electron energy bands downward near the surface, since the electron’s po-
tential energy decreases as it moves opposite to the electric field direction. Electrons excit-
ed from the top of the valence band in the interior can then reach the vacuum level outside
the material by absorbing a (virtual) photon of energy h�th < Eg, and “tunnelling” through
the thin surface layer. The effective electron affinity �eff = h�th – Eg is then negative, lead-
ing to the term negative electron affinity (NEA) for these materials. This has become an im-
portant way of extending the response of photoemissive detectors to longer wavelengths.

Vacuum Photodiode

After electrons are ejected from a photoemissive material, they must somehow be collect-
ed to obtain a signal. A simple device that accomplishes this is the vacuum photodiode, il-
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Figure 13-8 In a negative electron affinity (NEA) material, surface charges lower the energy bands
near the surface, making the effective � negative. This allows photoemission for h� < Eg.
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lustrated in Fig. 13-9. Two electrodes are placed in an evacuated tube, one of them the
photoemissive material, and the other a collection electrode. A high voltage is applied be-
tween the electrodes, so that the photoemissive material is at lower potential (the cathode)
and the collection electrode at higher potential (the anode). A cathode that responds to
light by emitting electrons is termed a photocathode.

Electrons emitted by the photocathode will be accelerated by the electric field between
the electrodes, causing a current in the external circuit. This current gives rise to a voltage
across the series resistor RL, which consitutes the measured signal. The current i generat-
ed depends on the incident light power Pin according to

charge/time = � �� �� �
which can be written as

i = e	 (13-7)

In this equation, e is the magnitude of the electron charge and 	 is the efficiency with
which incident photons are converted into ejected electrons. The responsivity of the de-
tector is defined as

R � = (detector responsivity) (13-8)

which is a measure of the output (current) versus input (optical power) for the detector.
The SI units for R are A/W.

Determine the responsivity of a photodetector of quantum efficiency 	 to light of
wavelength 1300 nm. Evaluate this when 	 = 0.2.

e	
�
h�

i
�
Pin

Pin
�
h�

electrons
�

photon

charge
�
electron

energy/time
��
energy/photon
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Figure 13-9 In a vacuum photodiode, electrons ejected by photoemission from a photocathode are
collected by an anode held at high positive potential.

EXAMPLE 13-1
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Solution: The responsivity is

R = = = = 1.046 	 A/W

Note that for wavelengths of interest for telecommunications, we have the simple ap-
proximation R ~ 	 [A/W]. Putting in 	 = 0.2 above gives R = 0.209 A/W.

An interesting question about the current generated (termed the photocurrent) is this:
what does the time dependence of the current pulse look like when a single electron is
ejected from the photocathode and travels to the anode? It might be supposed that the cur-
rent pulse is only observed when the electron arrives at the anode, where it is “collected.”
The correct answer at first seems a bit surprising: current flows constantly during the time
that the electron is in transit between electrodes.

To see why this occurs, consider an electron moving toward the anode under the influ-
ence of an electric field, as shown in Fig. 13-10. The work done on the electron during a
small time �t while it moves a distance �x is

�W = F�x = eE�x

= eEv�t

where v = �x/�t is the speed of the electron and E = V0/d is the magnitude of the electric
field. Work is done at a rate P = �W/�t = eEv, and goes into the increased kinetic energy
of the electron as it accelerates toward the anode. The source of this energy is the external
circuit, which supplies an electrical power V0i at a fixed voltage V0. Setting the power
supplied equal to the rate at which work is done, we have

Psupplied = V0i = eEv

(1.6 × 10–19)(1.3 × 10–6)	
���

(6.63 × 10–34)(3 × 108)

e
	
�
hc

e	
�
h�
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Figure 13-10 The current response i(t) for a single electron moving from photocathode to anode
can be determined by defining a region of space that encloses the diode (dashed line), and applying
the work-energy theorem to this volume.
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or

i(t) = v(t) (13-9)

This important result says that the actual time dependence of the current pulse follows the
time dependence of the electron’s velocity as it moves in an electric field E through a po-
tential difference V0. Because it is based on fundamental energy principles, this result ap-
plies quite generally to the various types of photodetectors that we will discuss in this
chapter and the next.

An important application of Eq. (13-9) is in determining the time response of a photon
detector. In the vacuum photodiode, electrons experience an acceleration a = eE/m, where
m is the electron mass. We will assume for simplicity that the detector has plane parallel
electrodes, in which case it is referred to as a biplanar phototube. In this case, E and a are
both constant, so

v(t) = at = t (13-10)

x(t) = at2 = t2 (13-11)

For constant E, we also have E = V0/d, where d is the spacing between the electrodes.
Since v(t) increases linearly with t, then according to Eq. (13-9), so too does the current
i(t). The current pulse, therefore, has the shape depicted in Fig. 13-11, coming to an end at
t = �, when the electron reaches the anode. The response time � can then be determined
from Eq. (13-11) by writing

d = �2

which gives

� = �� = d�� (vacuum photodiode response time) (13-12)

The time response is seen to be better (� smaller) for large applied voltage V0, and
small electrode separation d. Making d too small, however, increases the capacitance be-
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�
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�
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�
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Figure 13-11 In a vacuum photodiode, the current increases linearly with time during the pulse.
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tween the electrodes, degrading the time response. Therefore, high voltages (a few kV)
are used for the best time response, which can be in the range 100–500 ps. The require-
ment of a high-voltage power supply limits the practical utility of vacuum photodiodes,
although they are useful for specialized applications. They have a good response in the
UV and good linearity over a wide range of incident light levels, making them useful for
precise monitoring of fast high-power laser pulses.

Although vacuum photodiodes are not the most common detectors in use, their general
operating principles are simple to understand and can be directly taken over into our dis-
cussion of other detector types. For example, one important parameter for any photode-
tector is the total charge sent around the external circuit in response to a single absorbed
photon. The total charge Q moved during the time � of the pulse is given by the area under
the curve of Fig. 13-11. Using Eq. (13-9) and E = V0/d, this is

Q = ��

0
i(t) dt = �

d

e
� ��

0
v(t) dt

(13-13)

Q = �
d

e
� �d

0
dx = e

We therefore obtain the very satisfying result that the total charge sent around the circuit
while one electron is making its transit between the electrodes is just e, the charge of one
electron. In contrast to this, other detectors that we will discuss may have Q < e or Q > e,
making the vacuum photodiode a good point of comparison.

Photomultiplier

Although the vacuum photodiode has the advantage of simplicity and reliability for pre-
cise power measurements, it is not very sensitive to low light levels. One way to increase
the sensitivity is to add an amplification section between the photocathode and anode, as
illustrated in Fig. 13-12. This device is called a photomultiplier and works in the follow-
ing way. Incident photons eject electrons from the photocathode just as in a vacuum pho-
todiode. As the electrons move from the photocathode to the anode, they strike a series of
secondary electrodes called dynodes, which are held at potentials intermediate between
the cathode and anode. When an electron strikes a dynode, it ejects a number of addition-
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Figure 13-12 In a photomultiplier tube, electrons emitted from a photocathode strike a series of
dynodes on their way to the anode. These collisions eject additional (secondary) electrons from each
dynode, effectively amplifying the detector signal.
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al electrons, each of which is then accelerated to collide with the next dynode. The result
is an avalanche process, with the number of electrons increasing exponentially. If each
dynode produces � electrons when struck by a single electron, then for a cascade of N
dynodes, the gain is

G = = �N (13-14)

For typical values � � 5 and N � 10 this results in G � 107, an enormous enhancement.
This large gain makes the photomultiplier suitable for detecting very low levels of light,
even down to the level of individual photons.

Figure 13-13 shows the typical electrical connections inside a photomultiplier tube. A
negative high voltage (usually ~ 1 kV) is applied to the photocathode, and the proper po-
tential for each dynode is maintained by a chain of equal-value resistors. The anode is ap-
proximately at ground potential, and attracts the large bunch of electrons emitted from the
last dynode (which is at a potential � –V0/N). While these electrons are in transit, they
generate a current through the load resistor RL, and the voltage across this resistor consti-
tutes the detector signal. It is important to note that the two electrical connections for the
signal output are both near ground potential and, therefore, safe to touch and connect to
equipment. The dangerous high voltage remains safely inside the device.

The spectral response of the photomultiplier depends on the type of photocathode ma-
terial used. The responsivity R for a few representative types are shown in Fig. 13-14. The
R values given are for single electron emission from the photocathode, and must be multi-
plied by G to obtain the actual sensitivity of the photomultipler. The spectral response for
certain metallic alloy photocathodes is denoted by an “S” number, according to the com-
position. For example, the composition Na2KSb:Ce mentioned previously has an “S20”
response, which is efficient and extends from the near UV region out to � 800 nm in the
IR region. This is perhaps the most popular photocathode type for measurements in the
visible region.

Other metallic alloy compositions have a better response in either the UV or the IR re-
gions. The first important commercial photocathode had the composition Ag-O-Cs, with a
spectral response designated S1. Although the efficiency is relatively low, it has a re-
sponse extending out past 1000 nm, which makes it still useful today. The S1 photocath-
ode is typically cooled to reduce the noise associated with thermally emitted electrons.

The NEA GaAs photocathode has a very uniform response that extends throughout the
visible region and out to � 900 nm in the IR region. It is superior to the S1 photocathode

Q
�
e
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Figure 13-13 Typical electrical connections inside a photomultiplier. The dynode potentials are
maintained by a resistor chain connected between anode and cathode.
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in that the efficiency is much higher, and it does not need cooling. However, it does not
extend as far into the IR region as the S1. A similar photocathode, the NEA InGaAs, has a
response that extends out past 1000 nm, and can therefore compete with the S1 there. It
has the advantage over the S1 that there is less noise due to thermally emitted electrons,
so cooling is often not required.

Although photomultipliers represent the ultimate in sensitivity for light detection, they
have some disadvantages for everyday applications. Like the vacuum photodiode, they re-
quire a high voltage, which is inconvenient and entails safety concerns. The time response
is slower than vacuum photodiodes, because of the longer transit time needed for elec-
trons to go from the photocathode to the anode. There is also an inherent spreading of the
electron bunches during the transit, because electrons ejected from the dynodes are emit-
ted in different directions and take different paths down the tube. From a practical point of
view, these detectors are fragile and easily damaged by excessive light intensity. They are
also inherently “bulk” devices, not easily miniaturized for integrated optics applications.
Nonetheless, they play an important role for applications such as fluorescence detection
and light scattering, where sensitivity is of prime concern.

Photoconductive Detectors

The photon detectors discussed so far work by ejecting electrons from a photocathode
material. It is also possible for an electron in the valence band (VB) to be promoted to the
conduction band (CB) without being ejected from the material. This process is illustrated
in Fig. 13-15, and might be thought of as an “internal photoelectric effect.” Once the elec-
tron is in the CB, it becomes mobile, and contributes to the electrical conductivity. This
increase in a material’s conductivity upon absorption of light is termed photoconductivity,
and is the operating principle of the photoconductive detector or photocell.

It is clear from Fig. 13-15 that for a photon to be absorbed, its energy h� must be
greater than the bandgap energy Eg of the material. Photons entering the material are ab-
sorbed with a probability � per unit length, where � is the attenuation coefficient. Figure
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Figure 13-14 Typical spectral response R (
) for some common photocathodes. In a photomultipli-
er, this must be multiplied by the gain G = �N to obtain the detector responsivity.
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13-16 shows the wavelength dependence of � for a few representative semiconductors.
After light has propagated a distance x into the material, its intensity is reduced according
to Beer’s law, I(x) = I(0) exp(–�x), where I(0) is the intensity just inside the surface. If the
material’s total thickness in the direction of light propagation is d, then a fraction

	abs = = (1 – R)(1 – e–�d) (13-15)

of the incident light is absorbed. This expression takes into account the fraction R of the
incident light that is reflected from the surface.

The behavior of a photocell can be understood by considering the simple model shown
in Fig. 13-17. A uniform semiconductor of length L is irradiated from the side with light,

Pabs
�
Pin
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Figure 13-15 In the “internal photoelectric effect,” electron–hole pairs are created by the absorp-
tion of a photon in a semiconductor.

Figure 13-16 Spectral dependence of the absorption coefficient for some representative semicon-
ductors.
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and photons that are absorbed create electron–hole pairs inside the semiconductor. A volt-
age V0 is applied between the ends as shown, giving rise to an electric field E = V0/L in the
material. Under the influence of this E field, the electrons and holes move in opposite di-
rections, giving rise to a signal current is in the external circuit. This current induces a
voltage drop isRL in the series load resistor RL, which constitutes the detector signal.

One important characteristic of the photocell is the presence of a background current
i0, even when there is no incident light. This occurs because the semiconductor intrinsi-
cally has some small but finite electrical conductivity, due to thermally generated elec-
tron–hole pairs. If the electrical resistance of the semiconductor is Rd, the background
current is i0 = V0/(RL + Rd). The total current is then i = i0 + is.

In practice, the background i0 often dominates the signal current is, requiring special
techniques for extracting the small signal from a large constant background. One method
utilizes a rotating slotted blade to modulate the light intensity, creating a time-varying
is(t). The constant background i0 can then be blocked by using a lock-in detector, which
responds only to signals varying in time. Even when the background is suppressed in this
way, however, it increases the noise of the detector, as we shall see in the next section.

To evaluate the induced signal current is for a single electron–hole pair, we can use Eq.
(13-9), which was used previously for the vacuum photodiode. According to this equa-
tion, a signal current is produced whenever charge carriers move in the presence of an
electric field. The difference here is that the electron velocity ve(t) is no longer linear with
t, as it was for the vacuum photodiode. Collisions (with other electrons, phonons, and im-
purities) randomize the electron’s motion, so that it moves with a constant average drift
velocity, given by

ve = �eE (13-16)

where �e is the electron mobility. A similar equation can be written for the motion of
holes, vh = �hE, and both holes and electrons contribute to the signal current is. However,
it is found in most materials that �h 
 �e, so the effect of hole motion is usually of minor
importance. Also, holes commonly become trapped at impurity sites, where they become
immobile and stop contributing to the photocurrent. Therefore, in the following treatment
we will neglect the contribution of holes to is.
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Figure 13-17 In a photocell, the charge carriers created by absorbed photons move under the in-
fluence of an applied electric field.
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Using Eq. (13-16) in Eq. (13-9), along with E = V0/L, we then have for the signal current

is(t) = (13-17)

This current is maintained as long as the electron remains in the conduction band, which
is limited by the electron lifetime �. The current pulse then has the time dependence
shown in Fig. 13-18 (compare with Fig. 13-11 for the vacuum photodiode). Integrating
this current over time gives the total charge in the current pulse,

Q = � is(t) dt = = (13-18)

It is conventional to define the photoconductive gain G of the detector as

G � = (photoconductive gain) (13-19)

a definition similar to that of the photomultiplier gain.
This result shows that the detected charge (and hence the gain) increases as the applied

voltage V0 increases. An interesting feature of this equation is that G can be made larger
than 1 for sufficiently large V0. That is, the charge in the current pulse resulting from a
single photon absorption can be greater than the charge of an electron! This is, at first
glance, a rather puzzling conclusion. To see what is happening, consider the electron
transit time, ttr, defined as the time it takes for the electron to travel the entire length L of
the semiconductor. Using Eq. (13-16) for ve, this is

ttr = = = (electron transit time) (13-20)

Combining this with Eq. (13-19) gives a simple expression for the photoconductive gain:

G = (13-21)

From the above, we see that the photoconductive gain is greater than unity when the
electron stays in the CB longer than the time it takes to traverse the semiconductor. It
might be supposed that when the electron reaches the electrode at the semiconductor
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Figure 13-18 The current response for a single electron–hole pair created in the photocell semi-
conductor.
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edge, the current pulse should end, since there is no further motion of charges in the elec-
tric field. The effective � would then be limited by the transit time ttr, and the gain limited
to unity. This is indeed the case, if no additional electrons are released into the semicon-
ductor to take the place of the one that has left.

If the contact between the electrodes and the semiconductor is ohmic (that is, obeying
Ohm’s law), then there is no barrier to the injection of new electrons into the semiconduc-
tor. In this case, electrons leaving the semiconductor are readily replenished by new ones,
as depicted in Fig. 13-19. Electrons that are photoexcited from the VB to the CB can then
effectively remain in the CB for a time longer than the electron transit time. This replen-
ishment process will continue until an electron–hole recombination occurs, or until the
hole that was initially created makes a complete transit across the semiconductor.

The photoconductive gain is linear with applied voltage V0, according to Eq. (13-19).
Higher voltage, therefore, gives higher gain and a larger signal. Figure 13-20 shows how
this relation would be modified if the electron were not replenished at the electrodes. In that
case, the gain would saturate at unity, when the applied voltage reaches Vsat = L2/(��).
Increasing the voltage beyond Vsat would improve the time response of the detector (which
would then be limited by ttr), but would not increase the signal. This feature is a character-
istic of photodiode detectors, as we shall see in the next chapter. The p–n junctions in these
devices present a barrier for injected charges, and no replenishment of the electron occurs.

The discussion so far has concerned the effective charge generated by a single ab-
sorbed photon. The number of photons striking the semiconductor per unit time will be
Pin/h�, where Pin is the incident optical power and h� is the photon energy. Therefore, the
signal current (charge generated per unit time) will be

is = 	absGe (photoconductive signal current) (13-22)

where 	abs is given by Eq. (13-15). This should be compared with Eq. (13-7) for a vacu-
um photodiode.

Some common photoconductive materials, along with their range of spectral sensitivi-
ty, include CdS (400–700 nm), CdSe (500–900 nm), PbS (1–3.2 �m), and PbSe (1.5–5.2
�m). They are highly sensitive, and can operate at room temperature (although their noise
properties are improved at low temperature; see next section). A key drawback for certain

Pin
�
h�
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Figure 13-19 Gain is possible in a photocell because electrons leaving the semiconductor on one
side are replenished by other electrons entering on the other side.
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applications is the slow response time, which is determined by the electron lifetime �.
This can range from 0.1 �s to 0.1 s, much too slow for high-speed data communications.
Photocells therefore find their niche in photometry, thermometry, and other applications
that require precise light-level measurements without the need for fast time response.

A CdS photocell has a separation between electrodes of 0.2 mm, and is biased with 1.2
V. Light with wavelength 550 nm and power 5 �W is incident on the photocell, which
absorbs 75% of the incident light. (a) Determine the photoconductive gain of this de-
tector, assuming that the electron lifetime in CdS is 1 ms and the electron mobility is
300 cm2/(Vs). (b) Determine the signal current generated in this photocell.

Solution: (a) The mobility in MKS units is 3 × 10–2 m2/(Vs), so

G = = = 900

(b) The photon energy of the incident light is

h� = = = 3.62 × 10–19 J

so the signal current is

is = ��3.6

5

2

×

×

1

1

0

0

–6

–19
�	(0.75)(900)(1.6 × 10–19) = 1.49 × 10–3 A

13-3. NOISE IN PHOTON DETECTORS

We saw in the previous section that the signal in a photocell can be made larger by the
process of photoconductive gain. Although a larger signal is certainly desirable, the more

(6.63 × 10–34)(3 × 108)
���

550 × 10–9

hc
�



(10–3)(3 × 10–2)(1.2)
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(2 × 10–4)2
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Figure 13-20 The photoconductive gain increases linearly with applied voltage, and can exceed
unity if electrons are replenished after reaching the electrode.

EXAMPLE 13-2
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important question for detector sensitivity is: how large is the signal compared to the noise?
Noise is defined as random signal fluctuations that are not caused by or correlated with the
physical quantity being measured. It is present in any practical detector system, and much of
the work of detector design concerns reducing the noise. In this section, we discuss the ori-
gin of the two primary types of noise in detectors: shot noise and Johnson (or thermal) noise.

Shot Noise

Shot noise arises from the statistical process by which moving charges give rise to a cur-
rent. Consider a current that is nominally constant in time, with the value i
. At a micro-
scopic scale, the current consists of discrete charge carriers (electrons or holes) in motion,
as illustrated in Fig. 13-21. For simplicity, in the following we will consider electrons to
be the charge carrier, although the same arguments apply to holes. If a reference plane is
drawn perpendicular to the current direction, the time at which the electrons cross this
plane can be marked on a time axis, as in Fig. 13-21b. Because the motion of the electrons
is a statistical process, they do not cross the plane at regular intervals, but rather with a
distribution of arrival times.

If there is no correlation between the arrival times of different electrons, the arrival
pattern is termed a Poisson random process. The probability P(n) that n electrons will
cross the plane in a time interval �t is then given by the Poisson distribution

P(n) = (Poisson distribution) (13-23)

where

n
 = (i
/e) �t (13-24)

is the average number of electrons crossing the plane during �t, and i
/e is the average
number of electrons crossing the plane per unit time. For large n
, the function P(n) can be
closely approximated by a Gaussian, as depicted in Fig. 13-22. It has a well-defined max-
imum at n = n
, with an rms (root mean square) width �n given by

�n = �n

 (width of Poisson distribution) (13-25)

(n
)ne–n

�

n!
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Figure 13-21 (a) The electrical current is the amount of charge passing a reference plane per unit
time. (b) Electrons pass the reference plane at a statistical distribution of times, resulting in current
noise.
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Equation (13-25) is an important feature of the Poisson distribution. Stated loosely, it
says that the width of the distribution (and the standard deviation of the equivalent Gauss-
ian) equals the square root of the center, or most probable, value. The ratio of width to
center value is

=

which means that the distribution gets sharper for larger n
.
If the number n of electrons crossing the reference plane in time �t varies from one

time interval �t to the next, the instantaneous current

i = (13-26)

also varies in time. The current will fluctuate by an amount

�i = �n

as illustrated in Fig. 13-23. Using Eqs. (13-24) and (13-25), this can be written as

�i = �n

 = ����	���t� = �� (13-27)
ei

�
�t
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Figure 13-22 The number n of electrons crossing the reference plane in time �t varies according to
the Poisson distribution, with an average n
 and rms deviation �n.

Figure 13-23 Because of shot noise, a current i
 exhibits fluctuations with an rms deviation �i.
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An important implication of Eq. (13-27) is that the current noise increases as �t is
made smaller. We can interpret �t as the measurement time, since the n electrons were
determined to be crossing the reference plane during that time. Therefore, shorter mea-
surement times give a higher noise, and vice versa. It is common to describe a measure-
ment system in terms of its bandwidth, rather than its measurement time, the two being
reciprocally related by the Fourier transform (see Appendix B). Denoting the bandwidth
by B, we can write

B = (13-28)

where K ~ 1 is a constant of proportionality, the exact value of which depends on how the
bandwidth and measurement time are defined. A rigorous analysis shows that the proper
value here is K = 1/2, so the rms current noise becomes

�i = �2
ei

B
 (shot noise) (13-29)

which is the widely used expression for current (shot) noise.
This result shows that the noise increases with the square root of the detector band-

width. One way to reduce the noise in a detector, then, is to reduce the detection band-
width with appropriate electrical filters. However, this has the side effect of restricting the
range of modulation frequencies that can be detected, which limits the time response of
the detector. This issue will be discussed further in Chapter 14.

According to Eq. (13-29), the shot noise also increases with increasing average current
i
, but only as the square root of i
. Therefore, the current increases faster than the noise,
and higher currents are expected to give a higher ratio of signal to noise. This is indeed
the case, provided that the current i
 is truly a “signal” current.

In the case of the photocell, discussed in the previous section, we saw that most of the
current through the device was not a signal at all, but rather a background or dark current,
present even with no light incident on the detector. The shot noise from this dark current
can easily overwhelm a weak signal current, and is one of the fundamental limitations of
this type of detector.

One way to reduce the dark current in a photoconductor is to increase the series load
resistance RL. This is clear from Fig. 13-17, where the dark current is given by i0 = V0/(RL

+ Rd). However, increasing RL introduces noise of another type, as we discuss in the next
section.

Johnson Noise

Johnson noise refers to the voltage or current fluctuations in a resistor due to thermal agi-
tation of the electrons in the material. It is also referred to as thermal noise or Nyquist
noise. The effect was discovered experimentally in 1927 by Johnson, and soon thereafter
explained theoretically by Nyquist using thermodynamic and statistical mechanical argu-
ments. The original paper in Physical Review (Nyquist 1928) is well worth reading, even
today, for an insightful derivation of the thermal noise formula. In the following, we give
an alternative, simplified derivation of this formula.

Consider a resistor of resistance R connected through a switch to an LC oscillator cir-
cuit, as shown in Fig. 13-24. Assume that all parts of this circuit are at the same tempera-

K
�
�t
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ture, and in thermal equilibrium with the surroundings. Initially, the switch is open, isolat-
ing the resistor from the LC oscillator. The LC circuit has a single mode of oscillation at
frequency �0 = 1/�L
C
, with the total energy of oscillation given by

E = 1–
2 Li2 + 1–

2 CV 2

where V and i are the voltage across the capacitor and current through the inductor. In sta-
tistical mechanics, the principle of equipartition states that for every degree of freedom in
a system (or, equivalently, for every term in the energy expression containing a normal
coordinate squared) there is associated a thermal energy kBT/2, where kB is Boltzmann’s
constant and T is the absolute temperature. For the LC oscillator, there are two such terms,
so the thermal energy is kBT. This means that even without any external excitation, the
voltage and current in the LC circuit will exhibit random fluctuations, with the energy
fluctuating by �E = kBT on average.

The resistor is not a resonant system, and has no natural modes of oscillation. Howev-
er, it is expected that the thermal agitation of electrons in the resistor will cause random
current fluctuations and corresponding voltage fluctuations. To evaluate the magnitude of
these fluctuations, assume that the switch is closed at time t = 0 and held closed for a time
�t. During this time, power can be transferred from the LC circuit to the resistor and from
the resistor to the LC circuit. Since the system is in thermal equilibrium, the same power
must flow either way on average. We can therefore determine the power that is generated
in the resistor by calculating the power that is generated in the LC circuit and subsequent-
ly dissipated in the resistor.

The fluctuating energy �E in the LC circuit causes power to flow to the resistor at a rate

�P ~ ~ (13-30)

which is equal to the rate at which power is dissipated in the resistor,

�P ~ (13-31)

Here VN is the rms amplitude of voltage fluctuations across the resistor, which we call the
noise voltage. Combining Eqs. (13-30) and (13-31), we find the noise voltage to be

VN
2

�
R

kBT
�
�t

�E
�
�t
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Figure 13-24 The Johnson noise generated by a resistor can be determined by considering the
power fluctuations in this circuit, in which the switch is closed for a time interval �t.
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VN ~ �� (13-32)

This result says that the voltage fluctuations across the resistor become smaller as the
measurement time �t becomes longer. Physically, this comes about because the same av-
erage energy fluctuation is being spread out over a longer time interval, which reduces the
power fluctuation and hence the noise voltage.

The noise voltage can be expressed in terms of the detection bandwidth rather than the
measurement time, as was done for shot noise. Using Eq. (13-28) with a value K = 1/4
yields

VN = �4
kB
T
R
B
 (Johnson noise voltage) (13-33)

which is the widely used expression for thermally induced noise in a resistor. As with shot
noise, the Johnson noise increases with the square root of the detection bandwidth B, and
can be reduced by appropriate electronic filters.

It is sometimes useful to express the Johnson noise in terms of current fluctuations
rather than voltage fluctuations. Using iN2R = VN

2/R, this becomes

iN = �� (Johnson noise current) (13-34)

Comparing Eqs. (13-33) and (13-34), we see that increasing the resistance leads to in-
creasing noise voltage, but decreasing noise current. These results will play an important
role in characterizing the signal-to-noise properties of detectors, to be discussed in Chap-
ter 14.

PROBLEMS

13.1 A thermoelectric-based power meter has a response time of 20 s and sensitivity
(output voltage per unit incident power) of 90 mV/W. If the time response is re-
duced to 8 s by increasing the thermal conductance between the sensor element
and heat sink, what will be the new sensitivity?

13.2 Repeat Problem 13.1 assuming that the reduction in response time comes from re-
ducing the sensor element mass.

13.3 A laser beam is switched on at time t = 0, and is incident on a thermal power meter.
If the detector response time is 15 s, at what time will the reading come to within
2% of the “true” value?

13.4 Sodium metal has a work function of 2.28 eV. (a) At what wavelength of incident
light will electrons be ejected from the material? (b) If light of wavelength 450 nm
is incident on the sodium, determine the maximum kinetic energy of the ejected
electrons.

13.5 When Cs atoms are deposited on the surface of a GaAs photoelectric detector ele-
ment, it is found that electrons are ejected for incident wavelengths shorter than
910 nm. Determine the electron affinity. Take Eg = 1.425 eV for GaAs.

4kBTB
�

R

kBTR
�

�t
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13.6 A photodetector has a responsivity of 0.844 A/W at 1500 nm. (a) Determine the
quantum efficiency. (b) Determine the responsivity for incident wavelengths 1300
and 800 nm.

13.7 In Problem 13.6, determine the detector photocurrent if the incident light has
wavelength 1500 nm and power –33 dBm.

13.8 A vacuum photodiode operates at a voltage of 2.5 kV and has a response time of
270 ps. Determine the plate spacing, assuming that the time response is limited by
the transit time.

13.9 Assume that the total time response of a vacuum photodiode is given by the sum of
the transit time and the RC time constant. (a) Derive an expression for the plate
separation d that minimizes the total response time. Put your answer in terms of the
applied voltage V0, the plate area A, and the load resistor R. (b) Calculate this opti-
mum plate separation for parallel plates of diameter 2 cm, a voltage 2.5 kV, and a
load resistance 50 �. Repeat for a load resistance 1 k�. (c) Determine the opti-
mized total response time for the two values of R in part b.

13.10 A photomultipler with an S20 photocathode has a chain of eight dynodes that pro-
vide a gain of 2 × 106 at the operating voltage of 2 kV. Light of wavelength 700
nm and power 7 nW is incident on the photocathode. (a) For each electron incident
on one of the dynodes, determine the average number of electrons leaving that
dynode and moving on to the next one. (b) Determine the voltage difference be-
tween dynodes, and the kinetic energy that the electrons pick up in moving from
one dynode to the next. (c) Determine the anode current and the voltage across the
1 k� load resistor. (d) Repeat part c if the wavelength is shifted to 600 nm with the
same optical power.

13.11 A CdS photocell has a separation between electrodes of 300 �m, with electron
lifetime and mobility of 3 ms and 300 cm2/(Vs), respectively. (a) What voltage
must be applied between electrodes to generate a photoconductive gain of 500? (b)
Determine the photocurrent that results when 2 �W of 500 nm light is absorbed in
the photoconductor.

13.12 Consider the photocell of Problem 13.11, biased with battery and resistor as shown
in Fig. 13-17. The photocell resistance with no light incident is 50 k�, and the bat-
tery voltage is V0 = 9 V. (a) Determine the load resistance RL that will give a volt-
age of 1.2 V across the photocell. (b) Determine the steady-state “dark current” i0.
(c) Calculate the rms noise currents due to shot noise and Johnson noise for this
circuit, assuming a detector bandwidth of 50 Hz. (d) Determine the minimum light
power at 500 nm that can be detected, using the criterion that the signal current
must be at least equal to the noise current. Assume that the light is fully absorbed.

Problems 247
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We saw in the previous chapter that photoconductive detectors suffer from two principle
drawbacks: a poor time response, due to the long electron lifetime, and significant shot
noise from the high level of dark current. Both of these problems are remedied in the pho-
todiode detector, shown schematically in Fig. 14-1. In this device, light incident on the
p–n junction of a semiconductor creates electron–hole pairs, which are swept out of the
depletion region by the electric field there. Current flows in the external circuit only while
charges are moving through this E field region, so the time response of the detector can be
made quite fast. The p–n junction also provides a potential barrier for majority charge car-
riers, greatly reducing the amount of dark current and associated shot noise.

In this chapter, we discuss some important characteristics of photodiode detectors, in-
cluding their behavior as electrical circuit elements, their time response, and their signal-
to-noise properties.

14.1. BIASING THE PHOTODIODE

Although there are several types of circuits used to measure the photodiode signal current
(see Section 14-5), the way that the photodiode is biased falls into one of two fundamen-
tal categories. In the photovoltaic mode (Fig. 14-2a), a load resistor RL is directly connect-
ed across the photodiode, whereas in the photoconductive mode (Fig. 14-2b), the load re-
sistor is connected through a series bias voltage VB. In either case, the photocurrent
generates a voltage VR across the load resistor, which constitutes the detector output sig-
nal. The photoconductive mode we are discussing here should not be confused with the
photoconductive-type detectors discussed in the previous chapter. The distinction is the
presence or absence of a p–n junction in the device.

The current i in the circuit depends not only on the incident light intensity, but also on
the values of RL and VB. To evaluate this current, we add up the potential changes around
the circuit loop of Fig. 14-2b, and set the sum equal to zero (voltage loop law):

Vd + VB + VR = 0

We have adopted a sign convention for the diode voltage Vd and the resistor voltage VR

such that positive current flows into the positive side of each element. Of course, the actu-
al values of the current or voltages may be either positive or negative. Writing VR = iRL

and solving for i, we have

i = (Vd + VB) (load line) (14-1)
–1
�
R
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Equation (14-1) gives a relation between current i and diode voltage Vd that is imposed
by the external circuit. Another relation between i and Vd comes from the internal con-
straints of the diode itself. The i–V relation for a semiconductor diode was given earlier in
Eq. (10-21) and Fig. (10-14) for the case of no light absorption. When light is absorbed,
the electron–hole pairs that are created cause an additional negative current, termed a
photocurrent. The magnitude of the photocurrent is given by Eq. (13-7), which can be
written here as

i� = e�abs (photocurrent) (14-2)
Pin
�
h�
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Figure 14-1 In a photodiode detector, the motion of electrons and holes across the charge deple-
tion region causes a current in the external circuit. By convention, current i is defined as positive
when it enters the p side of the diode. The photocurrent produced is therefore negative.

Figure 14-2 (a) In the photovoltaic mode, a load resistor is directly connected across the photodi-
ode. (b) In the photoconductive mode, the load resistor in connected in series with a reverse-bias
voltage.
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where �abs is the fraction of incident photons that are absorbed to create electron–hole pairs.
This photocurrent adds to the diode current of Eq. (10-21) to give a total circuit current

i = i0�exp� � – 1� – i� (14-3)

According to Eqs. (14-2) and (14-3), the diode i–V curve is shifted downward (along
the –i axis) by an amount i�, which is proportional to the incident light intensity. A few
representative i–V curves for a photodiode are shown in Fig. 14-3, for equally spaced val-
ues of light intensity. For self-consistency, the diode current i and voltage Vd must satisfy
both Eq. (14-1) and the diode i–V relation simultaneously. The solution for i can easily be
obtained graphically, by plotting Eq. (14-1) on the same graph as the diode i–V curves.
This procedure, shown in Fig. 14-3, is known as a load-line analysis, and Eq. (14-1) is
known as the load line. A similar analysis was discussed in Section 11-1 in connection
with biasing an LED.

Since the photovoltaic mode is just a special case of the photoconductive mode, with
VB = 0, both circuits can be analyzed in the same fashion using Fig. 14-3. The intersection
of the load line and the diode i–V curve corresponds to the operating point of the circuit,
which gives the value of both i and Vd. For the photovoltaic mode, the load line passes
through the origin, so the operating point is always in the fourth quadrant, with positive
Vd and negative i. In the photoconductive mode, the intercept on the Vd axis is at Vd = –VB,
so the operating point can be either in the third or fourth quandrants. The current i is al-
ways negative, but Vd can be either positive or negative.

The photovoltaic and photoconductive modes each have advantages and disadvan-
tages, depending on the application. For low-level light detection, the photovoltaic mode
has higher ultimate sensitivity than the photoconductive mode. This is because under dark
conditions (no incident light), the photovoltaic operating point is at i = 0, whereas the
photoconductive mode is at i = –i0, the reverse saturation current. This minimum current

eVd
�
�kBT
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Figure 14-3 The operating point in a photodiode circuit is determined by the intersection between
the load line and the diode i–V curve. Increasing optical power Pin shifts the i–V curve downward by
an amount i� � Pin, moving the operating point down and to the right.
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i0 is termed the dark current. The shot noise from this dark current makes the photocon-
ductive mode inherently more noisy. On the other hand, the photoconductive mode has a
faster time response, and a linear response over a wider range of light intensities, as we
shall see in the following sections.

One important application utilizing the photovoltaic mode is the solar cell, which con-
verts optical power into electrical power. The electrical power supplied to the load resis-
tor is Pelec = i2RL, where i is determined by Eq. (14-3) with Vd = –iR. Under practical con-
ditions of solar illumination, i� � i0, and Eq. (14-3) can be approximated as

i � i0 exp� � – i� (solar cell current) (14-4)

with i� given by Eq. (14-2). The efficiency

�sc = = (solar cell efficiency) (14-5)

of converting optical power into electrical power can then be calculated by solving Eq.
(14-4) for i. Since this is an implicit equation for i, it must be solved numerically or
graphically.

An important consideration for the solar cell is the choice of load resistance that maxi-
mizes the conversion efficiency. Since the load line in Fig. 14-3 has a slope –1/RL, the op-
erating point moves close to i = 0 for large R and Vd = 0 for small R. The power |iVd| deliv-
ered to the resistor will, therefore, have a maximum at some value of R. This optimum value
of resistance can be determined graphically, or numerically as in the following example.

A silicon solar cell has an area of 4 cm2, reverse saturation current density 1.5 × 10–8

A/cm2, and diode ideality factor � = 1. Assume that light of intensity I = 1000 W/m2

and average wavelength 500 nm is incident on the cell, and that 80% of the light is ab-
sorbed. Determine the optimum load resistance and power conversion efficiency. Re-
peat the calculation for � = 2.

Solution: The power striking the cell is (1000 W/m2)(4 × 10–4 m2) = 0.4 W. The pho-
tocurrent is then

i� = e�abs = = 0.129 A

For room temperature (20°C = 293 K),

VT � = = 0.0253 V

is the “voltage equivalent of temperature.” Putting this in Eq. (14-4) gives (for � = 1)

i = (6 × 10–8) exp� � – 0.129
–iR

�
0.0253

(1.38 × 10–23)(293)
��

1.6 × 10–19

kBT
�

e

(0.4)(500 × 10–9)(1.6 × 10–19)(0.8)
����

(6.63 × 10–34)(3 × 108)

Pin�
�

hc

i2R
�
Pin

Pelec
�
Pin

–eiR
�
�kBT
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For a particular value of R, this equation is solved numerically for i, and the efficiency
�sc = i2R/Pin is calculated. By varying R, the graph shown in Fig. 14-4 is obtained. The
optimum efficiency of 8.94% is obtained for R = 2.5�.

If � = 2, Eq. (14-4) becomes

i = (6 × 10–8) exp� � – 0.129

and the optimum efficiency increases to 17.9% at R = 5�.

A more detailed model of solar cell efficiency would take into account the variation with
wavelength of the optical power from the sun and the fraction of this light that is absorbed
by the silicon. In practice, solar cells based on crystalline silicon can have efficiencies as
high as 24% in the laboratory, with ~ 15% being typical in commercial devices. Thin films
of amorphous silicon (atoms not ordered periodically) are inexpensive to manufacture but
have lower efficiencies, typically 13% in the laboratory and 5–7% in commercial devices.

14-2. OUTPUT SATURATION

In the case of the solar cell just discussed, the primary goal is to convert as much optical
power as possible into electrical power. When the photodiode is used as a light detector,
however, it is generally more important that the detector output be linear with the incident
light power. In this section, we examine the linearity of photodiode detector circuits using
the two types of biasing modes.

Photovoltaic Mode

Consider first the photovoltaic bias mode shown in Fig. 14-2a. When R is very large
(open-circuit condition), the load line is nearly horizontal, and the operating point is close
to the Vd axis where i � 0. In that case, Eq. (14-3) becomes

–iR
�
0.0506
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Figure 14-4 Variation of solar cell efficiency with load resistance for Example 14-1. Area of the cell
is 4 cm2. Optimum efficiency is higher and occurs at a higher load resistance when the diode ideality
factor (�) is 2 rather than 1.
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0 � i0�exp� � – 1� – i�

with i� given by Eq. (14-2). Solving for the diode voltage gives

Vd = ln �1 + � (14-6)

If the induced photocurrent is much greater than the dark current (i� � i0), this becomes

Vd � �VT ln � � (open circuit, i� � i0) (14-7)

where

VT � (voltage equivalent of temperature) (14-8)

The diode voltage, therefore, varies logarithmically with the incident power for i� � i0.
For i� 	 i0, however,

Vd � �VT = �VT (14-9)

Defining the quantity

Rsh = = (shunt resistance) (14-10)

the diode voltage can be written as

Vd � Rshi� = Rsh� � (open circuit, i� 	 i0) (14-11)

This result suggests that the photodiode can be modeled as an ideal current source con-
nected in parallel with a resistor Rsh, as depicted in Fig. 14-5. Since i = 0 for an open cir-
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�
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�
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�VT
�
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�

i0h�
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�
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�
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Figure 14-5 When i� 	 i0, the photodiode can be modeled as an ideal current source in parallel with
a shunt resistance Rsh.
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cuit, the diode voltage becomes Vd = i�Rsh, in agreement with Eq. (14-11). Since Rsh ap-
pears in parallel with the current source, it is termed a shunt resistance. Higher values of
Rsh are generally desirable, because the detector is then more sensitive to weak light sig-
nals (Vd large for small i�).

Values of shunt resistance vary widely, and are higher for wider bandgap materials, for
which i0 is smaller. Rsh is also higher at lower temperature (less thermal generation of
electron–hole pairs) and for smaller junction area (since i0 = J0A). For a typical room-tem-
perature silicon photodiode with 1 cm2 area, Rsh � 10 M�.

The response of the open-circuit photodiode to varying optical powers can be summa-
rized as follows. At low incident power levels the response is linear with power, whereas
at high power levels the response becomes logarithmic. The transition between these two
regimes corresponds to i� ~ i0, which is equivalent to i�Rsh ~ VT. This deviation from lin-
earity at high optical powers is referred to as saturation of the output signal, and is gener-
ally to be avoided.

To increase the range of optical powers over which the photodiode response is linear,
the load resistance RL can be made small. This makes the load line in Fig. 14-3 nearly ver-
tical, intersecting the diode curves close to the current axis (Vd � 0). Since the diode
curves are approximately evenly spaced for Vd 
 0, the operating point moves downward
along the –i axis in proportion to the optical power. The voltage across the resistor, VR =
iRL, is therefore linear with the optical power, as desired.

This conclusion can also be arrived at analytically. If Vd 	 VT, the approximation ex �
1 + x allows Eq. (14-3) to be written as

i � i0� � – i�

or

i � – i� (14-12)

Using Vd = –iRL for the photovoltaic mode (Fig. 14-2a) and solving for i gives

i � (14-13)

Since i� � Pin, we conclude that VR = iRL � Pin, as desired.
The equations above can be understood in terms of the equivalent circuit shown in Fig.

14-6. As before, the photodiode is represented as an ideal current source shunted by the
resistance Rsh. The load resistor RL is now connected in parallel with both of these. Defin-
ing the current ish through the shunt resistance to be positive in the downward direction,
we have by the junction rule

i + i� = ish

This is equivalent to Eq. (14-12), using ish = Vd/Rsh. It is left as an exercise to show that
Eq. (14-13) can  be derived from this equivalent circuit model. 

When RL 	 Rsh, Eq. (14-13) becomes i � –i�, and the diode voltage is

Vd = –iRL � i�RL

–i�
��
1 + RL/Rsh

Vd
�
Rsh

Vd
�
�VT
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Defining the output of the detector as Vout � Vd, we then have

Vout = Vd � e�absRL (Vd 	 VT, RL 	 Rsh) (14-14)

where Eq. (14-2) has been used.
This result shows that under the two specified conditions the detector voltage Vd is lin-

ear not only with the incident optical power but also with the load resistance. In practice,
it is easier to measure a larger voltage, so a larger RL is desirable. However, as RL is in-
creased, one of these two conditions will eventually break down, and Vd will no longer in-
crease with RL. One possibility is that RL 	 Rsh breaks down, while the condition Vd 	 VT

still holds. In the limit where RL � Rsh, Eq. (14-13) gives

Vd = –iRL � i�Rsh

which becomes independent of RL. This is the same result obtained in Eq. (14-11) for the
open-circuit condition RL � �. Although the detector output Vout is no longer linear with
RL in this case, it is still linear with Pin.

The other possibility as RL increases is that the condition Vd 	 VT breaks down first, in
which case the exact expression in Eq. (14-3) must be used. Under these conditions, the
output Vout is no longer linear with either RL or Pin. According to Eq. (14-14), this satura-
tion will occur at a certain value of the product PinRL. For higher RL, saturation occurs at a
lower Pin, and at higher Pin, saturation occurs at a lower RL. There is, therefore, a trade-off
between sensitivity (large output for small input) and dynamic range (range of inputs for
which response is linear). The saturation with incident power for different values of load
resistance is illustrated in Fig. 14-7.

Photoconductive Mode

Saturation behavior in the photoconductive mode can be understood by referring to the
load-line analysis of Fig. 14-3. The load line has a slope –1/RL, with an intercept on the
voltage axis of Vd = –VB. As the incident optical power increases, the operating point
moves downward and to the right along the load line, decreasing the magnitude of re-
verse-bias voltage and increasing the magnitude of the current. Both the voltage and cur-
rent change linearly with increasing optical power, until the operating point reaches the

Pin
�
h�
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Figure 14-6 Equivalent circuit for a photodiode biased with load resistor RL. This model is valid
when Vd 	 VT.
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current axis (Vd = 0). At that point, the detector circuit saturates, and the output is no
longer linear with the incident optical power.

In the linear regime, we can obtain a simple analytical expression for the detector sig-
nal as follows. It is clear from Fig. 14-3 that Vd < 0 in the linear regime. Eq. (14-3) can
then be written as

i = i0�exp� � – 1� – i�

Unless the operating point is close to saturation, it is a good approximation that |Vd| � VT.
The exponential term above can then be neglected, giving

i � –i0 – i� (14-15)

The detector output in the photoconductive mode is generally taken to be the voltage
VR across the load resistor. Since this will always be negative, we define the output as Vout

� –VR to give a positive number. Therefore,

Vout = –VR = –iRL � (i0 + i�)RL (14-16)

which can be written as

Vout � i0RL + e�absRL (Vout < VB) (14-17)

using Eq. (14-2).
The detector output is seen to have two components, one proportional to the incident

optical power, and the other independent of power. The component that varies with Pin is
identical to the expression obtained in Eq. (14-14) for the photovoltaic mode. In both
cases, the output voltage arises from the photocurrent i� flowing through load resistor RL.
The detector output can be expressed more compactly by defining the responsivity of the
detector as

R � = (14-18)
e�abs
�

h�

i�
�
Pin

Pin
�
h�

–|Vd|
�
�VT
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Figure 14-7 Diode voltage versus incident optical power for the photovoltaic mode. Smaller load
resistance RL gives a larger dynamic range but lower sensitivity. For RL � �, the effective resistance
reaches the upper limit of Rsh.
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which is similar to the definition given in Eq. (13-8) for emissive-type photodetectors.
The output in the photoconductive mode is then

Vout = (i0 + RPin)RL (14-19)

A similar expression applies to the photovoltaic mode, but without the i0 term.
According to Eq. (14-17), the change in output voltage is linear with both RL and Pin.

However, this relation will only hold as long as Vd < 0, which requires that Vout < VB. If
Pin is increased above the point where Vout � VB, the output saturates, and becomes ap-
proximately independent of Pin. This behavior is illustrated in Fig. 14-8 for two values
of RL. Larger RL makes the detector more sensitive, since there is a larger output for a
small value of Pin. However, this reduces the range of Pin over which the response is
linear. The result is a sensitivity-dynamic range trade-off similar to that of the photo-
voltaic mode.

Although the photoconductive and photovoltaic modes have the similarities mentioned
above, there are some significant differences. One difference is that saturation occurs at
Vout � VB in the photoconductive mode, but at only Vout � VT in the photovoltaic mode.
Since VT � 0.025 V at room temperature, whereas VB is typically several volts, the detec-
tor output in the photoconductive mode can be approximately two orders of magnitude
larger than in the photovoltaic mode. This means that for the same detector sensitivity
(same RL), the dynamic range is approximately two orders of magnitude larger in the pho-
toconductive mode than in the photovoltaic mode. This improved dynamic range is an im-
portant advantage of the photoconductive mode.

Another difference is that the photoconductive mode has a dark current, whereas the
photovoltaic mode does not. The presence of dark current has two consequences. First, it
contributes a constant background level that must be subtracted from the detector output
in order to obtain the “true” signal (the signal arising from the incident light). Second, it
contributes shot noise to the detector output, as discussed in Section 13-3. If the optical
power is sufficiently large so that i� � i0, then both of these effects become unimportant.
In this large-signal regime, the photoconductive mode is the best choice for the detector
circuit. However, if i� 	 i0, then shot noise from the dark current can become a dominant
source of detector noise. In this small-signal regime, the photovoltaic mode is a better
choice, in order to obtain the best possible signal-to-noise ratio. The signal-to-noise prop-
erties of detector circuits are further discussed in Section 14-5.

258 Chapter 14 Photodiode Detectors

Figure 14-8 For a photodiode biased in the photoconductive mode, the detector response is linear
for output voltages up to the reverse-bias voltage VB. Larger load resistance RL gives higher sensitiv-
ity but smaller dynamic range.
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It should be emphasized that the dark current in a reverse-biased photodiode detector is
much smaller and more well-defined than that in a photoconductive-type detector (one
without a p–n junction). For example, a 1 cm2 silicon photodiode has a typical dark cur-
rent i0 � 1.5 × 10–8 A, independent of reverse-bias voltage. In contrast, a CdS photocell
has a background current that depends on the applied voltage, a typical value being ~ 10–5

A for a similar cross-sectional area and applied bias of 10 V.

14-3. RESPONSE TIME

An important characteristic of any photodetector is its response time—the time it takes
for the detector output to change in response to changes in the input light intensity. It was
noted in Chapter 13 that the response time of photoconductive-type detectors is quite poor
because of the electron replenishment process, which keeps the induced photocurrent
flowing for the duration of the electron’s lifetime. In photodiode detectors, this replenish-
ment process is suppressed by the p–n junction, which presents a barrier to the movement
of majority carriers. The response time is thereby significantly improved, since the time
taken for charge carriers to move through the high-field region of the junction (the carrier
transit time) can be much shorter than the carrier lifetime. This improved time response is
countered in part, however, by the capacitance of the p–n junction and associated RC time
constant. In this section, we consider the implications and relative importance of transit
time and capacitance in determining the photodiode response time.

Junction Capacitance

The capacitance of a p–n junction can be evaluated by determining how the charge on ei-
ther side of the junction changes in response to a changing diode voltage. We will assume
for simplicity a highly doped p region and weakly doped n region, so NA � ND as in Fig.
10-11. In this case, most of the charge depletion region is on the n side (d � dn � dp), and
the junction width d is given by Eq. (10-20). When an external voltage V is applied to the
diode, the internal potential V0 is replaced by V0 – V, giving

d = �	 (p–n junction width) (14-20)

where V is positive for forward bias and negative for reverse bias. A change �V in exter-
nal voltage causes a change in junction width of

�d = � ��V (14-21)

as can be verified by taking the differential of both sides of Eq. (14-20). Most of this
change in width occurs on the n side of the junction, since dn � dp. Writing the charge of
the uncovered ion cores in the n region as Q = eND(Adn), the change in this charge is

�Q = eND(A�d) (14-22)

There is an equal but opposite change in the charge on the p side of the junction. Combin-
ing Eqs. (14-21) and (14-22), the junction capacitance is then

–2

�
eND

1
�
2d

2
(V0 – V)
��

eND
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C � 
 
 = (14-23)

which is the familiar expression for the capacitance of a parallel-plate capacitor of plate
area A and spacing d, separated by a medium with dielectric constant 
. Using Eq. (14-20)
for d gives the result

C = A�	 (p–n junction capacitance) (14-24)

For reverse-bias voltage V = –VB, this becomes

C = A�	 (14-25)

It is seen that the capacitance of the p–n junction is not constant, but rather decreases with
increasing VB. This is a consequence of the junction width d increasing with VB.

The junction capacitance can be considered to be in parallel with the diodes in Fig. 14-
2, which leads to a first-order RC circuit time response. If the incident power is suddenly
switched from zero to some constant value at t = 0, the output voltage increases exponen-
tially in time according to

Vout(t) = Vmax(1 – e–t/RC) (14-26)

which is shown graphically in Fig. 14-9. The product RC is known as the time constant of
the circuit, and has units of seconds with R in ohms and C in farads. The time constant
measures how quickly the output responds to a changing input. For example, at time t =
RC the output has risen to 63.2% of the final steady-state value, and at time t = 2RC it has
risen to 86.5% of this value.

eND

�
2(V0 + VB)

eND

�
2(V0 – V)


A
�
d

�Q
�
�V
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Figure 14-9 In an exponential rise, the time constant RC gives the time taken for the output to
reach 63.2% of the final steady-state value. The rise time tr is the time taken for the output to go from
10% to 90% of the final value.
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An alternative measure of the time response is the rise time, defined as the time taken
to rise from 10% to 90% of the final value. For the RC circuit, it is straightforward to
show (see Problem 14.6) that

tr = (ln 9)RC = 2.2 RC (rise time for RC circuit) (14-27)

The rise time is a more general definition for time response than the time constant, be-
cause it applies equally well to an exponential or nonexponential time dependence. When
the time response is nonexponential, Eq. (14-27) can be interpreted as defining an effec-
tive time constant in terms of the rise time.

The rise time or RC time constant characterizes the detector time response to a step-
function intensity modulation, in which the incident light intensity is suddenly changed
from one value to another. If instead the incident light intensity is sinusoidally modulated,
then the output will be sinusoidally modulated as well. These two different types of mod-
ulation were discussed in connection with the LED time response (see Fig. 11-3). The
output amplitude is approximately independent of frequency up to a limiting upper value,
the bandwidth, above which the amplitude becomes smaller. Denoting the 3 dB electrical
bandwidth as B, we have

B = (14-28)

where Eq. (11-13) has been used with � = RC and B = fe. The bandwidth can be written in
terms of the rise time as

B = = (14-29)

using Eq. (14-27). This last expression can be taken as defining the 3 dB bandwidth in the
case of nonexponential time response.

The above results show that a smaller capacitance leads to a faster time response and
larger bandwidth, which is usually desirable for a photodetector. According to Eq.
(14-25), there are several parameters that can be adjusted to reduce the capacitance.
For example, the reverse-bias voltage VB can be increased. This makes the photocon-
ductive mode (VB > 0) inherently faster than the photovoltaic mode (VB = 0). Indeed,
this is another characteristic advantage of the photoconductive mode, in addition to the
increased dynamic range that was discussed earlier. There is a practical limit to VB,
however, due to electrical breakdown in the junction. Typical reverse-bias voltages are
5–10 V.

Another way to reduce the capacitance is to decrease the junction area A. Smaller de-
tector areas, therefore, give a faster time response. The downside of this approach is that it
may not be possible to direct all the available light onto the semiconductor material if A is
too small. The ability to focus light onto a small detector area is governed by the bright-
ness of the light source, as discussed in Appendix A (see also Chapter 15). High-bright-
ness sources such as a laser can be focused to a very small area (~ �2), which allows a
small detector area to be used without loss of efficiency. Low-brightness sources such as
an LED or incandenscent filament, however, can be imaged only onto a much larger area.
If a photodiode with small A is used to detect light of low brightness, much of the light to
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be measured will not strike the detector’s active area, making the detector less sensitive.
This results in a sensitivity–speed trade-off, which must be optimized for best perfor-
mance in a particular application.

The other parameter in Eq. (14-25) that can be adjusted to reduce the capacitance is
ND, the density of donors on the weakly doped n side of the junction. The capacitance is
reduced when ND is made smaller, because the junction width d then increases. This is
one reason that in most photodiodes, one side of the junction is very weakly doped. There
are other reasons for this also, as we will soon see.

Reducing the capacitance is one way to reduce the RC time constant, but it is not the
only way. Reducing the load resistance RL has the same effect, although this decreases the
detector sensitivity, as seen in Eq. (14-19) and Fig. 14-8. Large RL is best for high sensi-
tivity, and small RL is best for high speed, resulting in another sensitivity–speed trade-off.
The dynamic range is also better for small RL, as previously discussed. These various
trade-offs are summarized in Fig. 14-10.

Carrier Transit Time

Single p–n Junction

When the RC time constant is made sufficiently small, the photodiode response time will
be limited by the motion of charge carriers across the device. The fundamental principle
needed for this analysis is given by Eq. (13-9), developed in connection with the vacuum
photodiode. According to this result, which applies quite generally to any photon-type de-
tector, the current pulse from a single photoexcited electron lasts as long as the electron is
moving through a region with high electric field. A similar relation applies to photoexcit-
ed holes. Since the E field is high only in the depletion region (see Fig. 10-11), the current
pulse will last a time

ttr = (14-30)

known as the transit time, where d is the width of the depletion region and v is the veloci-
ty of the charge carrier. At low to moderate electric field strength, the electron velocity is
ve = �eE, where �e is the electron mobility, and the hole velocity is vh = �hE. The time re-

d
�
v
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Figure 14-10 Summary of performance trade-offs in choosing load resistor RL and detector area A.
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sponse will be limited by the charge carrier with the smallest mobility, which is usually a
hole. In this case, the transit time becomes

ttr = (transit time, low field) (14-31)

If the field is sufficiently high (above a value Esat ~ 2 × 106 V/m for holes in Si), then the
carrier velocity is no longer proportional to E, saturating at the upper limit vs (~ 105 m/s
for holes in Si). Under high-field conditions, the transit time is

ttr = (transit time, high field) (14-32)

It would appear from Eq. (14-31) that a higher E field gives a shorter transit time.
However, the width of the depletion region d increases with increasing E, and this tends
to increase the transit time. To see how these two effects offset each other, we express
both E and d in terms of the junction potential V0 + VB. Taking E as approximately con-
stant across the depletion region,

E �

the transit time then becomes 

ttr = = (transit time, low field) (14-33)

where Eq. (14-20) has been used with V = –VB.
This result shows that the transit time with low field is actually independent of the ap-

plied reverse bias. Apart from the choice of semiconductor material, which determines 

and �h, it depends only on the donor concentration ND. Higher ND would appear to be best
for a fast time response (small ttr). However, we found in Eq. (14-25) that the junction ca-
pacitance increases with higher ND, resulting in a slower response. The time response
will, therefore, be optimized when the contributions of capacitance and transit time to the
response time are approximately equal. The value of ND giving this optimum response de-
pends on several other parameters, as shown in the following example.

A p+–n silicon photodiode has an junction area of 1 mm2, and a reverse bias of 10 V is
applied through a 10 k� load resistor. Determine the doping level in the lightly doped
n region that minimizes the response time, and determine the junction width for this
doping level. Take the hole mobility in Si to be 5 × 10–2 m2/Vs.

Solution: The optimum time response will occur when the capacitance rise time 2.2
RLC is approximately equal to transit time ttr. Using Eqs. (14-25) and (14-33),
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where 
0 = 8.85 × 10–12 F/m is the permitivity of free space, 
r = 11.9 is the relative di-
electric constant for silicon, and V0 + VB � VB = 10 V. Solving this for ND gives

ND = � �
1/3

= � �
1/3

ND = 1.18 × 1018 m–3 = 1.18 × 1012 cm–3

This is a very light doping level, only two orders of magnitude above the “intrinsic”
carrier concentration in undoped silicon of ~ 1.4 × 1010 cm–3. The junction width is
then obtained from Eq. (14-20) as

d � �		 = 1.06 × 10–4 m = 0.106 mm

The electric field in the depletion region is E � 10 V/10–4 m = 105 V/m. This is less
than the saturating field value Esat ~ 2 × 106 V/m, which justifies using Eq. (14-33) for
the transit time.

14-4. TYPES OF PHOTODIODES

PIN Photodiode

The analysis of the transit time response in the previous section assumed that the photoex-
cited electron–hole pairs are created in the depletion region, where there is a strong E
field. This is not always the case, however, as illustrated in Fig. 14-11a. Some light that is
incident on the highly doped p+ side passes completely through the depletion region, and
is absorbed in the n-type region on the other side. In this latter region, the E field is very
small, because the high free-carrier concentration makes the electrical conductivity high
(and E is small inside a good conductor). According to Eq. (13-9), there is little contribu-
tion to the photocurrent when E is small. Therefore, the photoexcited charge carriers cre-
ated outside the depletion region do not contribute significantly to the photocurrent, as
long as they remain outside the high-field depletion region.

The charge carriers created outside the depletion region do not remain motionless,
however. Like any particles subject to random thermal motion, they spread out from their
initial position in a process known as diffusion. Diffusion proceeds much more slowly
than drift, which is the term given to the directed motion induced by an electric field. Af-
ter spreading out by diffusion for a certain time, some holes initially generated in the n-
type region will enter the depletion region, where they are quickly swept across by the
high E field there. This results in an additional component to the photocurrent, delayed by
the diffusion time. Holes generated at different distances from the edge of the depletion
region have different diffusion times, which results in a diffusion “tail” in the photocur-
rent response to a square-wave light pulse. This type of signal distortion, depicted in Fig.
14-11b, is generally undesirable.

The solution to the problem of diffusing charge carriers is to simply eliminate the dif-
fusion region. This can be accomplished by decreasing the donor concentration in the n

2(8.85 × 10–12)(11.9)(10)
���
(1.6 × 10–19)(1.18 × 1018)
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region until the depletion region occupies nearly the entire space between the electrodes.
As shown in Fig. 14-12, the E field then extends nearly all the way to the far electrode, so
charge carriers generated anywhere in the material will be subject to drift rather than dif-
fusion. At the far end is a thin, highly doped n region, needed to make good ohmic contact
with the electrode. Since the middle region is very lightly doped (nearly intrinsic), it is la-
belled I, and the device is termed a PIN photodiode.

The PIN photodiode is the most commonly used photon detector today. It not only
eliminates carrier diffusion, but also has the advantage that the depletion width d is fixed
by the geometry of the device. The ability to adjust d by design, rather than applied volt-
age, allows the photodiode’s performance to be optimized for specific applications. For
example, making d larger increases the path length for absorption of light, which increas-
es the efficiency �abs with which light is absorbed. This is especially important for wave-
lengths near the semiconductor’s bandgap, where �d 	 1. In this regime, Eq. (13-15)
gives �abs � (1 – R)�d.

On the other hand, a larger d degrades the time response by increasing the transit time.
In Eqs. (14-31) and (14-32), d should now be considered a constant, independent of ap-
plied voltage. The transit time is therefore minimized by increasing E to the saturating
value Es.
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Figure 14-11 (a) In a simple p–n junction photodiode, charge carriers may be created in a high-field
drift region or a low-field diffusion region. (b) Charge carriers created in the diffusion region give rise
to a distortion in the photocurrent waveform.
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A silicon PIN photodiode has an intrinsic region of thickness 0.1 mm. Determine the
minimum rise time for the detector, its corresponding bandwidth, and the required re-
verse-bias voltage. Repeat for an intrinsic region of thickness of 10 �m.

Solution: The minimum transit time for holes in silicon is

ttr � = = 10–9 s = 1 ns

Taking this as the rise time, the corresponding bandwidth is

B = = = 350 MHz

The required E field is E = Es � 2 × 106 V/m, so

�V = Ed = (2 × 106 V/m)(10–4 m) = 200 V

0.35
�
10–9 s

0.35
�

tr

10–4 m
�
105 m/s

d
�
vs
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Figure 14-12 (a) In a PIN photodiode, charge carriers are mostly created in the high-field drift re-
gion, which extends almost to the far electrode. The lightly n-doped “intrinsic” region has a nearly
constant E field, which sweeps charge carriers through the device without diffusion.

EXAMPLE 14-3
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which is an inconveniently high voltage. Repeating the calculation for d = 10 �m gives
ttr = 0.1 ns, B = 3.5 GHz, and �V = 20 V. This is a much improved time response, and
occurs with a more convenient bias voltage.

The above example shows that in terms of transit time, a thinner intrinsic region is
preferable. However, if d is made too small, capacitive effects become important. There
is, therefore, an optimum value of d that minimizes the overall response time (see Prob-
lem 14.8). Another problem with small d is illustrated by the following example.

For the silicon PIN photodiodes of Example 14-3, determine the absorption efficiency
for 860 nm light. At this wavelength, the absorption coefficient in silicon is 335 cm–1

and the reflectivity (from air) is 32%.

Solution: For d = 0.1 mm,

�d = (335 cm–1)(10–2 cm) = 3.35

Eq. (13-15) then gives

�abs = (1 – 0.32)(1 – e–3.35) = 0.656

Note that this neglects light reflected back from the far end of the Si material, so it
somewhat underestimates �abs. Repeating the calculation for d = 10 �m gives �d =
0.335, so

�abs = (1 – 0.32)(1 – e–0.335) = 0.194

The thinner intrinsic region is seen to be less efficient at absorbing the incident light.
There is, therefore, a trade-off between detector speed and sensitivity. A PIN photodi-
ode can be optimized for either of these, depending on the application.

Avalanche Photodiode

If a small load resistance RL is used to increase the frequency bandwidth of a PIN photo-
diode, the signal voltage may be quite small, requiring amplification. This can be accom-
plished with electronic amplifiers, but these introduce their own sources of noise, and it is
sometimes desirable to increase the signal generated by the detector, before amplification.
One way to do this is through the avalanche multiplication process, depicted in Fig. 14-
13a. This is the solid-state analog of the electron multiplication that takes place in a pho-
tomultiplier tube. An electron is accelerated by the E field in the depletion region of a re-
verse-biased p–n junction, and gains kinetic energy in proportion to the distance traveled.
When the electron’s kinetic energy is high enough, it can collide with an atom in the
semiconductor and create an additional electron–hole pair, a process termed impact ion-
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ization. There are now two electrons, and as each one of these accelerates in the E field, it
can create yet another electron–hole pair by the same mechanism. There are now a total of
four electrons, each of which can create another one to give eight, and so on. The result is
avalanche multiplication, in which the number of charge carriers increases exponentially
with distance traveled.

The creation of electron–hole pairs by impact ionization can be understood in terms of
the energy band picture of Fig. 14-13b. After moving a distance �x in a direction opposite
to the E field, the electron loses an amount of potential energy of magnitude eE�x. If no
energy is lost to other processes, the electron then gains this same amount of kinetic ener-
gy K. When K > Eg, it becomes energetically possible for a collisional-energy transfer
process to take place, in which the electron kinetic energy decreases by �K = –Eg, while
at the same time the potential energy of a valence electron is increased by this same
amount. Increasing the potential energy of a valence electron by an amount Eg corre-
sponds, in the band picture, to taking an electron out of the valence band and placing it in
the conduction band, that is, creation of an electron–hole pair.

The energy needed to create an electron–hole pair is usually much less than the poten-
tial energy change of an electron as it moves across a reverse-biased p–n junction. For ex-
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Figure 14-13 (a) An electron accelerated in a strong E field creates an additional electron–hole pair
by impact ionization. Both the new electron and the original one then create additional electron–hole
pairs, resulting in avalanche multiplication. (b) Impact ionization can occur when an electron in the
CB picks up kinetic energy greater than the band-gap energy.

{
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ample, a typical band-gap energy is Eg ~ 1–2 eV, whereas a 10 V reverse bias corresponds
to a potential energy change of 10 eV. Since the electron acquires sufficient energy to cre-
ate several electron–hole pairs as it moves through this potential difference, it might seem
that avalanche multiplication should occur readily in most reverse-biased photodiodes.
However, the avalanche phenomenon actually plays a minor role in conventional PIN
photodiodes. The explanation for this is that the electron undergoes nonionizing collisions
as well as ionizing collisions as it moves through the electric field. For example, the elec-
tron can scatter off the thermally induced vibrations in the material (lattice phonons), giv-
ing up kinetic energy to heat. At moderate electric field values, these nonionizing colli-
sions prevent the electron’s kinetic energy from reaching the threshold value K = Eg.
When the electric field is sufficiently high, however, the electron can pick up kinetic en-
ergy K > Eg before a nonionizing collision occurs, and the avalanche mechanism becomes
more efficient.

The electric field at which the avalanche mechanism becomes important depends on
the material, being higher in wider-band-gap materials that have a higher threshold kinet-
ic energy. For silicon, an electric field E ~ 5 × 107 V/m over a path length of ~ 2 �m is
needed for efficient avalanche multiplication. This corresponds to a potential difference
�V ~ 100 V, much higher than the reverse bias of a typical PIN photodiode.

A photodiode utilizing avalanche multiplication to achieve gain is termed an
avalanche photodiode, or APD. The structure of an APD, depicted in Fig. 14-14, differs
from that of the PIN photodiode (Fig. 14-12) in two ways. First, light enters through a
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Figure 14-14 In an avalanche photodiode (APD), electrons photoexcited in a nearly intrinsic region
are swept out by a small electric field there, and injected into a high-field region between highly
doped n and p layers. Avalanche multiplication occurs primarily in the high-field region.
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highly doped n-type layer rather than a p-type layer. Second, an additional p-type layer
has been added between the highly doped n layer and the nearly intrinsic layer. The left-
most n and p layers are highly (and nearly equally) doped, so the junction width be-
tween them is small (d ~ 2 �m), and the high electric field is mostly confined to this re-
gion. In the adjacent intrinsic region (actually lightly doped p-type), there is a much
smaller and nearly uniform E field, which extends out to the highly doped p+ region on
the right.

The APD operates in the following way. Light passes through the thin n+ and p layers
and is absorbed in the much thicker intrinsic region. Electrons and holes created by pho-
toabsorption then drift in opposite directions under the influence of the E field, electrons
to the left and holes to the right. The electrons eventually make it to the high-field region,
where they undergo avalanche multiplication. Holes do not initiate the avalanche in this
scheme, but those created by impact ionization can contribute to its development. In sili-
con, however, holes are much less efficient at causing ionization than are electrons, and
therefore make only a minor contribution to the amplification.

In principle, an APD could be constructed with a p+–n–i–n+ structure, instead of the
n+–p–i–p+ shown in Fig. 14-14. However, in this case it would be the holes that are inject-
ed into the high-field region, and in silicon this would result in weak amplification. For
this reason the n+–p–i–p+ structure is always used for silicon APD’s. This asymmetry be-
tween electron and hole ionization probabilities also has implications for the signal-to-
noise properties of the APD. Since avalanche multiplication is a statistical process, there
is less statistical variation in output current (i.e., less noise) when only one type of charge
carrier contributes to the avalanche. For this reason, germanium APDs, in which the elec-
trons and holes have nearly equal ionization probabilities, are inherently more noisy than
silicon APDs.

The effect of avalanche multiplication can be characterized by the multiplication factor
M, defined as the ratio of photocurrent with amplification to photocurrent without ampli-
fication. The detector output voltage is then still given by Eq. (14-19), with Eq. (14-18)
replaced by

R � = (APD responsivity) (14-34)

M can be as high as 100 in a silicon APD, but is more typically ~ 10 in a germanium
APD.

The operation of the APD depends on the proper electric field profile within the de-
vice, and this in turn requires the proper bias voltage. The relation between E(x) and bias
voltage (magnitudes only) is

� E dx = VB

where we have neglected the built-in potential V0 compared with VB. As the bias voltage
increases, the area under the E(x) curve increases proportionately, as illustrated in Fig. 14-
15a. At some critical voltage, the depletion region “reaches through” to the highly doped
p+ region, with the electric field extending uniformly throughout the intrinsic region.
Electrons generated anywhere in the intrinsic region are then efficiently swept out and in-
jected into the high-field region for amplification. A device biased in this way is termed a
reach-through APD.

Me�abs
�

h�

i�
�
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Fig. 14-15b shows a typical variation of responsivity with applied bias voltage for a
reach-through APD. Below the threshold value (usually ~ 100–200 V), R increases with
VB as the E field starts to extend into the intrinsic region. There is a linear operating re-
gion above this, in which all photogenerated electrons are collected for amplification. In
this region, the avalanche is well behaved, and the detector output is proportional to the
incident light power. At still higher bias voltage, the avalanche process becomes uncon-
trolled, and avalanche breakdown ensues. In this situation, the detector output rises to a
saturation value which is independent of the number of photons absorbed. This is the
Geiger mode regime, analogous in operation to the Geiger counter used to detect nuclear
radiation. The APD Geiger mode is useful when the purpose is to determine whether any
photons are present, rather than to determine their number. It has applications in photon
counting, in which the arrival time of individual photons is measured.

The responsivity of an APD generally decreases with increasing temperature, due to
the increasing probability of electrons making nonionizing collisions with phonons.
These collisions take away some of the kinetic energy gained by an electron that might
otherwise be available for creating additional electron–hole pairs. In order to stabilize the
gain of APD detectors in a changing ambient temperature, then, temperature-control cir-
cuitry is needed. Despite these complications, and the need for high-voltage bias, the im-
proved responsivity of the APD makes it an attractive choice for applications limited by a
weak light signal, such as in fiber optic communications.

14-4. Types of Photodiodes 271

Figure 14-15 (a) The area under E(x) increases with VB until the field “reaches through” the intrinsic
region. (b) Photocurrent i� versus reverse-bias voltage for three values of incident light power Pin, as-
suming R = 10 mA/mW. In the linear regime (after reach-through), i� = R Pin, but in the Geiger regime
i� becomes independent of Pin.
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Schottky Photodiode

The PIN and avalanche photodiodes discussed in the previous two sections are both p–n-
junction-based devices. In contrast, the Schottky photodiode utilizes a metal–semiconduc-
tor junction to separate and collect the photogenerated charge carriers. Fig. 14-16 illus-
trates the operation of a Schottky photodiode for the metal–n–n+ configuration, the most
common type. Photons pass through a partially transparent metallic layer (often gold),
and are absorbed in the n-type semiconductor. Charge carriers generated within the deple-
tion region are efficiently swept out by the built-in electric field (see Fig. 10-17), giving
rise to a photocurrent i�. Just as for a PIN photodiode, the diffusion tail in the time re-
sponse can be minimized by adjusting the donor concentration ND in the n-type region so
that the depletion region extends all the way through to the n+ layer. Apart from the lack
of a p-type layer, the structure and operation of a Schottky photodiode is similar to that of
a PIN photodiode.

Schottky photodiodes have some advantages over PIN photodiodes for certain applica-
tions. One advantage is a practical issue in manufacturing the devices. In connecting the
Schottky photodiode with wires in the external circuit, only one metal–semiconductor
connection needs to be made (metal–n+), and ohmic contacts are readily formed for such a
junction. Another advantage of the Schottky photodiode is an improved time response.
Since it lacks the p-type layer of a PIN photodiode, there is no remnant diffusion tail aris-
ing from charge carriers generated in the p-type layer. This becomes especially important
at short wavelengths, at which the large absorption coefficient would result in a signifi-
cant fraction of the light being absorbed in the thin p-type layer of a PIN photodiode.
Schottky photodiodes with bandwidths in the range 25–60 GHz are commercially avail-
able.

A further advantage of the Schottky photodiode is that metal junctions can be made
with a wide variety of semiconductors, including those with wide band gap Eg, such as
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Figure 14-16 In a Schottky photodiode, light is absorbed in the depletion region of an n-type semi-
conductor after passing through a semitransparent metallic film.
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SiC, GaN, and AlGaN. These wide-band-gap detectors have found use as “solar blind”
sensors, which respond only to wavelengths in the UV region. They are inherently insen-
sitive to sunlight in the visible and infrared regions where h� < Eg, and have applications
such as flame sensors.

Schottky photodiodes do have some disadvantages, however. They tend to be less effi-
cient than PIN photodiodes at longer wavelengths, due to reflection and absorption of
light in the metal layer. To reduce light reflection, an antireflection coating is often ap-
plied, but this complicates the manufacture of such devices. Schottky photodiodes are pri-
marily used for detecting blue or UV wavelengths, or in high-speed applications, where
some loss in efficiency can be tolerated.

14-5. SIGNAL-TO-NOISE RATIO

The detectability of a small signal depends on how large it is compared to the noise. This
is usually expressed by the signal-to-noise ratio (SNR), defined as the ratio of electrical
signal power to electrical noise power. Taking the electrical signal power in the circuits of
Fig. 14-2 as that due to the photocurrent i�, we have

Psig = i�
2RL = � �

2
RL (electrical signal power) (14-35)

where Eq. (14-2) has been used. Note that this expression applies only when the detector
circuit is well below saturation. Also, in the photoconductive mode the “signal” current is
defined as the measured current minus the dark current. The two contributions to the
noise were discussed in Section 13-3. For shot noise, Eq. (13-29) gives the electrical noise
power as

Pshot = (iN)2 RL = 2e(i� + i0)BRL (shot noise electrical power) (14-36)

where the total current i� consists of both signal current i� and dark current i0. For thermal
noise, Eq. (13-33) gives the electrical noise power as

Ptherm = = 4kBTB (thermal noise electrical power) (14-37)

Note that the thermal noise power is independent of RL, whereas the shot noise power in-
creases linearly with RL. Therefore, the dominant source of noise tends to be shot noise
for large RL, and thermal noise for small RL.

Using the above equations, the signal-to-noise ratio can be written as

SNR = = (14-38)

where the signal current i� is related to the incident optical power Pin by i� = (Pin/h�) �abse.
Since the SNR is a ratio of signal and noise powers, and the power is proportional to the
square of voltage or current, we can write

SNR = � �
2

= � �
2

(14-39)
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where Vsig = i�RL. It is therefore the square root of the SNR that gives the ratio of signal
amplitude to rms noise amplitude.

It is useful to consider the following limiting cases, in which one source of noise dom-
inates.

1. Large signal. When i� � i0, and i�RL � VT (recall VT � kBT/e is the voltage equiv-
alent of temperature), we have

SNR � =

The noise here is dominated by the shot noise from the signal current, and the SNR is in-
dependent of load resistance. Since 1/B corresponds to the measurement time, this result
says that the SNR is roughly the number of charge carriers produced during this measure-
ment time. Since i� � Pin, the SNR increases linearly with the incident optical power.

2. Small signal, large RL. When i� 	 i0 and i0RL � VT,

SNR � =

In this regime, the SNR is limited by shot noise from the dark current i0, and is again in-
dependent of load resistance. Note that SNR here increases with the square of the incident
optical power.

3. Small signal, small RL. When i� 	 i0 and i0RL 	 VT,

SNR �

In this regime, the SNR is limited by thermal noise from the load resistor RL. This situation
is often encountered in practice, and leads to a trade-off of SNR with detector response
time. Increasing RL improves the SNR, but degrades the response time due to RC time con-
stant effects. Decreasing RL improves the response time, but at a sacrifice in SNR ratio.

When the signal becomes equal to the noise (SNR = 1), it is barely discernible, and this
can be considered to be the criterion for signal detectability. The optical power that gives
SNR = 1 is known as the noise equivalent power, or NEP, and is a measure of the detector’s
sensitivity. In the limiting case #2 above, where shot noise from the dark current dominates,
the NEP is found by setting SNR = 1 and using Eq. (14-2) with Pin = NEP. This gives

1 = 

or

NEP = 
2�ei�0B� (14-40)

The MKS unit for NEP is watts, since it is an optical power. An alternative unit com-
monly used for optical power is the dBm, defined as the power in dB relative to 1 mW.
Thus, for an optical power P measured in mW,
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optical power in dBm = 10 log10 � � (14-41)

For example, an optical power of –20 dBm is 0.01 mW, whereas an optical power of +20
dBm is 100 mW.

It is useful to separate the NEP for a detector into those factors that are fundamental
and those that can be adjusted by the device geometry or detector circuit. The dark current
i0, for example, is not fundamental, since it is proportional to the area of the p–n junction.
The fundamental parameter is the dark current density J0, which depends on the material
used and the temperature, but not on the device geometry. Writing i0 = J0A, we obtain

NEP = �	 (14-42)

This shows that the minimum power that can be detected is proportional to 
A�B�. The de-
tector can be made more sensitive by decreasing the junction area A, or by decreasing the
detection circuit bandwidth. To obtain a parameter that is independent of B and A, the
NEP can be divided by 
A�B�. It is conventional to define the reciprical of this as a figure
of merit, since it is then a larger number for a better (more sensitive) detector. Designat-
ing this figure of merit as D* (pronounced “dee star”), we have

D* � (14-43)

which becomes

D* = �
�

h
a

�
bs
���

2

e

J	0

�	
(14-44)

= �

2�

R

eJ�0�
�

where Eq. (14-18) was used in the last step.
The D* parameter provides a good way of comparing the ultimate sensitivity limits for

different types of detectors. According to Eq. (14-44), D* varies inversely as the square
root of dark current density, so that narrow-band-gap materials (with high J0) have a small-
er D* than wider-band-gap materials. Since a narrower band gap is required to detect light
of longer-wavelength, D* is inherently smaller for longer wavelength detectors, all other
things being equal. D* also depends on wavelength through the responsivity R(�). Fig. 14-
17 shows the wavelength dependence of D* for some common detector materials. Note that
since J0 decreases with decreasing temperature, the D* for a given photodetector can gen-
erally be improved by lowering the temperature of the semiconductor element.

14-6. DETECTOR CIRCUITS

So far, we have considered only the simple detector circuits shown in Fig. 14-2, in which
the output is taken as the voltage across the series load resistor RL. Here, we consider two
types of detector circuits that provide not only the proper bias for the diode, but also a de-
gree of amplification.
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High-Impedance Amplifier

Figure 14-18 shows one scheme for amplifying the signal in a photodiode circuit. This is
basically the same as the circuits of Fig. 14-2, except that an additional amplification
stage has been added with an FET (field effect transistor). The voltage generated across
the load resistor is applied between the gate (G) and source (S) of the FET, and this results
in an amplified output voltage between the source and drain (D). For the best possible
SNR, the photodiode can be operated in the photovoltaic mode, where VB = 0 and there is
no dark current. The signal output will be proportional to RL (below saturation), so higher
RL is best for detecting very small signals. This circuit is a good choice when the best pos-
sible SNR is desired.

If time response is important, however, this is not the best circuit to use. The large load
resistance, in combination with the diode capacitance Cdiode, gives a 3 dB electrical band-
width:

B = (high-impedance amplifier bandwidth) (14-45)

This circuit, then, suffers from the same sensitivity/time response trade-off that we dis-
cussed earlier. 

Transimpedance Amplifier

When response time is important, a better choice for detector circuit is the one shown in
Fig. 14-19. This circuit uses an operational amplifier (op-amp) to convert the photocur-
rent i� directly into an output voltage, hence the term transimpedance amplifier. The op-
amp has the property that the two input terminals are held at nearly the same potential
(virtual ground), while at the same time very little current is allowed to flow into or out of
either terminal. For the purpose of biasing the photodiode, then, the op-amp input acts
like a short circuit (RL = 0), which keeps the diode below saturation for any level of light
input. Any photocurrent must flow not through the input terminals of the op-amp, but

1
��
2�RLCdiode
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Figure 14-17 The specific detectivity parameter D* for some respresentative photodetector materi-
als. The maximum possible D* decreases at longer wavelength because the dark current is higher for
narrower-band-gap semiconductors.
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rather through the feedback resistor RF, which is connected between the input and output
of the op-amp. The output voltage is then equal to the voltage across this feedback resis-
tor, Vout = i�RF, since both input terminals of the op-amp are at ground potential. The cir-
cuit acts as if RL = RF in terms of the output voltage, but it acts as if RL = 0 in terms of bi-
asing the photodiode. This gives the best possible linearity and dynamic range for the
photodiode, and the output voltage is in fact limited only by the maximum output voltage
of the op-amp (typically ~ 10 V).

A further advantage of the transimpedance amplifier is seen in the time response.
Since the diode voltage is held essentially constant, the capacitance of the diode’s p–n
junction no longer limits the time response. Instead, it is the feedback capacitance CF

characteristic of the op-amp that matters, and the bandwidth becomes

B = (transimpedance amplifier bandwidth) (14-46)

Since CF can be much smaller than Cdiode, the transimpedance amplifier can have a much
higher bandwidth for the same sensitivity (RF = RL). This type of detector circuit is the
preferred one in many situations, because of the advantages of high speed and large dy-
namic range. The only drawback is in obtaining the best possible SNR for weak signals,
in which case a photodiode in the photovoltaic mode followed by a high-impedance am-
plifier is the best choice.

1
�
2�RFCF
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Figure 14-19 Transimpedance amplifier circuit for the photodiode. 

Figure 14-18 High-impedance FET amplifier circuit for the photodiode.
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PROBLEMS

14.1 A photodiode with responsivity 0.3 A/W and dark current 2 nA is biased in the
photoconductive mode, with a 9 V battery and 500 k� resistor. Make a sketch like
that of Fig. 14-3, showing the load line and the diode curves for incident powers
from zero to 100 �W in steps of 20 �W. Circle the operating point for an incident
power of 40 �W, and determine the approximate diode voltage from the graph.

14.2 For Problem 14.1, make a sketch of the output voltage (across the resistor) versus
the incident optical power, for the range 0 to 100 �W. At what optical power does
the detector response saturate?

14.3 The photodiode of Problem 14.1 is removed from the circuit and operated in the
photovoltaic mode. (a) Determine the shunt resistance assuming � = 2. (b) Under
open circuit conditions (no load resistor), what incident optical power will result in
saturation of the output voltage? (c) A load resistor is now added to increase the
dynamic range. What value of load resistance is needed so that optical powers up
to 20 �W can be detected without saturation?

14.4 Show that Eq. (14-13) can be obtained from the equivalent circuit model shown in
Fig. 14-6.

14.5 A silicon solar cell has area 50 cm2, reverse-saturation current 0.75 �A, � = 2. The
electrical power generated in the 0.4 � load resistor is 894 mW. Determine (a) The
circuit current i, (b) the photocurrent i�, (c) the optical power incident on the cell,
assuming that 80% is absorbed, and (d) the optical-to-electrical conversion effi-
ciency of the cell. Assume the temperature remains near 300 K. Assume � = 500
nm for the incident light.

14.6 Using Eq. (14-26) for an exponential voltage rise, show that the rise time (10% to
90% points) is given by tr � 2.2RC.

14.7 A silicon p–n junction photodiode has junction area 1 cm2, and doping levels 1014

and 1016 cm–3 on the n and p sides, respectively. It is reverse biased with 15 V and
a 10 k� load resistor is used. (a) Determine the 3 dB electrical bandwidth due to
the RC time constant. (b) Determine the bandwidth due to the hole transit time. (c)
What is the limiting bandwidth in this case?

14.8 Assume the total response time of a silicon photodiode can be taken as the sum of
the transit time (limited by saturation velocity 105 m/s) and the RC rise time tr. De-
rive an expression for the optimum intrinsic region thickness d. If the load resis-
tance is 50 � and the detector area is 0.01 mm2, calculate d and the resulting detec-
tor bandwidth.

14.9 A high-speed germanium PIN photodiode has a depletion width of 10 �m and a re-
verse-bias voltage of 10 V. The hole mobility in Ge is � 0.2 m2/(Vs), the satura-
tion velocity is � 7 × 104 m/s, and the refractive index at 1300 nm is � 4.3. (a) De-
termine the transit time limit to the response time, and calculate the corresponding
3 dB electrical bandwidth. (b) If light of wavelength 1300 nm is detected, deter-
mine the fraction of incident light that is absorbed in the depletion region (include
the reflection loss from the air–Ge interface). (c) Repeat part b if the detected
wavelength is 1600 nm. See Fig. 13-16 for Ge absorption coefficient.
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14.10 A silicon APD has a responsivity of 20 A/W at the detection wavelength of 850
nm, and the absorption efficiency is 0.7. Determine the avalanche gain.

14.11 A silicon photodiode is configured as shown in Fig. 14-18 with a 90 V bias volt-
age. The light to be detected has intensity 20 �W/cm2 and wavelength 920 nm.
Relevant material properties for the detector are: absorption efficiency = 0.18, dark
current density at room temperature = 15 nA/cm2, charge carrier mobility = 0.048
m2/Vs, and carrier saturation velocity = 105 m/s. At the applied bias voltage, it is
known that the width of the depletion region is 0.2 mm. (a) If the photocurrent is
150 nA, what is the area of the detector? (b) If the load resistor is 100 k�, deter-
mine the RC time constant of the circuit, and the corresponding 3 dB bandwidth.
Video requires a bandwidth of about 2 MHz. Will the circuit be suitable for video
applications? (c) Determine the transit-time response for the circuit, and compare
it with the RC time constant. Which is the primary limit to the bandwidth in this
circuit? (d) Repeat part b assuming a load resistance of 10 k�. Is the circuit now
suitable for video applications?

14.12 In Problem 14.11, check to see that there is sufficient signal-to-noise (S/N) ratio.
Using the results for the 10 k� load resistor, determine the power S/N ratio, and
also find the ratio of the rms deviation in signal voltage to the average signal volt-
age (express as a percentage).

14.13 The photodetector of Problem 14.11 is now used for low-level dc light-level mea-
surements. Assume that in this application the effective bandwidth is 1 Hz. (a) De-
termine how large the load resistor must be in order for the noise to be dominated
by dark current shot noise rather than by thermal noise. Take as the criterion that
the shot noise power is five times the thermal noise power. (b) In the limiting case
described in part a, determine the noise equivalent power (NEP) for the detector
(in units of watts). (c) For the conditions described in part a, determine the mini-
mum light intensity that can be detected with this detector, taking as the criterion
that the signal voltage must be 10 times the rms noise voltage.

14.14 Consider the transimpedance amplifier optical receiver shown in Fig. 14-19. The
feedback resistance is 10 k� and the feedback capacitance is 0.2 pF. The diode’s
capacitance is 5 pF, and its responsivity is 0.5 A/W. The incident optical power is
0.5 mW. (a) Compute the signal current. (b) Compute the receiver’s output volt-
age. (c) Compute the receiver’s 3 dB electrical bandwidth. (d) Compute the rms
thermal-noise current generated in the feedback resistor, assuming a temperature
of 300K. (e) Assuming no dark current, and an ideal (noiseless) amplifier, compute
the output SNR, expressed in dB. The actual SNR will be somewhat lower due to
noise introduced by the amplifier.

14.15 Use the data in Fig. 14-17 to determine the following: (a) The minimum optical
power at 900 nm that can be detected (SNR = 1) by a Si photodiode of area 0.02
cm2 in a 1 Hz bandwidth, (b) the dark-current density of an InAs detector at 77 K,
assuming that the absorption efficiency is near unity for � = 2.8 �m, and (c) the
dark current and minimum detectable power for an InGaAs detector of area 0.02
cm2, operating at 1550 nm in a 1 Hz bandwidth. Assume an absorption efficiency
near unity at 1550 nm.
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In the 1960s when lasers were first being developed, it was often said jokingly that the
laser was a solution in search of a problem. It was a novel device with interesting proper-
ties, but it was not clear how it would be used in practice. Today, of course, the situation
is quite different, and the laser has become an enabling technology with applications as
diverse as point-of-sale bar-code scanners, reading and writing data on CDs and DVDs,
creating masks for photolithography on integrated circuit chips, optical communications,
precision cutting of materials for manufacturing, and laser surgery. It is no exageration to
say that without the laser, our modern technological world would be nothing like it is to-
day.

What then makes laser light so special? The short answer is that laser light is coherent.
To understand what this means, we will start this chapter with a brief look at the operating
principles of a laser. This will be followed by a more detailed look at the nature of coher-
ent light and the importance of coherence for laser applications.

15-1. OVERVIEW OF LASER OPERATION

Figure 15-1 illustrates the three basic elements required for laser action. A gain medium
amplifies the light, mirrors (or other reflective devices) provide optical feedback, and
there must be some pumping mechanism to supply energy to the laser. The mirrors are
arranged to circulate the light back and forth through the gain medium, forming an optical
cavity or optical resonator. This constitutes optical feedback in the sense that some of the
amplified output is “fed back” to become input for additional amplification. The combi-
nation of gain and feedback is familiar in electrical circuits, and gives rise to electrical os-
cillations. In fact, the laser is quite similar conceptually to an electrical oscillator with a
very high frequency (~ 1014 Hz). Just as an electrical oscillator needs to be “plugged in,”
or supplied with energy, so does a laser need to be supplied with energy via the pump.

Although electrical and optical oscillators are similar in overall concept, they differ
considerably in the details of the three basic elements. For example, electrical feedback
can be implemented by simply wiring a resistor between the output and inputs of an am-
plifier. For optical feedback, on the other hand, careful consideration has to be given to
the design of appropriate optical resonators, and this will be discussed in Chapter 16.

The mechanism of amplification is perhaps the most fundamental difference between
electrical and optical oscillators. In a laser, amplification occurs by stimulated emission, a
process first proposed by Albert Einstein in 1917. The basic idea of stimulated emission
can be understood by considering the three ways that light interacts with an atom, as illus-
trated in Fig. 15-2. In absorption, an atom initially in the ground state (lowest energy lev-
el) is raised to a higher energy level (excited state), thereby destroying (absorbing) the in-
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cident photon. The inverse process is spontaneous emission, in which an atom initially in
the excited state falls back to the ground state, creating (emitting) a photon. In the third
process (stimulated emission), there is already an incident photon and the atom is also al-
ready in the excited state. The atom can then be “stimulated” to emit another photon, vir-
tually identical to the photon that was originally incident on the atom—an “optical clone,”
if you like. This duplication of photons constitutes amplification, since the greater num-
ber of photons corresponds to more energy in the light wave.

In the stimulated emission process, total energy must be conserved, as in any physical
process in which the particle masses do not change. The increasing optical energy comes
from the energy stored in the atoms, and in order to continually amplify the light wave,
energy must be continually given to the atoms. This transfer of energy to the atoms is the
pumping process, which can take many different forms. In Chapter 23, we will survey the
different types of lasers, and see how electrical, optical, or other types of energy sources
can be used to pump a laser.

15-2. OPTICAL COHERENCE

The stimulated emission process that gives rise to optical amplification has another im-
portant consequence. Because the newly created photon is identical to the original pho-
ton, the E fields of the photons reinforce each other and the resulting light is coherent.
The idea of coherence can be understood by considering the analogy of a marchers in a
parade, as illustrated in Fig. 15-3. In coherent marching, each person within a given row

282 Chapter 15 Lasers and Coherent Light

Figure 15-1 Basic elements of a laser.

Figure 15-2 Stimulated emission, the basis of optical amplification, is one of the three ways that
light can interact with atoms.
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or column is raising his or her left leg at the same time. Coherent marching leads to a
kind of predictive power: I know that if I am raising my left leg, then everyone else in
my row is also raising their left leg. Incoherent marching lacks this predictive power,
and I cannot say, based on the state of my own leg, what other marchers’ legs are do-
ing. The marching is called partially coherent if there is a limited predictive power, al-
lowing me to predict whether other marchers are raising their left legs only within a cer-
tain vicinity.

The idea of optical coherence is similar to that of coherent marching. For coherent
light, if I know the value of E at one point in space, I can predict the value of E at oth-
er points in space. We say that there is a correlation between values of E at different
points in space. The simple sinusoidal plane wave of Eq. (2-2), for example, is perfect-
ly coherent, since the values of E are highly correlated in all directions. A wave that is
only partially coherent can be characterized by its degree of coherence in two distinct
directions: perpendicular to the wave front (i.e., in the direction of wave propagation),
and parallel to the wave front. These two types of coherence are considered next in
some detail.

Temporal Coherence

The degree of coherence in the direction of wave propagation is referred to as longitudi-
nal or temporal coherence. In the marching analogy, this corresponds to whether every-
one in a given column is raising their left leg at the same time. Perfect longitudinal coher-
ence for an optical wave implies that the planes of constant phase are uniformly spaced
without interuption. These planes of constant phase move with the speed of the wave, and
if observed from a fixed point in space, the E field will be seen to oscillate uniformly in
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Figure 15-3 Coherent light is analogous to a group of marchers who are raising their left legs at the
same time (correlated motion). (Photo courtesy of The University of Michigan Marching Band.)
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time without any phase interuptions. The fixed observer could then predict the value of E
at any future time, which is why this is called temporal coherence.

In practice, light sources never have perfect temporal coherence. The degree of coher-
ence will be limited either by the finite duration of the light, or by interuptions in the
phase of the wave. The average time between phase interuptions is termed the coherence
time Tc, as illustrated in Fig. 15-4. In the marching analogy, this corresponds to one of the
marchers misstepping, raising a right leg instead of a left, with marchers in back also rais-
ing a right leg, while marchers in front continue to raise a left leg. This abrupt shift from
left to right leg is analogous to a phase interuption in an optical wave. The average dis-
tance from one phase interruption to the next in a wave is called the longitudinal coher-
ence length, Lc, and can be thought of as the average distance (in the direction of propaga-
tion) over which the wave is coherent. Since the wave (in vacuum) propagates with speed
c, the coherence length is related to the coherence time by

Lc = cTc (longitudinal coherence length) (15-1)

The high degree of coherence of laser light is important for applications such as hologra-
phy that involve interference of two beams. To create a hologram, a single laser beam is
split into two parts with a beam splitter, as shown in Fig. 15-5. One part of the beam trav-
els a distance L1 + L2 to reach a photographic plate, while the other part travels a distance
L3 to the object being recorded. Light scattered from the object travels a distance L4 to the
plate, where it interferes with light from the first part of the beam, creating a hologram. In
order for light from the two paths to interfere constructively and destructively at the pho-
tographic plate, it is necessary that the path difference be less than the coherence length,
that is, |(L3 + L4) – (L1 + L2)| < Lc. For centimeter-scale objects, it is thus necessary for the
coherence length to be at least a few centimeters. He–Ne lasers typically have Lc ~ 10–20
cm, which is adequate for holography. Semiconductor diode lasers such as GaAs, howev-
er, have Lc ~ 1 mm, and are generally unsuitable for holography. The coherence length of
a laser can be increased by reducing the spectral width ��, and we discuss some tech-
niques for doing this in Chpater 21.

The high degree of coherence has an important consequence for the spread of wave-
lengths in laser light, known as its spectral width or linewidth. According to the Fourier
transform principle (see Appendix B), the time-dependent waveform in Fig. 15-4 can be
obtained by adding together an infinite number of pure sinusoidal components, having the
distribution of frequencies � shown in Fig. 15-6. This curve is a distribution function, and
shows the relative number of sine wave components needed in a small frequency interval
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Figure 15-4 Coherence time Tc is the time between phase interuptions.
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Figure 15-5 In holography, a wave of finite coherence length (section A uncorrelated in phase with
section B) is split by a beam splitter and sent along two paths to the photographic plate. If the length
of one path is sufficiently different from the length of the other path, the two uncorrelated wave sec-
tions A and B will arrive at the plate together. No interference pattern is recorded in this case. If the
path lengths are carefully adjusted to be the same, the two A sections arrive together and an intefer-
ence pattern is produced.

Figure 15-6 Power spectral distribution for light with coherence time Tc.
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d� about �. It is peaked at the frequency �0 = 1/T of the uninterupted portion of E(t) in Fig.
15-4, and has a spectral width �� given by

�� � (spectral width) (15-2)

The exact factor required to make Eq. (15-2) an equality depends on the shape of the distri-
bution function as well as the definition of width, but is close to unity and does not concern
us here. The important point is that the spectral width is narrow when the coherence time is
long. The closer the wave is to a pure sine wave (fewer phase interuptions), the closer it is
also to being a single frequency (narrower spectral width). Light that is nearly single fre-
quency is termed monochromatic, and in the visible region would appear as a single pure
color. Laser light, then, can be said to be both highly coherent and highly monochromatic.

The monochromatic nature of laser light is important for a number of applications. We
have already seen (Chapter 6) that intramodal dispersion in an optical fiber is proportional
to the spectral width, and limits the maximum bit rate in optical communications. This
makes the laser, with its narrow spectral width, an ideal light source for high-speed com-
munications. Narrow laser linewidths also allow signals at different wavelengths to be
combined for transmission and later separated, a technique known as wavelength division
multiplexing or WDM (see Chapter 24). Optical spectroscopy, the detailed study of the ab-
sorption and emission spectra of materials, benefits greatly from laser excitation as well.

A semiconductor laser operates at a free-space wavelength of 790 nm, and has a longi-
tudinal coherence length of 1 mm. Determine the linewidth in terms of both frequency
and wavelength.

Solution: The frequency linewidth is

�� � = = = 3 × 1011 Hz

The wavelength linewidth is obtained by taking the differential of � = c/�,

�� = �� = �� = (3 × 1011) = 6.24 × 10–10 m

The linewidth is then 0.62 nm.

Spatial Coherence

The degree of coherence along a wave front (perpendicular to the direction of wave prop-
agation) is referred to as transverse or spatial coherence. In the marching analogy, this
corresponds to whether everyone in a given row is raising their left leg at the same time.
Perfect spatial coherence for an optical wave means that the wavefronts are continuous,
with no interuptions in phase. The E field at two points along a wavefront, such as points

(790 × 10–9)2

��
3 × 108

�2

�
c

c
�
�2

3 × 108

�
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�
Lc

1
�
Tc

1
�
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A and B in Fig. 15-7, are then correlated; knowing the field at one point allows the field at
the other point to be predicted.

Spatial coherence has important consequences for the directionality of laser beams. If
perfectly coherent light passes through an aperture of diameter D, it diverges with a half-
angle � ~ �/D [Eq. (2-25)] for distances z � D from the aperture. Larger beam diameters
correspond to smaller divergence angles, that is, more directional beams. Light that is
only partially coherent can be characterized by a transverse coherence length Dc, shown
in Fig. 15-8, which is the maximum separation between two points along the wavefront,
for which the fields at the two points are correlated. The diffraction pattern for partially
coherent light is similar to that of coherent light sent through an aperture of diameter Dc,
with a resulting divergence angle

� ~ (partial coherence) (15-3)
�

�
Dc
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Figure 15-7 Spatially coherent light has smooth and continuous wave fronts, and the E fields at
points A and B are correlated.

Figure 15-8 Light with partial spatial coherence has interuptions in phase along the wave fronts,
and the E fields at points A and B are uncorrelated for separation greater than Dc. The divergence an-
gle is similar to that of a coherent beam passing through an aperture of width Dc.
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Incoherent light has a very small value of Dc, resulting in light that spreads out very
quickly. Partially coherent light becomes more directional as the coherence length Dc

is increased, until Dc = D, at which point the beam of light is said to be diffraction
limited. It is important to realize that Eq. (2-25) is only valid for a diffraction-limited
beam.

A figure of merit that is often used to describe a partially coherent beam is the M2 pa-
rameter, defined as the ratio of its divergence to that of a perfectly coherent beam. It can
be related to the spatial coherence length by

M2 � = = (15-4)

Since Dc � D, then M2 � 1, with M2 = 1 corresponding to a perfectly coherent beam.

Brightness

The highly directional nature of laser light has important implications for the brightness
of the light. As discussed in Chapter 12 and Appendix A, the brightness of a light source
is the power emitted per unit solid angle, per unit emitting area. In the case of a perfectly
coherent laser beam of diameter D, the emitting area is As ~ D2 and the solid angle of
emission is �	 � 
�2 (see Appendix A). Using � ~ �/D for coherent light, the brightness
can be written as

B = = = (15-5)

For light that is only partially coherent, � ~ �/Dc, and the brightness is reduced by the fac-
tor (Dc/D)2. This derivation only gives the order of magnitude of the laser’s brightness,
and the factor of 1/
 should not be taken too seriously. More exact expressions for the
spatial variation of intensity in a laser beam will be presented in Chapter 17. The impor-
tant point here is that the brightness of a laser is independent of the beam diameter, de-
pending only on the power and the wavelength. Shorter-wavelength lasers have a greater
brightness, for the same optical power.

Brightness is an important parameter because it characterizes the degree to which light
can be focused to a point. Say that light from a source with emitting area As and bright-
ness B is imaged with a lens into a spot of area A�s, as shown in Fig. 15-9. According to the
brightness theorem (see Appendix A), the brightness of an optical beam is not changed by
passing through any combination of lenses, mirrors, or other passive optical elements.
Therefore,

B = = (brightness theorem) (15-6)

where 	 and 	� are the solid angles corresponding to the linear angles � and ��, respec-
tively. In terms of the source brightness B, the intensity of the beam at the focus is

I�= B	� (intensity of focused beam) (15-7)
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To achieve the highest intensity, 	� (and hence ��) should be made as large as possi-
ble. Values of �� much higher than 45° give rise to significant aberations (distortions in
the image), so a practical maximum value for the solid angle is 	� = 2
 (1 – cos 45°) ~ 2
sr. From Eq. (15-7), the maximum intensity at the focus is then I�max ~ 2B. The brightness
of an optical beam is, therefore, seen to be roughly equivalent to the maximum intensity
that can be obtained by focusing the beam.

The ability to be focused to a small point is one of laser lights’ greatest advantages
over everyday incoherent light. It is this property that makes laser light ideal for coupling
into the small cores of single-mode fibers. For high-power lasers, the high intensities at
the focus can produce enough heat in a small volume to melt materials, enabling applica-
tions such as laser machining and laser surgery. These high intensities can also give rise
to varioius nonlinear effects, which are discussed in Chapter 9.

Calculate the brightness of:

(a) An LED emitting 0.1 mW from a square area 0.2 mm on a side, into a cone of half-
angle 60° (assume a uniform distribution within this cone).

(b) A He–Ne laser emitting 1 mW of light at 633 nm.

(c) The sun, which emits ~ 4 × 1026 W from its entire surface of radius 7 × 108 m.

Solution:
(a) The solid angle for a cone of half-angle 60° is

	 = 2
(1 – cos 60°) = 


giving a brightness for the LED of

B � � 800
W

�
m2 sr

10–4

��
(4 × 10–8)
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Figure 15-9 Light is emitted from area As into a cone of half-angle �, and focused with a lens onto
area A�s in a cone of half-angle ��.

EXAMPLE 15-2
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(b) For the laser, Eq. (15-5) gives

B ~ � 8 × 108

Note that the laser is some six orders of magnitude brighter than the LED.

(c) The sun emits its power uniformly into 4
 sr, giving

B � � 5.1 × 106

The rather counterintuitive result is that the brightness of the sun is about two orders of
magnitude smaller than that of a typical low-power HeNe laser! This illustrates one of
the remarkable properties of laser light, its high brightness, which is directly related to
its spatial coherence and directionality.

In this chapter, several aspects of the coherence properties of laser light have been pre-
sented. The interrelation of these different types of coherence are summarized in Fig. 15-
10.

PROBLEMS

15.1 The light emission from an individual excited atom in the gas phase often lasts for a
few nanoseconds (10–9 s), referred to as the lifetime of the emission. Taking 2 ns as
the coherence time, compute the coherence length for light emitted by atoms in a
gas-discharge tube.

W
�
m2 sr

4 × 1026

��
4
[4
(7 × 108)2]

W
�
m2 sr

10–3

��

 (633 × 10–9)2
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Figure 15-10 Summary of different types of coherence for laser light. 
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15.2 An optical pulse at 800 nm originally has a spectral width of 2 nm. After passing
through a narrow band pass optical filter, the spectral width is reduced to 5 pm. De-
termine the longitidinal coherence length of the light before and after the filter.

15.3 In a holography setup such as that of Fig. 15-5, the distance L1 + L2 = 33.6 cm, and
the distance L3 + L4 = 32.9 cm. What must be the frequency width of the laser used?
If the laser is a He–Ne with � = 632.8 nm, what is the corresponding width in wave-
length?

15.4 A laser of wavelength 1030 nm has an initial beam diameter of 1.5 mm, and the di-
vergence half-angle of the conical beam is 1.6°. Determine the spatial coherence
length of the beam

15.5 A Nd:YAG laser beam is perfectly coherent, with initial beam diameter of 0.8 mm.
If the laser is on the ground and directed up at a plane flying over at an altitude of
29,000 feet, what is the size of the beam when it hits the plane?

15.6 An argon ion laser with power 1.5 W at 488 nm is focused with a lens to the small-
est practical spot size. Estimate the beam intensity and the electric field amplitude at
the focus point.

15.7 A beam of light with wavelength 1.9 �m and M2 = 10 passes through an aperture of
diameter 12 mm. Determine the angular divergence of the beam in degrees (give the
cone half-angle), and calculate the diameter of the beam at a distance of 5 m from
the aperture.

15.8 According to Stefan’s law, the total power radiated per unit surface area from a
blackbody (a perfect absorber at all wavelengths) is given by 
T 4, where 
 = 5.67 ×
10–8 W · m–2 · K–4 and T is the absolute temperature. (a) Use this to derive an ex-
pression for the brightness of a blackbody emitter, at a distance much greater than
the dimensions of the emitting object. (b) Determine the brightness of a lightbulb,
treating the filament as a blackbody at temperature 2700 K. Compare this with the
brightness calculated in Example 15-2 for the LED, the He–Ne laser, and the sun.

15.9 Use the results of Problem 15.8 to determine the total power radiated from a tung-
sten filament in a lightbulb, if the filament is wound in the shape of a cylinder of di-
ameter 1 mm and length 3 mm. Take the filament temperature to be 2700 K, and as-
sume that it can be treated as a perfect blackbody. (In practice, the emission
efficiency will be somewhat lower than this because tungsten is not really a perfect
blackbody.)

Problems 291
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One of the three major components of a laser is the optical feedback mechanism, consist-
ing of mirrors or other reflective elements. It is this optical feedback, in combination with
optical amplification from stimulated emission, that gives rise to coherent laser oscilla-
tions. The simplest arrangement for optical feedback is a pair of mirrors on either side of
the gain medium, forming an optical cavity, or optical resonator. The importance of the
optical resonator goes beyond simply providing feedback, however. In this chapter, we
explore in some detail the effect that the optical resonator has in shaping the frequency
spectrum of the emitted laser light.

16-1. MODE FREQUENCIES

Consider the simplified view of an optical resonator shown in Fig. 16-1, with two mirrors
separated by a distance L. In general, light can propagate in any direction in between the
mirrors, but light that does not propagate close to the resonator axis (i.e., perpendicular to
the mirror surfaces) is soon lost from the resonator and is not effective in providing opti-
cal feedback. To a first approximation, then, the optical resonator can be analyzed by con-
sidering waves only in one dimension.

1-D Treatment

Taking the resonator axis to be in the x direction, we consider electromagnetic plane
waves that propagate between the mirrors in the form of Eq. (2-3), E(x, t) = E0 cos(kx –
�t). If the mirrors are highly reflecting, a wave starting at position A will be reflected
back and forth between the mirrors many times, and the total E field at the point A will be
determined by the superposition, or interference, of the E fields from the many different
reflected waves. In general, the phase of the various reflected waves will be different
when they reach point A, and the superposition gives rise to destructive interference. This
levels off the peaks and valleys of the E field distribution, leading to a uniform light in-
tensity within the cavity. However, if the phase of the E field is the same after propagat-
ing the round-trip distance 2L, that is, if

E(x + 2L, t) = E(x, t) (16-1)

then the reflected waves will reinforce one another, resulting in constructive interference.
Since the cos function has a periodicity of 2�, this condition is equivalent to
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k 2L = m2�

2L = m2� (16-2)

2L = m�

where m is an integer and � is the wavelength of light in the medium. This equation says
that for the waves to add constructively, an integer number of wavelengths must fit into
the round-trip distance 2L. This makes sense physically, since the wavelength is the re-
peat distance for the traveling wave. The optical frequencies that give constructive inter-
ference are then

�m = = m (mode frequencies) (16-3)

where n is the refractive index of the medium inside the cavity.
At the frequencies given by Eq. (16-3), the reinforcement of the many reflected waves

gives rise to a large E field amplitude inside the cavity. This increased amplitude due to
multiple reflections is termed resonant enhancement, and the frequencies at which it oc-
curs are called the resonant frequencies or mode frequencies of the cavity. The physical
significance of the mode frequencies is that optical power can be stored in the laser cavity
only at these particular frequencies. According to Eq. (16-3), the mode frequencies are all
multiples, or harmonics, of a base frequency c/(2nL). The frequency distribution of opti-
cal power stored in the resonator cavity is then a “comb spectrum,” as illustrated in Fig.
16-2, with the mode frequencies evenly spaced by c/(2nL).

At the resonant frequencies, there are traveling waves moving both left and right in the
cavity, which combine to give the total E field at each point. The waves moving in the +x
and –x directions can be written as

E+(x, t) = E0 cos(kx – �t + �)
(16-4)

E–(x, t) = E0 cos(kx + �t + �)

c
�
2nL

c/n
�
�

2�
�
�
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Figure 16-1 Optical cavity of length L with nearly flat mirrors.
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where � is a phase constant chosen to match the boundary conditions at the mirrors (for
example, E = 0 at a metallic mirror). Using the trigonometric identity cos(A + B) = cos A
cos B – sin A sin B it can be shown that (see Problem 16.1)

E(x, t) = E+(x, t) + E–(x, t)
(16-5)

= 2 E0 cos(kx + �) cos(�t)

The spatial and temporal dependence of E given in Eq. (16-5) is that of a standing wave,
as illustrated in Fig. 16-3.

At a particular value of x, the motion varies in time as cos �t, with an amplitude given
by 2 E0 cos(kx + �). The amplitude becomes zero at certain locations, known as nodes. At
the nodes, the E field and associated electromagnetic energy density � (Eq. 2-9) are both
zero at all times. For a mode number m, there are m – 1 nodes between the cavity mirrors.

Estimate the mode number and mode spacing for an Ar ion laser oscillating at 514 nm
in a cavity of length 1 m. Assume n = 1.

Solution: The frequency of the laser light is

� = = 5.84 × 1014 Hz

and the mode spacing is

= = 1.5 × 108 Hz

The mode number is then

m = �
5

1

.8

.5

4

×

×

1

1

0

0
8

14

� � 3.89 × 106

3 × 108

�
(2)(1)

c
�
2L

3 × 108

��
514 × 10–9
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Figure 16-2 Power spectrum for light in a resonant cavity of length L.
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3-D Treatment

The mode spacing for a three-dimensional cavity can be obtained by extending the 1-D
analysis of the previous section. We save for the next chapter a detailed discussion of the
stable resonator modes in a laser cavity, and focus here on the general problem of finding
the frequencies of modes in an enclosed cavity. Taking the cavity to be a cube of side L,
the plane waves that can propagate in the cavity have a wave vector k with three compo-
nents kx, ky, and kz. The condition of Eq. (16-2) now applies to each of these components
separately:

kx = mx

ky = my (16-6)

kz = mz

where mx, my, and mz are positive integers. Negative integers represent the same mode as
the corresponding positive integer, because a given mode consists of the combination of
traveling waves moving in opposite directions. The different modes can be represented as
points in a three-dimensional “k space,” as shown in Fig. 16-4, with a spacing between
points of �/L. The density of modes is then (L/�)3 modes per unit volume of k space. It
will prove useful to obtain an expression for the mode density in frequency space for
three diminsions. To do this, we note that the frequency � is related to the magnitude of
the wave vector k by k = 2��/c. For notational convenience, we will let n = 1 in the fol-
lowing discussion. In a medium with index of refraction n, the formulae can be general-
ized by making the substitution c � c/n. The procedure will be to count the number of
modes having frequency less than some value �, and from this to determine the number of
modes in a small range of frequencies d� around �.

The number of modes with frequencies up to some value � is the same as the number
of modes with wave vector magnitudes up to a value k = 2��/c. The surface in k space

�
�
L

�
�
L

�
�
L
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Figure 16-3 Standing wave pattern in laser cavity for m = 3, showing E(x) at four values of t.
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corresponding to the maximum k value is a sphere of radius k, centered at the origin. The
number of distinct modes inside this sphere is then

N = � �
3

× �k3 × × 2 (16-7)

where the first factor is the number of modes per volume of k space, the second factor is
the volume of a sphere of radius k in k space, the factor of 1/8 comes from only consider-
ing points with positive kx, ky, and kz, and the factor of 2 comes from the two possible po-
larizations for each spatial mode. The number of modes having frequency between 0 and
� is then

N = L3 (16-8)

where L3 = V is the physical volume of the cavity.
The many modes counted in Eq. (16-8) span a very large frequency range, and most do

not interact with the atoms in a laser cavity. The most relevant quantity is the number of
modes contained within a small frequency interval d� about the center frequency �. The
spectral mode density ��(�) is defined as the number of modes per unit frequency inter-
val, per unit volume V, which from Eq. (16-8) is

��(�) � �
V

1
� �

d

d

N

�
�

(16-9)

= 

In a small frequency interval 	�, the number of cavity modes is then 	N� ��V	�. This
result will prove to be useful in Chapter 18 when we consider the interaction of atoms
with the modes in a laser cavity.

8��2

�
c3

8��3

�
3c3

1
�
8

4
�
3

L
�
�
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16-2. MODE WIDTH

In the preceding analysis of 1-D resonator modes, we assumed that the modes were per-
fectly sharp, with well-defined frequencies given by Eq. (16-3). In practice, there is al-
ways some spectral broadening of the modes, due to the finite reflectivity of the mirrors.
In optics textbooks, the spectral shape of the modes between two parallel mirrors is usual-
ly derived by considering the interference of the many reflected beams. For understanding
the properties of laser cavities, however, more physical insight can be obtained by consid-
ering the time dependence of light intensity in the cavity, and then relating this to the fre-
quency spectrum.

Photon Lifetime

We consider here a laser cavity with no optical gain, which is termed a passive optical
resonator. Light that happens to be inside the resonator will bounce back and forth be-
tween the mirrors, losing energy at each bounce. The rate at which light intensity decays
can be determined by considering the loss of intensity in one round-trip through the res-
onator. Assume that the light has initial intensity I at point A in the cavity, as shown in
Fig. 16-5. After reflecting from the right mirror with reflection coefficient R2, the intensi-
ty is R2I, and after a further reflection from the left mirror the intensity is R1R2I. The
change in intensity in one round-trip distance 2L is then

	I = I(t + 	t) – I(t)
(16-10)

= I(t)[R1R2 – 1]

where 	t = 2L/c is the round-trip time. In this section we will take n = 1 for simplicity, but
the results can be generalized by replacing c � c/n in each formula. The time rate of
change in intensity is then

= – I(t) (16-11)
1 – R1R2
�

2L/c

	I(t)
�

	t
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Figure 16-5 Light decreases in intensity during one round-trip through resonator due to mirror re-
flectivities R1 and R2 less than unity.
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In laser cavities, the mirror reflectivities are usually high, so the fractional loss per round-
trip is 
 1. In this case, I(t) can be approximated as a continuous function, and Eq. (16-
11) becomes

= – I(t) (16-12)

where the photon lifetime or cavity lifetime �c is defined as the time for the light intensity
to decay to 1/e of its initial value. For small loss per round-trip, we have

�c � (photon lifetime) (16-13)

The solution of Eq. (16-12) is

I(t) = I0e–t/�c (16-14)

which can be easily verified by substitution. The light intensity in the cavity decays expo-
nentially in time, with a decay time equal to the photon lifetime �c. The measurement of
this decay time is one method of making accurate determinations of mirror reflectivities
close to 1. In the ring-down technique, a short pulse is sent into the cavity, and the light
exiting the cavity is monitored versus time. Mirror reflectivities are determined from the
measured cavity lifetime using Eq. (16-13).

The frequency spectrum of the modes is determined from the time decay using the
time–frequency uncertainty relation. The time dependence of E is that of a damped sinu-
soid,

E(t) = E0e–(t/2�c) cos �t (16-15)

as illustrated in Fig. 16-6. The time constant for the decay of E(t) is 2�c because E � �I(�t)�
(Eq. 2-9). In Appendix B it is shown that this type of time decay is characterized by the
uncertainty relation

	�1/2 �c � 1 (uncertainty relation) (16-16)

2L
��
c(1 – R1R2)

1
�
�c

dI
�
dt
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Figure 16-6 The E field oscillations in the cavity at angular frequency � decay exponentially with
time constant 2�c. In this plot, ��c = 5�.
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where 	�1/2 is the angular frequency full width at half maximum (FWHM). Using 	�1/2 =
	�1/2/(2�), the frequency width of the modes can be written as

	�1/2 � (1 – R1R2) (frequency width of mode) (16-17)

This expression assumes high mirror reflectivities, and is accurate within ~ 10% for R1R2


 0.80. An expression valid for lower R is derived in Problem 16.6.
The frequency distribution of light intensity in the laser cavity is illustrated in Fig. 16-

7, with the modes of width 	�1/2 separated by c/(2L). Although we have introduced them
from the classical physics point of view, these cavity modes can be thought of as quantum
states of the electromagnetic field. The photon, which is the quantum of the electromag-
netic field, can be though of as “occupying” these cavity mode states, just as an electron
occupies various quantum states in an atom or solid. From this viewpoint, the uncertainty
relation in Eq. (16-16) becomes the Heisenberg uncertainty principle relating energy and
time, 	(®�) 	t � ® . The energy of the photon ®� is uncertain because it is uncertain
when during the time �c the photon leaves the cavity.

Quality Factor Q

The time decay of the E field in an optical resonator is similar to that of a damped har-
monic oscillator, and the terminology that is used to describe the sharpness of a reso-
nance in the damped harmonic oscillator can also be applied to the optical resonator.
The quality factor Q of a resonance is defined as the center frequency divided by the
width, or

Q � (quality factor of resonance) (16-18)

which can be written here as

Q � = (16-19)
4�L

��
�(1 – R1R2)

�(2L)(2�)
��
(1 – R1R2)c

�
�
	�1/2

c
�
2L

1
�
2�
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Figure 16-7 Cavity modes have width 	�1/2 and spacing c/(2L).
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It is seen from Eq. (16-19) that the relative sharpness of the modes is greatest for very
high reflectivity mirrors and long cavity lengths. To achieve very narrow laser linewidths,
with correspondingly long coherence times Tc (see Chapter 15), the mirror reflectivities
should be high. Most lasers in the visible and near IR regions use special mirrors made
with multilayer dielectric thin films, rather than metallic mirrors, because they can be
made to have a very high reflectivity over some range of wavelengths. Ordinary alu-
minum mirrors typically have R � 0.90, and are not often used in laser resonators.

Cavity Finesse

As the laser cavity length L increases, the modes become narrower, but the spacing be-
tween modes also decreases. A useful parameter that gives the mode width compared
with the mode spacing is the finesse, defined by

F � = (finesse of cavity) (16-20)

Using Eq. (16-17), the finesse can be written as

F � (16-21)

which is valid for high-reflectivity mirrors. Note that the finesse is independent of the
cavity length, depending only on the mirror reflectivities. The finesse and cavity Q can be
related using Eqs. (16-3), (16-19), and (16-21), giving

Q = F = mF (16-22)

where m is the mode number. The three quantities Q, F, and 	�1/2 are thus equivalent
ways of describing the spectral width of the cavity modes.

A He–Ne laser cavity is 1 m long with mirror reflectivities of 0.99, and operates at
632.8 nm. Determine the cavity Q, the finesse, the mode number, and the frequency
width of a cavity mode in this laser. Assume the index of refraction is n = 1. Also, if
the laser light were confined to a single cavity mode, what would be the coherence
length of the light?

Solution: The frequency of the light is

� = = 4.74 × 1014 Hz

and the mode number is

m = = = = 3.16 × 106
2(1)

��
632.8 × 10–9

2L
�
�

�
�
c/(2L)

3 × 108

��
632.8 × 10–9

�
�
c/(2L)

2�
�
1 – R1R2

c/(2L)
�
	�1/2

mode spacing
��

mode width
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The finesse is

F = � 316

and the quality factor is

Q = mF � (3.16 × 106)(316) = 9.98 × 108

The mode width can be found by either

	�1/2 = = = 4.75 × 105 Hz

or

	�1/2 � (1 – [0.99]2) = 4.75 × 105 Hz

The coherence length is

Lc = cTc = = � 630 m

Ordinary He–Ne lasers oscillate on more than one mode, and the coherence length is
much less than this.

16-3. FABRY–PEROT INTERFEROMETER

In the previous sections, we considered a pair of mirrors as a way of providing feedback
for a laser, confining light inside the optical cavity. Another application for such a res-
onator is to act as an optical frequency filter, in which case it is called a Fabry–Perot in-
terferometer. In this application, light of intensity Iin is incident externally on one side of
the resonator, as in Fig. 16-8, and after multiple reflections within the cavity, light of in-
tensity Iout exits through the other side. The transmission efficiency is defined as T =
Iout/ Iin, and varies with frequency as shown in Fig. 16-9. At the mode frequencies for the
cavity, nearly all of the incident light is transmitted (T � 1), whereas for frequencies off
resonance very little light is transmitted. The full width at half maximum (FWHM) of
each transmission peak is 	�1/2 [Eq. (16-17)], which becomes very small for high-reflec-
tivity mirrors. In effect, the Fabry–Perot is a narrow band pass optical filter, with a regular
array of transmission peaks spaced by c/(2L), giving a comb-shaped frequency spectrum.

It may seem puzzling at first that the transmission of the Fabry–Perot interfermometer
can be 100% when the mirror reflectivites are very high, since these high mirror reflec-
tivites should prevent most light from passing through. The resolution to this apparent
paradox is to realize that at resonance, the light intensity inside the cavity builds up to a
value much higher than that of the incident light. For example, if R1 = R2 = 0.99, then only
1% of the light Icav circulating inside the cavity is transmitted through the output mirror R2

3 × 108

��
4.75 × 105

c
�
	�1/2

3 × 108

�
2(1)

1
�
2�

4.74 × 1014

��
9.98 × 108

�
�
Q

2�
��
1 – (0.99)2
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in each bounce. But if the light intensity inside the cavity at resonance builds up to a val-
ue Icav � 100 Iin, then Iout = (0.01) Icav � Iin. Off resonance, the intensity inside the cavity
remains low, and T 
 1.

One application of the Fabry–Perot interferometer is in high-resolution optical spec-
troscopy. Fig. 16-10 shows a representative fluorescence spectrum (frequency distribu-
tion of emitted light) for an atomic transition, along with the Fabry–Perot transmission
peaks in the vicinity of the fluorescence. If the emitted light is made to pass through the
Fabry–Perot interferometer before detection, the detected signal will be the product of the
fluorescence intensity If and the Fabry–Perot transmission T. The detected signal then cor-
responds to the part of the fluorescence spectrum that lines up with one or more of the
cavity modes of the Fabry–Perot interferometer. The mode frequencies can be tuned con-
tinuously by varying L with a piezoelectric transducer, and the fluorescence spectrum can
then be mapped out by scanning a single mode across the spectrum.

Light from different parts of the spectrum may be detected simultaneously in different
orders, or mode numbers m, depending on the width of the fluorescence spectrum com-
pared with the mode spacing c/(2L). Since the mode spacing is the frequency range over
which there are no interfering orders in the measured spectrum, it is also referred to as the
free spectral range. If the medium between the mirrors has a refractive index n, the free
spectral range is c/(2nL). The mode frequencies can be swept by changing n as well as L.

A Fabry–Perot interferometer uses mirrors with reflectivity 0.99 spaced by 1 mm, with
an air gap between them. (a) Determine the frequency resolution when measuring the

16-3. Fabry–Perot Interferometer 303

Figure 16-9 Transmission spectrum of the Fabry–Perot interferometer.

Figure 16-8 Transmission Iout/Iin through a Fabry–Perot interferometer is high at resonance, where
the optical intensity Icav inside the cavity builds up due to constructive interference of the multiple re-
flections.
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sodium “D” spectral line at 589 nm. (b) Over what wavelength range is the measured
spectrum free from overlapping orders?

Solution:

(a) From Eq. (16-17) the mode width is

	�1/2 � (1 – [0.99]2) = 475 MHz

(b) The free spectral range is

	�FSR = = 1.5 × 1011 Hz = 150 GHz

In terms of wavelength this is

	�FSR = 	�FSR = (1.50 × 1011) = 1.73 × 10–10 m

This Fabry–Perot interferometer can, therefore, only be scanned over 0.173 nm before
overlapping orders appear in the spectrum. This example illustrates both the advan-
tages and disadvantages of the Fabry–Perot interferometer. Very high resolution can
be obtained, but at the expense of a limited scanning range.

PROBLEMS

16.1 Show that Eq. (16-5) follows from Eq. (16-4) using the trigonometric identity
cos(A + B) = cos A cos B – sin A sin B.

(589 × 10–9)2

��
3 × 108

�2

�
c

3 × 108

��
2(1 × 10–3)

3 × 108

��
2(1 × 10–3)

1
�
2�
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Figure 16-10 The Fabry–Perot interferometer can be used to analyze an optical frequency spec-
trum when the mode frequencies are continuously varied.
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16.2 A GaAs diode laser has a cavity formed by the Fresnel reflections from the end
facets of the GaAs chip, which is 0.8 mm long. If the laser wavelength (in air) is �
850 nm, determine the approximate mode number and the mode spacing (in nm)
for this laser.

16.3 A He–Ne laser cavity has a spacing of 15 cm between the mirrors, and the optical
mode in the cavity has a diameter of � 3 mm. (a) Determine the frequency differ-
ence between adjacent laser modes. (b) Determine the frequency difference be-
tween all possible cavity modes contained within the laser cavity volume. (c) The
He–Ne gas mixture provides optical gain over a frequency width of � 1.5 GHz.
Compare the number of laser modes that are within this width to the total number
of cavity modes within this width.

16.4 A ring-down measurement is made on an optical cavity with two identical high-re-
flectivity mirrors spaced by 45 cm in air. When a short pulse is sent into the cavity,
the pulse intensity is observed to decay to 20% of its initial value in a time of 806
ns. Determine the mirror reflectivity to three significant figures.

16.5 In deriving Eq. (16-13) for the photon lifetime, it was assumed that the fractional
loss per round trip is small, that is, 1 – R1R2 
 1. If this condition does not hold, an
alternative expression can be obtained that is valid for smaller R. (a) Show that
(R1R2)p is the fraction of light remaining in the cavity after p complete round-trips,
and set this equal to e–1 to show that the cavity lifetime (time required for the light
to decay to e–1 of its initial value) is 

�c = 

(b) Show that this reduces to Eq. (16-13) for R1R2 � 1. (c) What is the percentage
difference between the two expressions for �c when R1R2 = 0.8?

16.6 Using the expression for cavity lifetime from Problem 16.5, derive expressions for
mode width, cavity Q, and cavity finesse that are valid for small R.

16.7 A semiconductor cavity is formed by cleaving the ends of a semiconductor chip so
they are nearly parallel. Instead of external mirrors, the cavity relies on Fresnel re-
flection from the semiconductor–air interface. Assume an index of refraction 3.5,
cavity length 0.8 mm, and laser wavelength 830 nm. (a) Use the results of Problem
16.5 to calculate the spacing and width of the longitudinal cavity modes (both in
frequency and in wavelength). (b) Use the results of Problem 16.6 to calculate the
Q and finesse of the cavity.

16.8 The semiconductor laser of Problem 16.7 is now modified to use external mirrors
for the optical cavity. One mirror has R = 0.98, the other mirror has R = 0.95, and
they are deposited directly on the ends of the semiconductor chip. Determine (a)
the spacing between cavity modes, (b) the spectral width of the cavity modes, and
(c) the cavity finesse.

16.9 Consider a variation of the laser of Problem 16.8, in which the two mirrors are
freestanding and separated by 5 cm in air. The semiconductor (still of length 0.8
mm) between the mirrors is slightly tilted so that any Fresnel reflection from the
semiconductor–air interface is lost from the cavity. Determine (a) the spacing be-

2nL/c
��
ln(1/R1R2)
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tween cavity modes, (b) the spectral width of the cavity modes, and (c) the cavity
finesse.

16.10 An air-spaced Fabry–Perot interferometer has mirror spacing 0.15 mm and mirror
reflectivities R = 0.99. It is used to measure the spectrum of the sodium doublet,
which consists of two closely spaced emission lines at 588.995 and 589.592 nm.
(a) Determine the mode number of the FP resonance. (b) By how much must the
plate spacing be changed in order to scan a single mode from one of the lines to the
other? (c) By how much must the plate spacing be changed so that the same emis-
sion line is seen again in a different order? If the plate spacing was increased, is the
new mode number higher or lower? (d) What is the wavelength resolution of the
resulting spectrum? 
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In the last chapter, we concentrated on the confinement of laser light in the axial direc-
tion, along a line between the cavity mirrors. It was found that this confinement results in
cavity modes that are standing waves in the longitudinal (axial) direction, with frequen-
cies that depend on the mirror–mirror separation. In this chapter, we consider the distribu-
tion of light in the transverse direction, perpendicular to the cavity axis. It might be
thought that to confine light in the transverse direction, mirrors would be needed along
the sides of a laser cavity. We will see, however, that there is a solution to Maxwell’s
equations, the Gaussian beam, which provides a natural transverse confinement without
the need for side mirrors. We will also explore the manipulation of these beams with lens-
es to focus or collimate the laser light.

17-1. GAUSSIAN BEAMS IN FREE SPACE

We begin by considering how a beam of light may propagate in free space, so that it
might be naturally confined between the mirrors of a laser cavity. There are many possi-
ble solutions to Maxwell’s equations in free space, the plane wave (Eq. 2-4) being the
simplest. The plane wave has an infinite extent in the transverse direction, however, and
is not a good candidate for the true 3-D modes in a laser cavity. We would like instead a
solution that is confined laterally to some extent. In general, when a beam of light is con-
fined to a diameter D in the transverse direction, it spreads out with a divergence angle
� ~ �/D due to diffraction, as illustrated in Fig. 17-1.

The exact angular distribution of the diffracted light depends on the manner in which
the beam’s intensity goes to zero in the transverse direction. If the beam’s intensity cuts
off sharply, as it would, for example, when a plane wave passes through a circular aper-
ture, the light intensity far from the aperture undergoes oscillations in the transverse di-
rection, with the angle to the first minimum given by Eq. (2-26). These oscillations can
be reduced by apodization of the aperture, that is, making the intensity transmitted
through the aperture cut off more gradually. It turns out that if the electric field falls off
as the Gaussian function exp(–r2/w2), with r the radial distance perpendicular to the z
axis, the oscillations are completely eliminated. The parameter w is the value of r where
the Gaussian function is a factor of 1/e times its maximum, as shown in Fig. 17-2. A
beam having a Gaussian profile at one location will have a Gaussian profile for all po-
sitions z along the direction of propagation, and is called a Gaussian beam. The
Gaussian beam has the smallest possible angular spread for a beam of a given initial di-
ameter, and is the most fundamental light distribution produced by a laser. Because the
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light is coherent and spreads out only due to diffraction, the beam is referred to as dif-
fraction limited.

Intensity Distribution

The spatial distribution of the electric field magnitude for the Gaussian beam is given by

E(r, z) = E0 e–r2/w2(z) (Gaussian beam) (17-1)

where r = �x2� +� y�2� is the radial distance from the z axis, and z is the distance along the di-
rection of propagation. The parameter w(z) is the spot size, which is (loosly speaking) the
“radius” of the beam at the position z. As the beam spreads out, the curvature of the wave
fronts also changes, as shown in Fig. 17-1. A given wave front can be considered to be ap-
proximately spherical for small distances from the z axis (the paraxial approximation),

w0
�
w(z)
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Figure 17-1 Diffraction of a beam that is initially confined laterally.

Figure 17-2 Variation of electric field in the radial direction for a Gaussian beam.
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with a radius of curvature R(z). The spot size and wave front radius can be shown to vary
with propagation distance z as (Siegman 1986)

w2(z) = w0
2�1 + � �

2

� (17-2)

R(z) = z�1 + � �
2

� (17-3)

where the beam waist w0 is the minimum value of the spot size w(z), located at z = 0. The
parameter z0 is termed the Rayleigh range, defined as

z0 = (Rayleigh range) (17-4)

Only two parameters are needed to completely specify a Gaussian beam of a given
wavelength: the beam waist size w0 and the location of the beam waist along the z axis.
The variation of spot size with z is illustrated in Fig. 17-3, showing the key parameters. At
z = 0 the spot size has its minimum value w0, and it increases to w = w0�2� at z = z0. Note
that since the area of the beam is � w2, the area increases to twice its minimum value at
the Rayleigh range distance.

For z � z0, Eq. (17-2) becomes w(z) � w0 z/z0, which leads to a linear divergence angle
� = w(z)/z � w0/z0. This can be written using Eq. (17-4) as

� � (Gaussian beam divergence) (17-5)

which is the half-cone divergence angle defined in Fig. 17-3. Eq. (17-5) should be com-
pared to the similar expressions in Eqs. (2-25) and (2-26) for the divergence of a diffrac-
tion-limited beam of diameter D. The advantage of the formula in Eq. (17-5) is that the
beam edges have been defined precisely by the spot size w in Eq. (17-1), which allows a
quantitative treatment of beam spreading.

Peak Intensity

It is useful to relate the peak intensity on axis to the total power propagating in the Gaussian
beam. Since intensity is power per unit area, the total power is found by integrating the in-

�
�
�w0

�w0
2

�
�

z0
�
z

z
�
z0
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Figure 17-3 Variation of beam width with z for Gaussian beam.
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tensity over the area of the beam for a particular value of z. For a circularly symmetric beam,
the integration can be performed by considering concentric rings of radius r and thickness
dr, as shown in Fig. 17-4. Using Eqs. (2-9) and (17-1), the power can be written as

P = � I(r, z) dA

= ��

0
I(r, z)(2�r) dr

(17-6)

= 2� cn�0 ��

0
E2(r, z) r dr

= �cn�0E0
2 ��

0
e–2r2/w2(z) r dr

where n is the refractive index of the medium. The integral in Eq. (17-6) is easily evaluat-
ed using the substitution u 	 2r2/w2(z), with the result

P = w0
2 cn�0E0

2 (17-7)

Note that the total beam power is independent of z, since only the constants E0 and w0 ap-
pear in Eq. (17-7). This is to be expected, since the energy in the beam is not disappear-
ing, but simply spreading out as it propagates. Since E0 is the field amplitude at the center
of the beam waist (r = 0, z = 0), the intensity which occurs there has the value given by
Eq. (2-9) as

Imax = 1–
2 cn�0E0

2 (center of beam waist) (17-8)

Combining this with Eq. (17-7) gives Imax in terms of the beam power,

Imax = (17-9)
P

�
1–
2 �w0

2

1
�
2

�
�
2

w0
2

�
w2(z)

1
�
2
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Figure 17-4 Differential area for integrating beam intensity is a ring of radius r and thickness dr,
with area 2�r dr.
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The beam intensity on axis can be determined for arbitrary z by setting r = 0 in Eq.
(17-1):

E(0, z)w(z) = E0w0 (17-10)

where E(0, z) is the field amplitude on axis. Combining this with Eqs. (17-7) and (2-9)
gives for the on-axis intensity

I(0, z) = (on-beam axis) (17-11)

For z = 0 this reduces to Eq. (17-9), where I(0, 0) = Imax.
Since intensity is power per unit area, the denominator of Eq. (17-11) can be interpret-

ed as an effective area for the beam at position z. The spot size w is often taken loosely as
the “beam radius,” in which case the “area” of the beam would be �w2, so the effective
area is half this value. Alternatively, the “radius” of the beam might be considered to be
a = w/�2�, since the intensity falls off with r as exp(–2r2/w2) = exp(–r2/a2). In that case,
the effective area of the beam is the same as the “beam area” �a2, an intuitively satisfying
result.

17-2. GAUSSIAN BEAMS IN A LASER CAVITY

We have seen that the Gaussian beam is a good candidate for the distribution of light in a
laser cavity, being self-confined in the transverse direction. The question that we ask now
is: what particular Gaussian beam will be produced by a given laser cavity? The answer,
very crudely, is “the one that fits in the cavity.” By “fit,” we mean that the wave fronts
line up with the mirror surfaces at the cavity ends, as shown in Fig. 17-5. A beam that is
diverging when it strikes one of the mirrors then becomes a converging beam after reflec-
tion, exactly retracing the incident beam profile and creating a standing wave. Taking r1

and r2 to be the radii of curvatures of the left and right mirrors, this condition amounts to
requiring that the Gaussian beam radius of curvature R [Eq. (17-3)] be equal to r1 at the
left mirror, and r2 at the right mirror. To simplify the treatment, we will consider first the
symmetric resonator in which r1 = r2.

P
�

1–
2 �w2(z)
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Figure 17-5 A Gaussian beam “fits” inside a laser cavity when the wave fronts match up with the
mirror surfaces.
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Stability Criterion in a Symmetric Resonator

For the symmetric resonator, r1 = r2 	 r, where r is positive for concave mirrors (as
shown in Fig. 17-5). The beam waist is located in the center, a distance L/2 from each
mirror. Setting z = L/2 in Eq. (17-3), the wave front matching condition becomes

R(L/2) = �1 + � �
2

� = r (17-12)

which can be solved for the Rayleigh range of the beam,

z0 = 
� –� 1� (17-13)

The beam waist w0 can be determined from Eq. (17-4):

z0 = = 
� –� 1�
which gives

w0
2 = 
� –� 1� (spot size at center) (17-14)

Note that Eqs. (17-13) and (17-14) only give a real result if 2r > L. A cavity with 2r <
L does not support a Gaussian beam mode, and is termed an unstable resonator. Such res-
onators are not generally useful for continuous wave (CW) lasers, although they have
some applications for pulsed lasers.

The stability of cavity modes can be further evaluated by calculating the beam spot
size w at the position of the mirrors. At z = L/2, Eq. (17-2) gives

w2(L/2) = w0
2�1 + � �

2

�
= w0

2�1 + �
which can be manipulated to give

w2(L/2) = (spot size on mirrors) (17-15)

Again, a real value of w is obtained only for r > L/2. Fig. 17-6 shows how the spot sizes
from Eqs. (17-14) and (17-15) vary with the ratio r/(L/2). As r/(L/2) � 1, the spot size on
the mirrors gets very large, while the waist size gets very small. Such a cavity is termed
concentric, because the centers of curvature for the two mirrors coincide at the middle of
the cavity. When the spot size on the mirrors becomes much larger than the physical size
of the mirrors, the cavity mode will have high loss, and is only marginally stable.

�L
�
2�

1
�

�
2

L

r
� – 1

L
�
2z0

2r
�
L

�L
�
2�

2r
�
L

L
�
2

�w0
2

�
�

2r
�
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The spot size on the mirrors also becomes very large as r � �, which corresponds to
flat mirrors. In fact, both w2(L/2) and w0

2 tend to the same limiting value of (�/�)�rL�/2� as
r � �. A cavity with perfectly flat mirrors will be very lossy because the mode width is
much larger than the mirror diameters.

In between the two extremes of concentric and flat-mirror cavities, there are many
choices for r/(2L) that result in stable, low-loss laser cavities. A cavity with r = L is the
most robust, having the smallest possible spot size on the mirrors for a given cavity
length. This is termed the confocal cavity, since the focal points for the two mirrors coin-
cide (the focal length of a curved mirror being r/2). For this condition, the cavity length is
twice the Rayleigh range, 2z0 = L, and the parameter b = 2z0 is, therefore, sometimes re-
ferred to as the confocal parameter.

In the confocal cavity, the beam waist is w0 = ���L�/(�2���)�, and the spot size on the mir-
rors is w(L/2) = ���L�/��. If the mirror diameter 2a (radius a) is sufficiently large, most of
the light in the Gaussian beam will be reflected by the mirrors, resulting in low loss. A
measure of the relative mirror diameter is given by the Fresnel number NF 	 a2/(�L).
Cavities with NF > 1 have little loss due to diffraction around the mirror edges.

Stability Criterion in an Asymmetric Resonator

If the laser cavity has mirrors with different radii of curvature, a similar method can be
used to find the Gaussian beam that “fits” into the cavity. In this case, the beam waist will
no longer be in the middle, and there are now two parameters to solve for: the position
and size of the beam waist. Two equations analogous to Eq. (17-12) can be written down
to solve for these two unknowns, one for each mirror. The analysis is rather messy and
does not provide much insight, so we simply quote the results here (Saleh and Teich
1991). Defining the g parameter for each mirror as

g1 	 1 – L/r1
(17-16)

g2 	 1 – L/r2

17-2. Gaussian Beams in a Laser Cavity 313

Figure 17-6 Square of Gaussian beam spot size on the mirrors of a symmetric cavity and at the
beam waist, versus the mirror radius of curvature. The square of the spot size is normalized to
�L/(2�), and the radius is normalized to L/2.
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the condition for stability becomes

0 	 g1g2 	 1 (stability condition) (17-17)

where r1 and r2 are taken as positive for concave mirrors. In the case of a symmetrical res-
onator, this condition reduces to g2 < 1, which is equivalent to 2r > L (see Problem 17.8).
The concentric cavity corresponds to g = –1, the confocal cavity to g = 0, and the flat mir-
ror cavity to g = 1.

Another special case is a cavity with one flat mirror and one concave mirror, shown in
Fig. 17-7. In this case, g1 = 1, so the stability condition in Eq. (17-17) reduces to 0 	 g2 	
1, which is equivalent to r2 > L (see Problem 17.8). Some insight can be gained by con-
sidering this to be one-half of an equivalent symmetric resonator of length L
 = 2L, as
shown in the lower part of Fig. 17-7. The Gaussian beam solutions for the two situations
are expected to be the same, because the boundary conditions (conditions on the wave
front curvature) are the same. The Gaussian beam parameters for the resonator in the top
part of Fig. 17-7 can thus be obtained from Eqs. (17-13), (17-14), and (17-15), by making
the substitution L � L
 = 2L. Real solutions are then obtained only for r2 > L, in agree-
ment with the stability condition derived from Eq. (17-17).

Higher-Order Modes

So far, we have considered only a single solution of Maxwell’s equations, the Gaussian
beam, which has the smoothest possible variation in intensity perpendicular to the beam

314 Chapter 17 Gaussian Beam Optics

Figure 17-7 An asymmetric resonator of length L with plane and curved mirrors is equivalent to a
symmetric resonator of length L
 = 2L.
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axis. The Gaussian beam is actually just one of a class of transverse electromagnetic
(TEM) waves, known as Hermite–Gaussian modes, which are also solutions of
Maxwell’s equations in a laser cavity. Since these modes are to be confined in three di-
mensions inside the cavity, there should be a unique set of three integer labels for each
mode [see Eqs. (16-6)]. One label is the longitudinal mode number, designated here as the
integer number q, which characterizes the confinement along the resonator axis. This cor-
responds to the integer m used in our previous 1-D treatment [see Eq. (16-3)], and gives
the 1-D mode frequencies � = qc/(2L) (as usual, replacing c � c/n for refractive index n).
The other two integers l and m characterize the distribution of light perpendicular to the
cavity axis, with the transverse modes labeled TEMlm

The Hermite–Gaussian modes are similar to Gaussian beams, except that the electric
field amplitude is modulated in the transverse direction according to

E(x, y) = AHl� x� Hm� y� e–(x2+y2)/w2 (17-18)

where w is the spot size at position z, and the Hm(u) are Hermite polynomials. For our pur-
pose, it is sufficient to know that these are well-known polynomials of order m, which are
the solution to a particular differential equation. For example, these functions turn up in
the solution of the harmonic oscillator problem in quantum mechanics. The first few Her-
mite polynomials are

H0(u) = 1

H1(u) = 2u
(17-19)

H2(u) = 4u2 – 2

H3(u) = 8u3 – 12u

The lowest-order mode, TEM00, is just the same Gaussian mode we have considered
previously, since Hl(u) = Hm(u) = H0(u) = 1. The next-highest mode, TEM10, has its
Gaussian envelope multiplied by H1(x�2�/w) � x, giving a double-peaked structure as
shown in Fig. 17-8. This transverse profile has one zero-intensity point (x = 0) and two in-
tensity maxima. In general, for a mode of order l in the x direction, there are l points with

�2�
�

w

�2�
�

w
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Figure 17-8 Multiplying a Gaussian function by H1(x�2�/w) � x creates a double-peaked intensity
distribution. This is an example of a Hermite–Gaussian mode.
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intensity zeros and l + 1 points with intensity maxima. Similarly there are m zeros and m
+ 1 maxima in the y direction. Representative sketches for a few low-order Hermite–
Gaussian profiles are given in Fig. 17-9.

The frequencies of the allowed Hermite–Gaussian modes depend on q, l, and m ac-
cording to

�qlm = �q + cos–1(g1g2)1/2� (17-20)

(see, for example, Hawkes and Latimer 1995), with g1 and g2 defined in Eq. (17-16).
The TEM00 mode still has longitudinal modes spaced by c/(2L), as in the 1-D treatment,
although there is a small frequency shift that is the same for each mode. Since the
mode number q for laser light is usually very large, this shift generally has no practical
effect.

Higher-order (transverse) modes with l � 0 and/or m � 0 give rise to additional mode
frequencies that depend on the curvature of the mirrors. In the limiting case of flat mir-
rors, where g1 = g2 = 1, the allowed frequencies become �qlm = qc/(2L), identical to the 1-
D result and independent of l and m. The higher-order modes may still be present here,
but they all have the same frequency as the lowest-order (Gaussian) mode. Modes such as
this, which have different spatial distributions but the same frequency, are termed degen-
erate modes.

As the mirrors are made slightly curved, the degeneracy of the transverse modes is lift-
ed, and modes with l, m � 0 appear at slightly higher frequency than the corresponding
Gaussian modes. The mode spectrum is illustrated in Fig. 17-10, with the Gaussian (lon-
gitudinal) modes separated by c/(2L). Continuing to increase the mirror curvature causes
the spacing between transverse modes to increase, eventually reaching a spacing of c/(4L)
for the confocal resonator condition g1 = g2 = 0. In this case, modes with different l and m
overlap (are degenerate with) modes with different q, and it becomes difficult to identify
the modes by their frequency spectrum.

In some ways, the spectrum for the confocal cavity is quite simple, since all adjacent
resonator frequencies are separated by c/(4L), half the mode separation obtained in the
1-D treatment. However, this simplicity belies the complication that there are different
combinations of Hermite–Gaussian modes that can lead to the same spectrum. Also, it
is still true that the spacing between adjacent longitudinal modes (where q differs by 1)
is c/(2L).

The higher-order modes are wider than the fundamental Gaussian beam, even though
the spot size w is the same. This is because the Hermite polynomials act as weighting fac-
tors that distort the Gaussian profile so as to enhance the part of the beam away from the
axis. The effective beam radius weff will be a factor of M larger than the spot size w, with

1 + l + m
�

�

c
�
2L
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Figure 17-9 Representative intensity distributions for TEMlm modes.
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M getting larger as the transverse order of the mode increases. In the far field (z � z0), af-
ter the beam has left the laser resonator, the spot size is

w � z (17-21)

where w0 is the waist size of the beam. Since the effective spot size at the waist is also en-
hanced by a factor of M, we can write

weff = Mw(z)

w0,eff = Mw0

Combining the above with Eq. (17-21) then yields

weff � M2 z

Comparing this with Eq. (17-21), it can be seen that the multimode beam diverges a factor
M2 more strongly than would be expected for a Gaussian beam with the same effective
waist size. This can be expressed in terms of an effective divergence angle for the multi-
mode beam, �eff = weff/z, which is

�eff � M2 (divergence of multimode beam) (17-22)

The M2 parameter was introduced in Chapter 15 as a way of describing the divergence of
partially coherent light. We see here a related application for this parameter, as a way to
characterize the divergence of a multimode laser beam in terms of its effective beam

�
�
� w0,eff

�
�
�w0,eff

�
�
�w0
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Figure 17-10 Frequency spectrum for near-planar and confocal laser cavities. For the confocal
cavity, a given frequency may have contributions from more than one qlm mode.

�
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waist. This parameter is often quoted in the specifications for commercial lasers, to show
how close the laser beam comes to being “diffraction limited.”

17-3. GAUSSIAN BEAMS PASSING THROUGH A LENS

Once light comes out of a laser cavity, it is important to be able to manipulate it for a par-
ticular application. Generally, applications fall into one of two broad categories: (1) those
in which the light is to be concentrated at a point (a focused beam), and (2) those in which
the light is to travel in a straight line for a long distance (a collimated beam). To achieve
either of these results, the light may be passed through a lens or reflected off a curved mir-
ror. Since a mirror with radius of curvature r has the same effect as a lens of focal length
f = r/2, our discussion can be confined to the effect of lenses, without loss of generality.

A Gaussian beam incident on a lens from the left, as shown in Fig. 17-11, will in gen-
eral be transformed into a different Gaussian beam to the right of the lens. To completely
specify the new Gaussian beam, two things must be known: the new beam waist size w02,
and the distance d2 between the lens and the beam waist. These two parameters can be de-
termined if both the beam spot size w2 and the wave front radius of curvature R2 are both
known just after the lens. It is clear that the spot sizes just before and after the lens are
equal, w2 = w1, because otherwise the flow of optical energy would be discontinuous,
with energy suddenly appearing or disappearing. It only remains, then, to see how the
wave front radius of curvature changes as it passes through the lens.

To see how a lens modifies an incident wave front, consider a point source of light at a
distance s1 to the left of a thin lens, as shown in Fig. 17-12. Spherical waves radiate outward
from this point source, and have a radius of curvature R1 upon reaching the lens. After pass-
ing through the lens, the radius of curvature of the wavefront becomes R2, and the wave
converges to a point at a distance s2 to the right of the lens. We adopt a sign convention in
which R is positive for a diverging wavefront, and negative for a converging wavefront,
consistent with the sign of R in Eq. (17-3) when the wave is moving in the +z direction.
With this sign convention, R1 = s1 and R2 = –s2. The object distance s1 and image distance
s2 for a lens of focal length f are related by the lens equation, given earlier in Eq. (2-32) as

+ = (lens equation for imaging) (17-23)
1
�
f

1
�
s2

1
�
s1

318 Chapter 17 Gaussian Beam Optics

Figure 17-11 A lens transforms one Gaussian beam into another Gaussian beam.
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which can be written in terms of wave front curvatures as

– = (lens equation for wavefronts) (17-24)

The effect of a thin lens on a wave front is, therefore, to change the radius of curvature
according to Eq. (17-24). A diverging beam with positive R1 becomes less diverging after
passing through a weak positive lens (f > 0), and will become converging for a sufficient-
ly strong positive lens (f sufficiently small). Negative lenses (f < 0) cause the divergence
to increase, or if sufficiently strong can cause a converging beam to become diverging. In
each case, Eq. (17-24) can be applied to find the wave front curvature after the lens, pro-
vided that the sign convention for R is followed.

The general procedure for finding the new Gaussian beam parameters in terms of those
of the incident beam consists of three parts. First, Eqs. (17-2) and (17-3) are used to deter-
mine the spot size w1 and wave front curvature R1 just to the left of the lens. Next, Eq.
(17-24) and the condition w2 = w1 are used to determine w2 and R2 just to the right of the
lens. Finally, Eqs. (17-2) and (17-3) are used again, to determine the beam waist size w02

and its distance d2 from the lens. For the general case, the algebra becomes very messy
with this approach, and it is most suitable for computer calculations. To obtain some in-
sight and develop useful simplified equations, we consider next an approximate treatment
of beam focusing and beam collimation.

Gaussian Beam Focusing

Consider a collimated beam with plane parallel wave fronts incident on a lens of radius a,
as shown in Fig. 17-13. If the incident beam does not fill the area of the lens, then a will
be taken as the incident beam waist w01 just before the lens. The light is brought to a focus
at a distance d2 to the right of the lens, where a new beam waist w02 is created. We make
the approximation that w02 
 a, a reasonable assumption since the whole point of the fo-
cusing is to make the waist size w02 as small as possible. In that case, Eq. (17-2) evaluated
at z = –d2 with respect to the second beam waist becomes

a2 = w2
02�1 + � �

2

�–d2
�
z02

1
�
f

1
�
R2

1
�
R1
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Figure 17-12 A point source a distance s1 from a thin lens is imaged onto a point a distance s2 to
the right of the lens.
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where z02 = �w2
02/� as in Eq. (17-4). Since w02 
 a, the 1 in the above equation can be ne-

glected compared with (d2/z02)2, resulting in

a = w02���
d

w
2�

2
02

��
(17-25)

= d2 �
�w

�

02

�

We expect that d2 is approximately the focal length f of the lens, since the focal length
is defined in geometric optics as the distance from the lens to the point where parallel rays
would be focused. To get this result from the Gaussian beam equations, Eq. (17-24) is
first used to find the wave front curvature R2 just after the lens. Since R1 = � (planar wave
fronts), this gives R2 = –f. Eq. (17-3) is then evaluated at z = –d2 to give

–f = –d2�1 + ��
z

d
0

2

2
��

2

�
(17-26)

f � d2

where the approximation d2 � z02 has again been used.
An expression for the size of the new beam waist can now be obtained by combining

Eqs. (17-25) and (17-26),

w02 � (waist size at focus) (17-27)

This simple but very useful result gives the spot size produced when a beam of wave-
length � and radius a is focused by a lens of focal length f. It is valid provided that w02 

a, or �f 
 �a2, generally an excellent approximation.

It is often the goal to obtain the smallest focus spot size possible. According to Eq. (17-
27), this is achieved by using a short wavelength of light, a short-focal-length lens, and a
large beam radius and lens diameter (note that a is the smaller of these two). Assuming
that the incident beam can be made as large as desired by collimation (see next section),
the limiting value of a will be D/2, where D is the lens diameter. The minimum spot size
at the focus is then

w02 � = �F# (17-28)
2
�
�

2�f
�
�D

�f
�
�a
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Figure 17-13 Collimated light is brought to a focus at a distance d2 from a lens of focal length f.
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where F# 	 f/D is known as the F number. In a camera in which the limiting aperture
has diameter D, this is also referred to as the f stop, designated as f/5 for F# = 5, for
example. Eq. (17-28) says that, fundamentally, the minimum spot size is determined
by the wavelength of light, and the F# of the lens. Small F numbers (below 2) are dif-
ficult to make without significant abberations, and the paraxial (small angle) approxi-
mation starts to break down. Since the paraxial approximation is always an underlying
assumption in Gaussian beam optics, Eq. (17-28) must be used with some caution for F#
< 2.

A beam from an argon laser has a diameter of 1.0 mm, and is focused by a 10 cm focal
length lens with diameter 2.5 cm. Determine the spot size at the focus of the lens. Re-
peat the calculation if the beam is first expanded to fill the entire lens area. The wave-
length of the light is 514.5 nm.

Solution: Focusing the original beam gives

w02 = = 3.3 × 10–5 m = 33 �m

If the beam is first expanded to diameter 25 mm,

w02 = = 1.3 × 10–6 m = 1.3 �m

This illustrates the importance of utilizing the entire lens area for achieving the small-
est spot size at the focus.

Certain applications require that the light be focused to a particular spot size, which is
not necessarily the minimum possible. For example, in coupling laser light into the core
of an optical fiber, the spot size of the focused Gaussian beam should match the spot size
of the (approximately) Gaussian beam profile of the fiber. This is referred to as mode
matching, and results in a high coupling efficiency.

Laser light at 1500 nm is to be coupled into a fiber using a lens of focal length 6 cm.
The fiber is step index with core radius 2.5 �m and numerical aperture 0.22. Deter-
mine the beam diameter incident on the lens that will give the best coupling efficiency.

Solution: The V parameter for this fiber at 1500 nm is

V = (0.22) = 2.304
2�(2.5)
�

1.5

(514.5 × 10–9)(0.10)
���

�(12.5 × 10–3)

(514.5 × 10–9)(0.10)
���

�(0.5 × 10–3)
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and the spot size of the approximately Gaussian mode profile is [using Eq. (4-18)]

w = a�0.65 + + � = 1.132a = 2.83 �m

Using Eq. (17-28), the optimum beam diameter is then

D = �
2

�

(1

(2

.5

.8

)(

3

6

)

)
� = 2.02 cm

Gaussian Beam Collimation

The opposite of beam focusing is beam collimation, in which the curved wavefronts of
an initially diverging beam are transformed into the plane wavefronts of a collimated
beam. This is illustrated in Fig. 17-14, where a Gaussian beam with waist w01 is trans-
formed by the lens into a Gaussian beam with a larger waist w02. Since the far-field di-
vergence angle is � � �/(�w02) according to Eq. (17-5), the larger waist of the new
beam will give it a smaller divergence angle, which makes it more collimated. The
Rayleigh range z02 = �w2

02/� is also larger, so the beam diameter will remain approxi-
mately constant for a greater distance. It should be kept in mind that when we say a
beam is “collimated,” it is really a matter of degree. No beam is perfectly collimated,
unless it is infinitely wide. Beam collimation has many practical applications. One ap-
plication that we will consider in Chapter 24 is free-space optical communications, in
which optical data is sent over kilometer-scale distances using a collimated beam in free
space.

A practical question is where to put a lens of focal length f so as to collimate the beam.
More specifically, what should be the distance d1 between the lens and the beam waist of
the original beam? Since the wavefront curvature for the collimated beam just after the
lens is R2 = �, Eq. (17-24) gives R1 = f for the wavefront curvature just before the lens.
Using Eq. (17-3) to evaluate R for the original beam at z = d1, we have

f = d1�1 + � �
2

� (17-29)
z01
�
d1

2.879
�

V6

1.619
�

V1.5
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Figure 17-14 Light from a diverging beam is collimated by placing a lens of focal length f a dis-
tance d1 from the beam waist.
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where z01 is the Rayleigh range of the incident beam. Solving this equation for d1 gives

d1 = f � ± 
1� –� ����
2�� (17-30)

where the positive sign corresponds to the physically relevant solution. If f � z01, Eq. (17-
30) reduces to the simple result d1 � f. This agrees with the expectation from geometric
optics that a point source (the beam waist) located at the focal point to the left of the lens
will give rise to rays parallel to the optical axis to the right of the lens. As the focal length
becomes smaller in comparison with z01, however, geometric optics becomes increasingly
inadequate, and the required value of d1 becomes smaller than f. For values of f < 2z01,
there is no lens position that will give a collimated beam.

A beam expander is a device in which one collimated beam is converted into another
collimated beam with an increased diameter. One way to accomplish this is shown in Fig.
17-15, in which the initial beam is first focused with a lens of focal length fa, and the di-
verging beam that results is then collimated with a second lens of focal length fb. The di-
vergence of the beam between the two lenses is

� � = = (17-31)

where it has been assumed that fa, fb � z02. The final beam size w03 is then

w03 � w01 (beam expander) (17-32)

which is larger than the initial beam size w01 by a factor (fb/fa). A beam expander can also
be constructed with the first lens a diverging lens, fa < 0. It is left as an exercise to show
that in this case the beam is expanded by the same factor fb/|fa|, but the lenses should be
separated by a distance L = fb – |fa|.

fb
�
fa

w01
�
fa

w03
�
fb

�
�
�w02

2z01
�

f

1
�
2

1
�
2
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Figure 17-15 A beam expander is formed by separating two lenses with focal lengths fa and fb by a
distance L = fa + fb.
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PROBLEMS

17.1 A Gaussian beam of wavelength 720 nm in air has a 2 mm beam waist located at z
= 0. (a) Determine the z position at which the spot size is 4 mm. (b) What is the ra-
dius of curvature of the beam’s wavefront at that position.

17.2 What fraction of the energy in a Gaussian beam is at a distance from the beam axis
greater than the spot size w?

17.3 Determine the on-axis brightness of a Gaussian beam of power P and wavelength
�, for z � z0. Take the effective source area as �w0

2. How does this expression
compare with that for the brightness of a laser given in Eq. (15-5)?

17.4 A Gaussian beam has a beam waist of 176 �m, and the spot size is 293 �m a dis-
tance of 20 cm from the beam waist. Determine the wavelength of the beam.

17.5 An argon ion laser emits a Gaussian beam with power 3 W, wavelength 514.5 nm,
and beam waist 0.5 mm. (a) Determine the on-axis beam intensity at a distance of
50 m from the laser. (b) If this light is collected with a lens of focal length 5 cm
and diameter 1 cm, calculate the intensity of light at the focus. (c) Determine the
brightness of the light at the focus. (d) Compare this with the brightness of the
original laser beam, and comment on any difference.

17.6 A laser with wavelength 900 nm has a symmetric confocal cavity, and the spot size
on the mirrors is 0.3 mm. (a) Determine the cavity length. (b) Determine the beam
waist size. (c) Determine the mode spacing (consider transverse as well as longitu-
dinal modes).

17.7 A symmetric laser cavity has mirrors of 10 m radius of curvature separated by 20
cm. The laser operates at 800 nm. (a) What is the beam waist size? (b) What mirror
diameter is needed so there is little loss due to diffraction around the mirror edges?
(c) Determine the longitudinal mode spacing. (d) What is the spacing between the
lowest-order transverse modes, as a fraction of the longitudinal mode spacing?

17.8 Show that for the symmetrical resonator, Eq. (17-17) yields the condition 2r > L,
where L is the cavity length and r is the radius of curvature of either mirror. Also
show that for a cavity with one flat mirror and one concave mirror (Fig. 17-7), the
condition for stability becomes r2 > L, where r2 is the radius of curvature of the
concave mirror.

17.9 The radius of the beam from a multimode laser is 3 mm just after it comes out of
the laser. The wavelength is 1.5 �m, and the beam divergence (half-angle) is 1.4
mrad. Determine the M2 parameter for this laser.

17.10 Sketch the electric field distribution in the x direction for the third-order Her-
mite–Gaussian mode, with l = 3. Include the spot size w on the x axis as a reference
point. How does the “full width at half maximum” for this distribution compare
with that of the lowest-order Gaussian mode?

17.11 A Nd:YAG laser with optical power 150 W at 1064 nm is used for laser machin-
ing. The beam out of the laser has diameter 3 mm (twice the spot size), and it is fo-
cused onto the work piece with a lens of focal length 25 mm. (a) Determine the
spot size at the focus of the lens. (b) Determine the intensity at the focus. (c) If it is
required that this intensity be maintained within a range of ±20%, determine how
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much the distance between the lens and work piece can be allowed to vary during
the machining process.

17.12 Consider a beam expander similar to that of Fig. 17-15, except that the first lens is
a diverging lens with focal length fa a negative number. Show that the beam is ex-
panded by the factor |fb/fa| when the lenses are separated by a distance L = fb – |fa|.
This variation is called a Galilean telescope, and has the advantage that it is more
compact.

17.13 A Gaussian beam of waist w01 passes through a lens of focal length f, and con-
verges to a focus at a second beam waist w02, as shown in Fig. 17-11. The dis-
tances from the beam waists to the lens are d1 and d2. (a) Assuming that d1 � z01

and d2 � z02, determine the ratio of beam waists w02/w01. (b) Compare this result
with the image/object height relation from geometric optics given in Eq. (2-30). (c)
Show what effect, if any, the lens diameter has on your result in part a.

17.14 A laser cavity consists of two plane mirrors separated by a distance L, with a posi-
tive lens of focal length f placed halfway between them. Derive an expression for
the spot size of the beam at the position of the lens, and at the mirrors. Discuss the
stability conditions for this cavity.
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c17.qxd  2/22/2006  3:33 PM  Page 325



c17.qxd  2/22/2006  3:33 PM  Page 326



In the previous three chapters, we considered the special properties of laser light, and the
way a laser beam propagates both inside and outside of a laser cavity. The laser cavity
provides optical feedback, and is one of the three major components of a laser. We now
turn to a discussion of the second essential component, the gain medium. This is the mate-
rial between the cavity mirrors that amplifies the light as it propagates back and forth be-
tween the mirrors. The amplification occurs by stimulated emission, which we briefly dis-
cussed in Chapter 15. In this chapter, we consider stimulated emission in more detail, and
show how it is related to the gain coefficient of an optical amplifier or laser.

18-1. TRANSITION RATES

Stimulated emission is one of the three fundamental processes by which an atom can
make a radiative transition between two energy levels. As illustrated in Fig. 15-2, it oc-
curs when a photon is incident on an atom that is initially in the upper of two energy
levels. For stimulated emission to occur, the resonance condition h� = E21 must be sat-
isfied, where h� is the photon energy and E21 = E2 – E1 is the energy difference between
the two levels. If the photon energy were perfectly well defined (monochromatic light)
and the atomic transition energy were perfectly sharp (no uncertainty or spread in ener-
gy), there would be no stimulated emission (or absorption) unless the two happened to
match up exactly, a rather rare occurance. In practice, there is always some width to
both h� and E21, which allows stimulated emission to occur over a range of photon fre-
quencies.

We will first consider the situation in which the photon spectrum is very broad com-
pared with the width of the atomic transition. This approach was taken by Albert Einstein
in 1917, and leads to a relationship between the spontaneous and stimulated emission
rates. The opposite limit will then be considered, in which the photon spectrum is very
narrow compared with the atomic transition width. This later situation is most relevant for
computing the gain in a laser.

Broadband Radiation

The phenomenon of stimulated emission was first proposed by Einstein in 1917, in order
to explain the interaction between atoms and electromagnetic radiation in thermal equilib-
rium. Since this is such an important concept, it is worthwhile presenting here the key

Photonics and Lasers: An Introduction. By Richard S. Quimby 327
Copyright © 2006 John Wiley & Sons, Inc.

Chapter 18

Stimulated Emission and 
Optical Gain

c18.qxd  2/14/2006  8:30 AM  Page 327



steps in Einstein’s derivation, in order to understand the historical development of the ba-
sis for laser action.

Consider two representative energy levels of an atom in a gas, as shown in Fig. 18-1.
To be concrete, you can think of these as two of the energy states of the electron in a hy-
drogen atom. In thermal equilibrium, the number of atoms in each energy state remains
constant in time. If there are processes such as absorption and emission that tend to
change the number of atoms in a given level, then these processes must act in such a way
that the number of atoms making a transition from state 1 to state 2 is equal to the number
of atoms making a transition from state 2 to state 1. It was by studying the balancing of
these processes in thermal equilibrium that Einstein was able to propose the new phenom-
enon of stimulated emission and show its relation to spontaneous emission.

To make the argument quantitative, we define the number of atoms in level 1 per unit
volume to be N1, and similarly for N2. The probability per unit time that an atom in level 2
will relax by spontaneous emission to level 1 is given by A21, the Einstein A coefficient. If
there were N2 atoms in level 2, then the total number of atoms per unit time making a
transition from level 2 to level 1 by spontaneous emission would be N2A21. If there were
no other types of transitions between the levels, then eventually all the atoms would end
up in level 1. However, it was known by the early 1900s that in thermal equilibrium, there
is a finite steady-state population of atoms in the excited state N2, given by the Boltzmann
factor

= e–E21/(kBT) (Boltzmann factor) (18-1)

where kB is Boltzmann’s constant and T is the absolute temperature (in degrees Kelvin).
Therefore, there must be some other radiative process in addition to spontaneous emis-
sion.

Another process that was known to exist is absorption, in which an incoming photon
promotes an atom from level 1 to level 2. Since this process depends on the presence of
a photon, it makes sense to suppose that the absorption probability per unit time is pro-
portional to the energy density of electromagnetic radiation. Each photon has a certain
probability of being absorbed, and the more photons there are (the higher the energy
density), the greater the probability that the atom will absorb one of them. The absorp-
tion probability also depends on how well the photon energy matches up with the ener-
gy difference between the levels, E21 � E2 – E1. The agreement does not have to be per-
fect, because the energy difference E21 has a spread �E according to the uncertainty

N2
�
N1
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Figure 18-1 Transition rates for the three fundamental radiative processes in an atom. The photon
energy h� must be in the range �� about (E2 – E1)/h for efficient emission or absorption.
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principle (see Appendix B). Absorption will occur for those photons having energies h�
in a range �E around E21.

Spectral Distribution and Lineshape Function

The number of photons having frequencies in the interval �� around � can be described
by the light’s spectral density,

��(�) � (18-2)

which is a spectral distribution function (per unit frequency interval) as well as a density
(per unit volume). The light-energy density that can interact with the atom is then � =
��(�)��. Note that � and ��(�) have different units, J/m3 and J s/m3, respectively. Fig. 18-
2 shows how ��(�) varies with frequency for blackbody (thermal) radiation, the so-called
blackbody spectrum. It is very broad, varying as �2 at low frequency, and as exp(– h�/kBT)
at high frequency.

Also shown in Fig. 18-2 is the atomic lineshape function,

g(�) � (lineshape function) (18-3)

which describes the relative probability that the atom will absorb or emit a photon of fre-
quency �. Like ��(�), this is a distribution function that gives a probability per frequency
interval, so that g(�) d� is the actual probability of emission in the frequency interval d�.
The lineshape function is normalized to unit probability over all frequencies, so �g(�) d�
= 1.

Atomic lineshapes are much narrower than the blackbody spectrum, as indicated in
Fig. 18-2. This means that ��(�) is approximately constant over the frequencies at which
the atom absorbs or emits, and the probability of absorption should be proportional to the
value of ��(�) evaluated at the lineshape center frequency �0. Thus, we can write the prob-
ability per unit time that an atom in level 1 is promoted to level 2 as

W12
ind = ��B12

probability of photon emission at �
����

frequency interval

energy in radiation
���
(volume)(frequency interval)
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Figure 18-2 Blackbody radiation spectrum is broad compared with atomic transition.
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where �� is evaluated at the atomic frequency, and the constant of proportionality B12 is
the Einstein B coefficient. This absorption process is an induced transition, because the
transition between states is “induced” by the incident photon.

Using this expression for the induced transition rate, the rate of change of the level 2
population N2 is given by the rate equation,

= N1B12��(�) – N2A21

where the first term gives the number of atoms (per unit volume) entering level 2 per unit
time, and the second term gives the number leaving level 2 per unit time. In thermal equi-
librium, dN2/dt = 0, which implies that

= ��(�) (no stimulated emission)

Putting this together with Eq. (18-1) would give ��(�) � exp(– h�/kBT ), since at resonance
E12 = h�. However, this does not agree with the blackbody spectrum, which was known
from experiments to follow the so-called Planck distribution,

��(�) = (Planck distribution) (18-4)

This distribution, shown in Fig. 18-2, agrees with the exp(–h�/kBt) dependence at higher
�, but not at lower �. It is this disagreement between the calculated and measured black-
body spectrum that prompted Einstein to postulate a third radiative process, that of stimu-
lated emission.

Stimulated Emission: Einstein Treatment

Einstein proposed that in addition to the usual absorption process, in which the atom goes
from level 1 up to level 2, there is a corresponding downward-going process, termed stim-
ulated emission (also called induced emission), which is induced by the incident light. In
stimulated emission, the incident photon causes the atom to go from level 2 down to level
1, thereby emitting a new photon which joins the photon initially present. Like absorp-
tion, this is an induced transition, but the atom here is induced to go from a higher to a
lower energy state, rather than from lower to higher. Since this process also depends on
light being present, it is assumed to proceed at a rate proportional to ��(�), just as for ab-
sorption. The probability per unit time that an atom undergoes stimulated emission is
written as

W21
ind = ��B21 (stimulated emission rate) (18-5)

where B21 is the second Einstein B coefficient. The three transition rates possible are sum-
marized in Fig. 18-1.

When stimulated emission is included, the rate equation for level 2 becomes

= N1B12��(�) – N2B21��(�) – N2A21 (18-6)
dN2
�
dt

1
��
eh�/kBT – 1

8�h�3

�
c3

B12
�
A21

N2
�
N1

dN2
�
dt
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where dN2/dt = 0 holds for thermal equilibrium, as before . Solving this for N2/N1 and us-
ing Eq. (18-1) gives

e–h�/kBT = (18-7)

which must be true at all temperatures T. The Einstein coefficients A21, B21, and B12 are
independent of temperature, since they are properties of a single atom. The temperature
dependence therefore comes from ��(�) on the right-hand side, and from the Boltzmann
factor on the left-hand side.

At high temperature, it was known experimentally that ��(�) � kBT, which historically
was referred to as the Rayleigh–Jeans law. Note that this is consistent with the Planck dis-
tribution of Eq. (18-4) in the limit kBT � h�. In this limit the A21 in the denominator of Eq.
(18-7) becomes small in comparison with B21��(�), since A21 and B21 are independent of
temperature. Eq. (18-7) then becomes 1 � B12/B21, or

B21 = B12 (Einstein B coefficients) (18-8)

which means that the probability of stimulated emission is equal to the probability of ab-
sorption. This conclusion is valid at any temperature, and is a fundamental relationship
between absorption and emission.* The equivalence of the Einstein B coefficients sug-
gests that at a deep level, emission and absorption are fundamentally the same, one being
an induced upward transition, and the other an induced downward transition. This equiva-
lence was only fully appreciated much later with the development of quantum electrody-
namics (QED), the quantum theory of light.

It should be noted that we have assumed nondegenerate energy levels, which means
that there is only one quantum mechanical state having the energy of the given level. If
the degeneracies of the lower and upper levels is g1 and g2, respectively, then the relation
between the Einstein B coefficients becomes g2 B21 = g1B12. For simplicity of notation,
we will continue to assume nondegenerate levels throughout the following discussion,
keeping in mind that the equations can always be generalized by multiplying by a ratio of
degeneracy factors.

Using B21 = B12 now in Eq. (18-7), and solving for ��(�) at arbitrary temperature, we
have

��(�) = (18-9)

This expression for ��(�) agrees with the blackbody spectrum of Eq. (18-4), provided that

= (Einstein relation) (18-10)

Eq. (18-10) is the principal result of Einstein’s derivation, and plays a key role in un-
derstanding the physics of lasers. It relates the probability of stimulated emission to that
of spontaneous emission, showing that one is proportional to the other. This means that,

8�h�3

�
c3

A21
�
B21

1
��
e–h�/(kBT) – 1

A21
�
B21

B12��(�)
��
A21 + B21��(�)
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*We did use the high-temperature limit to obtain this relation, but once we have it, it is valid in general since B21

and B12 are properties of a single atom and independent of T.
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all other things being equal, a transition with a higher spontaneous decay rate will have a
higher stimulated emission rate, and hence a stronger amplification of light. This has di-
rect implications for the performance and characteristics of different gain media, as we
will see in subsequent chapters.

Stimulated Emission: Quantum Viewpoint

Eq. (18-10) can be written in a different form that allows a simple physical interpretation.
Recalling from Eq. (16-9) that ��(�) = 8��2/c3 is the number of cavity modes per unit vol-
ume per unit frequency interval, Eq. (18-10) becomes

= ��(�) h� (18-11)

The spectral mode density ��(�) is related to the spectral energy density ��(�) by

��(�) = ��(v
m
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(18-12)

= ��(�) n�h�

where n� is the average number of photons per cavity mode. Combining Eqs. (18-11) and
(18-12) gives for the induced emission rate

W21
ind = ��(�)B21 = n�A21 (18-13)

or

W21
ind = n�W21

spont (18-14)

where the spontaneous decay rate is written as W21
spont � A21.

Eq. (18-14) is a very fundamental and important result, the significance of which was
not fully appreciated until the development of the quantum theory of radiation (quantum
electrodynamics, or QED). It says quite simply that the probability of an induced transi-
tion is equal to the probability of a spontaneous transition times the number of photons
per cavity mode. In the case of blackbody radiation, the average number of photons per
mode is found, by combining Eqs. (18-4), (18-12), and (14-9), to be

n� = (thermal equilibrium) (18-15)

Eq. (18-15) is actually a rather fundamental relation in itself, and anticipates certain
ideas in quantum statistical mechanics. In the quantum mechanical view, each cavity
mode is a quantum state, which may be either occupied or unocuppied by one or more
“quanta,” which in this case are photons. The number of quanta per state is known as the
occupation number, which can be greater than one for particles, like photons, that have
integer spin. In statistical mechanics, such particles are called bosons. It turns out that the
occupation number for bosons in a quantum state of energy h� is precisely that of Eq. (18-
15). For particles such as electrons, with half-integer spin (termed fermions), the occupa-
tion number is given by a similar expression, but with a plus sign in the denominator.

1
��
eh�/kBT – 1

A21
�
B21
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A He–Ne laser cavity has a cylindrical geometry with length 30 cm and diameter 0.5
cm. The laser transition is at 632.8 nm, with a frequency width of 1.5 GHz. Determine
(a) The number of modes in the laser cavity that are within the laser transition band-
width, (b) the average number of photons per cavity mode due to thermal radiation at
room temperature (300 K), and (c) the average number of 300 K thermal photons that
are in any cavity mode within the laser transition bandwidth.

Solution: (a) Designating the number of cavity modes within the laser transition band-
width as p, we have

p ~ V �� = ��

= = 2.4 × 109

(b) The photon energy is

h� = hc/	 = = 3.14 × 10–19 J

and the thermal energy is

kBT = (1.38 × 10–23)(300) = 4.14 × 10–21 J

The average number of photons per mode is then

n� = = 1.15 × 10–33

(c) The average number of thermal photons in any mode within the gain profile is then

n�p = (1.15 × 10–33)(2.4 × 109) = 2.8 × 10–24

It is clear from these numbers that thermal photons play a negligible role in populating
the cavity modes. We will see later that once lasing starts, the number of photons in a
single mode can be much larger than 1.

Narrowband Radiation

Einstein’s derivation of the A and B coefficients assumes that the blackbody radiation
spectrum is very broad compared with the atomic absorption line shape. In this case, the
number of photons per mode is nearly the same for all modes within the atomic line
shape. For laser light, the opposite situation occurs, in which the light spectrum is very
narrow compared with the atomic lineshape. Here, the number of photons per mode is

1
��
e314/4.14 – 1

(6.63 × 10–34)(3 × 108)
���

632.8 × 10–9

8�(7.5 × 10–6)(1.5 × 109)
���

(3 × 108)(633 × 10–9)2

8�V
�
c	2

8��2

�
c3
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very high for a few modes within the atomic lineshape, but much smaller for other modes,
as illustrated in Fig. 18-3. The Einstein relation between A and B in Eq. (18-10) still ap-
plies in this case, but the relation of Eq. (18-5) between B21 and the induced transition rate
W21

ind must be generalized to

W21
ind = � B21��(�)g(�) d� (18-16)

This gives the relationship between the induced transition rate and the Einstein B coeffi-
cient for any combination of radiation spectral distribution ��(�) and atomic lineshape
function g(�). In the limiting case of blackbody radiation, where ��(�) is approximately
constant over the width of g(�), the function ��(�) can be brought outside the integral and
evaluated at the lineshape center frequency �0. The induced transition rate then becomes
W21

ind = B21��(�0)�g(�)d� = B21��(�0), in agreement with the original definition of the Ein-
stein B coefficient.

In the case of laser radiation that is close to monochromatic, the opposite limit general-
ly applies, as shown in Fig. 18-4. Here it is the atomic lineshape function g(�) that is ap-
proximately constant over the width of ��(�), so that g(�) can be brought outside the inte-
gral, evaluated at the laser light center frequency �
. Eq. (18-16) then becomes

W21
ind = B21g(�
)� ��(�) d�

(18-17)
= B21g(�
) �

where

� � = � ��(�) d� (18-18)

is the energy density, in MKS units of J/m3. Note carefully the distinction between � and
��(�). The latter is a spectral density, the energy density per unit frequency interval, with
units of J · s/m3.

light energy
��

volume
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Figure 18-3 (a) Photon modes are equally populated under the atomic lineshape for blackbody ra-
diation. (b) Only a few photon modes are highly populated in laser radiation.
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Eq. (18-17) can be written in terms of the light intensity I using I = c� from Eq. (2-9).
The induced rate then becomes

W21
ind = B21g(�
) I/c (stimulated emission rate) (18-19)

Since B12 = B21 from Eq. (18-8), the induced transition rate from level 1 up to level 2 (ab-
sorption rate) is given by the same expression. Therefore,

W21
ind = W12

ind � Wind = B21g(�
) I/c (induced transition rates) (18-20)

This will prove to be a useful relation in calculating optical gain.

Quantum Viewpoint: Photons Per Mode

We present here a more rigorous justification for the relation between B21 and W21
ind given

in Eq. (18-16). A fundamental principle of the quantum theory of light is that Eq. (18-14)
applies not only to the total emission rate, but also to the emission rate into each mode
separately. This can be expressed as

W21
ind,i = niW21

spont,i (18-21)

where ni is the number of photons in cavity mode i, W21
spont,i is the probability per unit time

that the atom emits a spontaneous photon into mode i, and W21
ind,i is the probability per unit

time that the atom emits an induced photon into mode i. The total induced rate from level
2 to level 1 can then be written as a sum over modes,

W21
ind = �

i

W21
ind,i

(18-22)

= �
i

niW21
spont,i

which is the most general relation between induced and  spontaneous emission rates for
an atomic transition. We will first consider  some special cases, and then derive Eq. (18-
16).
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Figure 18-4 For laser light, the frequency distribution is much narrower than the lineshape of the
atomic transition.
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In the case of blackbody radiation previously considered, ni = n� for all modes within
the atomic lineshape, and W21

ind = n��W21
spont,i = n�W21

spont, consistent with the result in Eq.
(18-14). In the opposite limit, where all the radiation is in a single cavity mode j,

W21
ind = nj W21

spont,j

The spontaneous emission rate W21
spont,j into the single mode j can be estimated by assum-

ing roughly equal emission into a total of p modes under the atomic lineshape, the fraction
emitted into any single mode being 1/p. We then have W21

spont, j � (1/p) W21
spont, which when

combined with the above gives

W21
ind � W21

spont (light in single cavity mode j) (18-23)

This result shows that the total induced and spontaneous rates are related by the average
number of photons per mode, even when the modes are unevenly populated. Equation
(18-14) therefore applies quite generally, provided that n� is interpreted as the average
mode population.

An alternative form for Eq. (18-22) can be obtained by changing the sum over modes
into an integral over mode frequencies,

W21
ind = � � �niW21

spont,id� (18-24)

where the # modes per frequency interval is given by Eq. (16-9) as dN/d� = V��(�). The
number of photons in mode i can be written as

ni = ��en

�

er

�

gy
����energy

1

/photon
����mod

1

es/��
��

(18-25)

= �
�

�

�(
�

�

(�

)h

)

�
�

where �� is a small frequency interval and Eq. (18-2) has been used. The spontaneous
emission rate into mode i can be written as

W21
spont, i =

= � �� � (18-26)

= W21
spontg(�)

where g(�) is the lineshape factor defined in Eq. (18-3), normalized so that �g(�) d� =1.
The lineshape factor gives the frequency distribution of photons emitted spontaneously
from an atomic level, and plays an important role in characterizing a laser transition. The
product W21

spontg(�) gives the photon emission rate per unit frequency interval, and inte-

1
�
V��(�)

1
��
modes/��

photons emitted
��

(time)(��)

photons emitted
��

(time)(mode)

# modes
��
frequency interval

nj
�
p
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grating this over the entire lineshape gives the total spontaneous decay rate, �W21
spontg(�)

d� = W21
spont.

Putting Eqs. (18-24)–(18-26) together along with Eq. (18-11) gives the result

W21
ind = � B21��(�)g(�) d�

which is the expression quoted earlier in Eq. (18-16).

18-2. OPTICAL GAIN

At the heart of a laser or optical amplifier is a gain medium that amplifies a light beam
passing through it. We are now in a position to calculate this gain, using the expressions
for induced transition rate developed in the previous section. In this section, we see how
the degree of amplification can be characterized by either a gain coefficient or a gain
cross section. We also discuss certain material properties that influence the gain on a laser
transition.

Gain Coefficient

Let us assume that a nearly monochromatic light wave of frequency � is incident on a col-
lection of atoms having energy levels 1 and 2, as shown in Fig. 18-5. There will be other
energy levels in the atoms, but we focus attention on the two particular levels involved in
the laser transition. Light is added to the beam by stimulated emission at a rate N2W21

ind,
and is absorbed from the beam at a rate N1W12

ind. Spontaneous emission also generates
light, but this light is emitted in random directions, with only a small fraction in the direc-
tion of the original beam. The net number of photons added to the beam per unit volume
per unit time is then given by

�
(

p

v

h

o

o

lu

to

m

n

e

s

)

a

(t

d

i

d

m

e

e

d

)
� = N2W21

ind – N1W12
ind

(18-27)

= �NWind
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Figure 18-5 Induced emission and absorption add and subtract photons from the incident beam.
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where �N � (N2 – N1) is the population difference, and Eq. (18-20) has been used. Each
added photon contributes an energy h� to the beam, so the change in the beam’s energy
density with time is given by

�
�

�

�

t
� =�

e

(

n

v

e

o

r

l

g

u

y

m

g

e

e

)

n

(t

e

i

r

m

at

e

e

)

d
�

(18-28)

= �NWindh�

Assume now that the beam traverses a section of gain material with thickness �z, as
shown in Fig. 18-6. A slice of the beam with thickness � �z will take a time �t = �z/c to
pass through the section of gain material, and during this time the energy density in the
slice will increase by

�� = �NWindh��t
(18-29)

= �NWindh��z/c

Using �I = c��, Eq. (18-29) can be written as

�I = �NWindh��z (18-30)

Writing Wind in terms of I from Eq. (18-20), and using the Einstein relation between B and
A in Eq. (18-10), this becomes

�I = g(�)I�N�z (18-31)

Dividing both sides by �z and taking the limit as �z � 0 gives the differential equation,

�
d

d

z

I
� = 	A21 �

8

	

�

2

� g(�)�N
I

(18-32)

= 
(�)I

A21c2

�
8��2
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Figure 18-6 Change in beam intensity in traversing thickness �z of gain medium is related to
change in energy density ��.
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where 
(�) is the gain coefficient, given by


(�) = A21 g(�) �N (gain coefficient) (18-33)

In a medium of refractive index n, the wavelength to use in this equation is 	 = (c/n)/�, the
wavelength in the medium.

The gain coefficient 
(�) is one of the most important parameters in the physics of
lasers. It is defined as the fractional change in light intensity per unit propagation distance,

(�) = (�I/I)/�z, and must be positive for light amplification to occur. For the gain coeffi-
cient to be positive, it is necessary that �N > 0, which means that there are more atoms in
the upper level 2 than in the lower level 1. For atoms in thermal equilibrium the opposite
situation exists, since the populations are given by the Boltzmann factor of Eq. (18-1), and
�N < 0. To achieve amplification, then, more atoms must be put into the upper level than
would normally be there in thermal equilibrium, a process termed pumping the upper lev-
el. A positive �N is termed a population inversion, since the relative sizes of N1 and N2 are
inverted compared to thermal equilibrium. The process of pumping the upper level to ob-
tain a population inversion will be considered in more detail in the next chapter.

If 
(�) is positive and independent of z, the solution for I(z) is easily obtained by divid-
ing Eq. (18-32) by I and integrating over z,

�I

I0

= �z

0

(�) dz

ln I – ln I0 = 
(�) z

ln 	 
 = 
(�) z

= e
(�)z

or

I(z) = I0e
(�)z (18-34)

where I0 is the initial intensity at z = 0.
According to Eq. (18-34), the light intensity increases exponentially with propagation

distance z, as shown in Fig. 18-7. The increase is gentle at first, becoming more pro-
nounced as z increases. This qualitative behavior can be understood from the differential
equation, which says that the rate of increase in I at a particular z is proportional to the in-
tensity at that z. The higher the intensity, the more rapidly the intensity will increase with
z. If the derivation leading to this result is traced backward, it is seen to arise directly from
Einstein’s assumption that the rate of stimulated emission is proportional to the energy
density of the light beam.

The exponential increase in light intensity cannot continue indefinitely, of course, be-
cause the intensity would go to infinity, which is physically unrealistic. At some point, the
gain will start to be limited because the population difference �N will decrease. One rea-
son for a decrease in �N is the stimulated emission process itself, as illustrated in Fig. 18-
8. Each photon created by stimulated emission decreases the upper-state population N2 by
1, and increases the lower-state population N1 by 1, for a change in �N of –2. The pump-

I
�
I0

I
�
I0

dI
�
I

	2

�
8�
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ing mechanism can be used to maintain the population inversion, but only up to a point.
When the decrease in �N from stimulated emission is greater than the increase in �N
from the pump, the population inversion will decrease, thereby limiting the gain. This
phenomenon of limited gain due to a decreased population inversion is referred to as gain
saturation, and will be considered in more detail in the next chapter.

Gain Cross Section

The gain coefficient 
(�) given in Eq. (18-33) depends on two types of parameters: those
that characterize the properties of a single atom, and those that characterize how many
atoms are in a particular energy level. It is useful to separate out all the single-atom prop-
erties into a single factor known as the gain cross section �(�), writing Eq. (18-33) as


(�) = �N�(�)
(18-35)

= N2�(�) – N1�(�)

where the cross section �(�) is given by

�(�) = A21 g(�) (cross section) (18-36)
	2

�
8�
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Figure 18-7 Exponential increase in light intensity when gain coefficient 
 is independent of z.

Figure 18-8 Stimulated emission causes the population difference to decrease.
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Since the gain cross section is a property of a single atom, cross section values for atomic
transitions of interest can be tabulated in handbooks. Cross section data is often presented
in the form of a graph as a function of wavelength for a particular atomic transition. The
gain coefficient cannot be similarly tabulated, because it depends on the number of atoms
pumped into the higher energy level, which in turn depends on the pumping rate.

Eq. (18-35) assumes that the induced emission and absorption probabilities per atom
are equal, as in Eq. (18-8). However, this is strictly true only for nondegenerate energy
levels. In many cases of interest, the upper and lower energy states actually consist of a
series of closely spaced sublevels, with transitions possible between any sublevel of the
upper state and any sublevel of the lower state. This can be taken into account by general-
izing Eq. (18-35) to


(�) = N2�em(�) – N1�abs(�) (18-37)

where �em(�) is the emission cross section, and �abs(�) is the absorption cross section.
The emission cross section is given by Eq. (18-36), with A21 now interpreted as the total
spontaneous decay rate from the combined set of sublevels in the upper state. The corre-
sponding absorption cross section is related to the emission cross section by the simple
expression

�abs(�) = �em(�)e(h�–�)/kBT (McCumber relation) (18-38)

where the parameter � is an effective energy difference between the two sets of sublevels,
as illustrated in Fig. 18-9.

This relation between emission and absorption cross sections was first developed by
McCumber (McCumber 1964), and constitutes a generalization of the Einstein A and B
treatment for energy states with sublevels. It has proved useful in characterizing certain
types of gain media for use as an amplifier or laser, such as rare earth ions doped into a
solid. An example is given in Fig. 18-10, which shows �abs(�) and �em(�) for the lowest
energy transition in Er3+-doped silicate glass. Note that at higher photon energy (shorter
wavelength), the absorption cross section is greater than the emission cross section,
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Figure 18-9 Absorption and emission between sublevels of the upper and lower states.
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whereas at lower photon energy the reverse is true. This agrees with Eq. (18-38), and can
be understood by considering transitions between different pairs of sublevels in the upper
and lower states, as shown in Fig. 18-9. Absorption transitions occur mostly from the
lower sublevels of the bottom state, because the Boltzmann factor reduces the number of
atoms in the higher sublevels. Similarly, emission occurs mostly from the lowest sub-
levels of the upper state. Therefore, there are more high photon energy transitions in ab-
sorption than in emission, and vice versa. This asymmetry between emission and absorp-
tion becomes more pronounced at low temperature.

For notational simplicity, we will assume that �abs(�) = �em(�) � �(�) in much of our
subsequent treatment of lasers. The analysis can always be generalized, however, by us-
ing Eq. (18-37) in place of Eq. (18-35), and where appropriate we will utilize the more
general relation.

A cross section has units of area, since 
(�) and �N in Eq. (18-35) have units of m–1 and
m–3, respectively. Cross section is also a property of a single atom, which suggests that it
might correspond to an effective absorbing area for an atom. To explore this possibility, we
consider a beam of light of area Abeam incident on a collection of atoms as in Fig. 18-11. The
atoms will be assumed to be in the lowest energy state 1 (the ground state), with N1 atoms
per unit volume. The number of atoms in a slice of thickness �z is then N1V = N1Abeam�z,
with the number of atoms per unit beam area in the slice �z given by

=

= N1�z

We define an effective absorbing area Aatom for each atom, such that any light incident
within this area will be absorbed, with any light outside this area transmitted. The com-
bined absorbing area of the atoms per unit beam area is then

= N1�zAatom

area of atoms
��

beam area

N1V
�
Abeam

# atoms
��
beam area
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Figure 18-10 Absorption and emission cross sections versus wavelength for the rare earth ion Er3+

doped in silicate glass. (Data courtesy of Rodica Martin.)
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The above ratio of areas is the fraction of the total beam energy that is absorbed in thick-
ness �z. This ratio can also be expressed in terms of the absorption coefficient �(�),
which is the fraction of the beam absorbed per unit length. From Eq. (18-37), �(�) =
N1�abs(�) when N2 = 0, which gives for the fractional beam loss

N1�zAatom = N1�abs(�)�z

Dividing by N1�z gives Aatom = �abs(�), which confirms that the absorption cross section
can indeed be thought of as an effective absorption area for the atom. One must be careful
with this analogy, however, because �(�) is not just a fixed quantity like the area of a
shadow cast by a physical object. Instead, it represents the effective area over which an
atom can “grab” a photon that is passing by. This grabbing ability is not a constant, but in-
stead varies with the frequency or wavelength of the light. The cross section can be larger
or smaller than the physical size of the atom.

As the beam propagates, its intensity varies with z according to Eq. (18-34), which in
the case of N2 = 0 becomes

I(z) = I(0)e–N1�absz (18-39)

The intensity decays exponentially with distance, as illustrated in Fig. 18-12, and corre-
sponds to the Beer’s law relation given in Eq. (5-1). 

Fluorescence Lifetime

The Einstein A coefficient is a transition rate, giving the probability per unit time that an
atom in the upper state 2 will make a transition to the lower state 1. An alternative way to
characterize the transition probability is to specify the average time that an atom will re-
main in the upper state before decaying to the lower state. This average decay time is
termed the fluorescence lifetime, since it describes the duration of spontaneously emitted
light (fluorescence) by a collection of atoms that are initially placed in the upper state 2.

Considering only spontaneous emission processes, the time rate of change of the popu-
lation of state 2 is given by Eq. (18-6) as
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Figure 18-11 Each atom absorbs light from an area equal to its absorption cross section �.
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= –A21N2 (18-40)

where N2 is the number of atoms per unit volume in state 2. This simple first-order differ-
ential equation is in the same form as Eq. (18-32), and has the solution

N2(t) = N2(0)e–A21t

(18-41)
= N2(0) e–t/�21

where N2(0) is the initial population of the upper level, �21 is the fluorescence lifetime or
the spontaneous lifetime of the 2 � 1 transition, and we have defined

A21 � (18-42)

The time dependence of N2(t) is that of an exponential decay, as shown in Fig. 18-13. The
fluorescence lifetime �21 is the time at which the number of atoms in the upper state has
decreased to a fraction 1/e of the initial value. After each successive time interval of �21,
the number remaining in the upper state decreases by an additional factor of 1/e, eventual-
ly getting very small but never (in principle) going completely to zero.

Using Eq. (18-42), the cross section of Eq. (18-36) can be written as

�(�) = g(�)

Integrating over � and using the normalization condition �g(�) d� = 1, the lifetime can be
expressed as

�21 = (18-43)
	2

��
8���(�) d�

	2

�
8�

1
�
�21

1
�
�21

dN2
�
dt
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Figure 18-12 Exponential decrease of light intensity with propagation due to absorption.
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The lifetime therefore depends only on the wavelength and the integrated cross section.
Sometimes, this integrated cross section is expressed in terms of a dimensionless parame-
ter known as the oscillator strength:

f � (4��0) � �(�) d� (oscillator strength) (18-44)

where m and e are the mass and charge of an electron, and �0 is the permittivity of free
space. Transitions with f ~ 1 are termed allowed transitions, and have very short lifetimes,
typically on the order of 10 ns for transitions in the visible and near IR regions. Some
transitions (for example those of the rare earth ions) are partially forbidden by quantum
mechanical selection rules, and have much lower oscillator strengths. For a typical rare
earth ion transition, f ~ 10–6 and � ~ 10–3 s. The wide range of lifetimes and oscillator
strengths has implications for various laser characteristics, as will be seen in subsequent
chapters.

Quantum Yield

So far it has been assumed that level 2 decays only radiatively, by emitting a photon. For
an isolated atom, this is the only decay process available for depopulating the excited
state. However, if an atom in level 2 can interact with other nearby atoms, the energy in
level 2 can be given to the surrounding atoms in a nonradiative decay process. In such a
process, the excitation energy in level 2 is released from the atom without the emission of
a photon. This can occur in a gas, for example, when energy is transferred between atoms
during a collision. In a solid, energy can be transferred from level 2 to the vibrational
modes (phonons) of the solid, which results in heating of the material. Another possible
decay mechanism in a solid is energy transfer, in which the energy in an excited electron-
ic state of one atom is transferred to an excited electronic state of a nearby atom. The
probability per unit time that the atom in level 2 decays nonradiatively by any mechanism
will be designated Wnr.

mc
�
�e2
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Figure 18-13 Population in excited state 2 decays exponentially with lifetime �21, due to sponta-
neous emission.
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The two types of spontaneous decay processes for level 2 are summarized in Fig. 18-
14. Wr = A21 is the radiative decay rate (probability per unit time that atom decays radia-
tively), and Wnr is the sum of all possible nonradiative decay rates. The total decay rate
out of level 2 is

Wtot = Wr + Wnr

(18-45)
� �

1

�
�

where � is the fluorescence lifetime of level 2. In the rate equation of Eq. (18-40), A21 is
now replaced by Wtot, and the population of level 2 decays in time as N2(0) exp(–t/�).

The nonradiative decay process is generally detrimental to the operation of lasers,
since it causes a certain fraction of the excitation energy to be wasted as heat. A quantita-
tive figure of merit for a laser transition is the quantum efficiency (or quantum yield) �,
defined as the fraction of the time that an atom in state 2 will decay radiatively. This can
be written as

� =

(18-46)

=

The radiative and nonradiative rates can also be written in terms of a lifetime according to

Wr � �
�

1

r

�

(18-47)

Wnr � �
�

1

nr

�

so that � can be written in the form

� = = (quantum efficiency) (18-48)
�

�
�r

1/�r
�
1/�

Wr
�
Wtot

(prob. for radiative decay)/(time)
����

(prob. for any decay)/(time)
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Figure 18-14 Excited state 2 can decay spontaneously either by radiative (solid line) or nonradia-
tive (dashed line) processes.
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Lineshape Function

We now consider in more detail the lineshape function g(�), introduced in Eq. (18-3). A
number of different types of lineshapes are encountered in the gain media for lasers. They
may be classified as homogeneously broadened or inhomogeneously broadened, depend-
ing on whether the lineshape function is the same or different for each atom in the medi-
um. A homogeneously broadened transition has the Lorentzian lineshape, given by

g(�) = (homogeneous lineshape) (18-49)

where �0 is the center frequency of the atomic transition, and �� is the full width at half
maximum (FWHM), as illustrated in Fig. 18-15. The maximum value of the lineshape
function occurs at the line center frequency �0, and is given by

gmax = g(�0) = (18-50)

This reciprical relation between gmax and �� has important implications for the gain of a
laser medium, since the gain coefficient is proportional to g(�). Transitions with a narrow
linewidth are, therefore, expected to have a higher gain.

The Lorentzian lineshape arises whenever the atomic state (described in quantum me-
chanics by the wave function) is perturbed by processes that occur randomly in time. If the
average time between interuptions of the atomic state is �t, the corresponding frequency
width will be given by the uncertainty relation �� ~ 1/�t (see Appendix B). For example,
an atom in the excited state interacts with the electromagnetic field, and can emit a photon
with a certain (constant) probability per unit time. This photon emission leads, as we have
seen, to the exponential decay of the upper-state population, which is described by the flu-
orescence lifetime. The broadening of the lineshape due to photon emission is therefore
termed lifetime broadening. The linewidth that results from lifetime broadening is referred
to as the natural linewidth, since it occurs naturally for an isolated atom.

2
�
���

��/2
��
(� – �0)2 + (��/2)2

1
�
�
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Figure 18-15 Lorentzian lineshape for homogeneously broadened transition, showing definition of
full width at half maximum ��.
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Lifetime broadening is usually a minor contribution to the homogeneous linewidth, be-
cause there are other processes that generally interupt the atomic state more frequently
than photon emission. In a gas, for example, collisions between atoms occur at a rate that
is proportional to the gas pressure, resulting in a pressure-broadening contribution to the
transition linewidth. In a solid, neighboring atoms do not “collide” directly, but they still
interact via the vibrations of the solid. In quantum mechanics, this interaction is described
by the absorption and emission of phonons, which are the quanta of lattice vibration. The
resulting broadening of the linewidth is termed phonon broadening, which increases at
higher temperatures where the amplitude of atomic vibrations (and hence the number of
phonons) is greater.

In addition to the homogeneous broadening mechanisms discussed above, the transi-
tion lineshape may be inhomogeneously broadened as well. In this case, the lineshape is
due to the superposition of many homogeneous lineshape components with different cen-
ter frequencies, as illustrated in Fig. 18-16. For a gas medium, inhomogeneous broaden-
ing arises from the Doppler shift, in which atoms moving toward or away from the ob-
server have their transition frequencies shifted up or down. For a solid, inhomogeneous
broadening is due to the different local environment surrounding the various atoms in the
medium, which causes a shift in the atoms’ energy levels. This is especially pronounced
in disordered media such as glasses or liquids, but it is present even in crystalline solids,
where microscopic strains cause a spatially varying local environment.

The physical processes that give rise to inhomogeneous broadening are random in na-
ture (velocity of atom in gas, site-to-site variation in local environment in solid), and the
lineshape therefore represents the statistical distribution of a randomly varying center fre-
quency. Mathematically, the relative probability of occurance for a random variable is
given by the Gaussian distribution, which leads to the lineshape function

g(�) = ae–b(�–�0)2 (inhomogeneous lineshape) (18-51)

where �0 is the average center frequency. The constant b is determined by requiring g(�0

± ��/2) = (1/2) g(�0), whereas a is determined from the normalization condition �g(�) d�
= 1. The result is

a = �
�

1

�
� ��

4� l

��n� 2
��

(18-52)

b = �
4

(�

ln

�)

2
2

�

Eq. (18-51) is valid when the homogeneous linewidth ��h is much smaller than the in-
homogeneous linewidth ��inh, and Eq. (18-49) is valid in the opposite limit, ��h � ��inh.
In the intermediate case in which ��h ~ ��inh, the lineshape is given by the Voight profile
(see, for example, DiBartolo 1968), which is the convolution of these two functions. This
function is mathematically complex, and is not often used in practice.

Finally, it should be noted that the lineshape functions in Eqs. (18-49) and (18-51) only
apply to transitions between a single (nondegenerate) pair of energy levels. Many atomic
states actually consist of a series of closely spaced sublevels, as shown in Fig. 18-9. The
many possible transitions between sublevels of the upper state and sublevels of the lower
state lead to a rather complex lineshape function g(�), as illustrated in Fig. 18-10 for the
rare earth ion Er3+. If the exact energies of the various sublevels are known, the lineshape

348 Chapter 18 Stimulated Emission and Optical Gain

c18.qxd  2/14/2006  8:30 AM  Page 348



can be written as a sum of Lorentzian or Gaussian lines with a finite number of center fre-
quencies. In practice, the absorption or emission lineshapes are usually measured experi-
mentally, and one is determined from the other using the McCumber relation of Eq. (18-
38).

PROBLEMS

18.1 In an Er:glass laser, absorption from the ground state to the first excited state oc-
curs at a wavelength of 1500 nm. At room temperature, determine the fraction of
Er ions that are in the excited state if the material is in thermal equilibrium.

18.2 (a) Show that for a Lorentzian lineshape the peak cross section is

�peak =

where �� is the full width at half maximum of the lineshape, �21 is the radiative
lifetime, 	 is the free-space wavelength, and n is the material’s index of refraction.
(b) Derive a similar expression for a Gaussian lineshape function.

18.3 The active medium for a ruby laser consists of Cr3+ ions doped in an Al2O3 crystal.
The spectroscopic parameters relevant for a ruby laser are given in Table 23-1. (a)
Assuming that the emission spectrum has a Lorentzian lineshape, calculate the ra-
diative lifetime of the transition (hint: see Problem 18.2). (b) Determine the quan-
tum efficiency. (c) Determine the radiative and nonradiative decay rates for this
transition.

18.4 For the ruby laser transition considered in Problem 18.3, calculate the absorption
coefficient (probability of absorption per unit length) for fluorescence emitted at
the peak wavelength. Assume the absorption and emission cross sections are equal,
and take the Cr3+ ion density to be 1.6 × 1019 ions/cm3. Use this to estimate the
probability that an emitted photon will be reabsorbed as it passes through 0.5 cm of
the ruby crystal.

	2

��
�214�2n2��

Problems 349

Figure 18-16 Inhomogeneously broadened lineshape is the superposition of many homogeneous
lineshape components with different center frequencies. 
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18.5 (a) For the ruby laser transition considered in Problem 18.3, calculate the Einstein
A and B coefficients. (b) During a Q-switched laser pulse, a typical intracavity
peak intensity is 109 W/cm2. Assuming that the laser pulse is spectrally narrow
compared with the transition’s Lorentzian linewidth, and occurs at the center of the
lineshape, calculate the stimulated emission rate for a single Cr3+ ion in the excited
state. How does this rate compare with the spontaneous emission rate from a single
ion? (Note: in the relation between A and B, replace c by c/n for a medium with in-
dex of refraction n.)

18.6 An Er-doped glass fiber has a doping level of 8 × 1018 Er ions/cm3. It is optically
pumped with light of wavelength 1480 nm, and lasing occurs at a wavelength of
1560 nm. The absorption and emission cross sections are given in Fig. 18-10. (a)
Determine the absorption coefficient at 1480 nm. (b) Determine the fraction of
pump light absorbed in a fiber of length 2 m. (c) If the fiber is strongly pumped, so
that most of the Er ions are in the excited state, determine the gain coefficient in
the fiber at 1560 nm. (d) Calculate the net gain at 1560 nm in a 2 m length of this
fiber (gain = power out/power in).

18.7 Obtain an expression for the radiative lifetime in terms of the transition oscillator
strength. Calculate the lifetime for a transition with wavelength 500 nm and f =
0.5.

18.8 Determine the oscillator strength for the ruby laser and dye laser transitions, using
the data from Table 23-1. Assume a Lorentzian lineshape. Which of these is an “al-
lowed” transition?

18.9 A fiber amplifier uses a transition from the 1G4 level of Pr3+ to provide amplifica-
tion for 1300 nm light. The calculated radiative lifetime from the 1G4 is 3.0 ms,
whereas the measured fluorescence lifetime is 110 �s. Determine (a) the quantum
efficiency, (b) the radiative decay rate, and (c) the nonradiative decay rate from
this level.

18.10 In an absorption cell, 40% of the incident light is absorbed (60% is transmitted) in
a path length of 10 cm. (a) Determine the absorption coefficient. (b) What fraction
of the incident light would be transmitted in a similar absorption cell of length 25
cm?

18.11 Say that the lineshape function for a dye laser gain medium were modeled as a
symmetrical triangle, rather than a Lorentzian curve. Assume the following para-
meters: spontaneous emission lifetime 8 ns, a center wavelength 590 nm, lineshape
width 40 nm (FWHM), index of refraction 1.33, and population inversion N2 – N1

= 1.0 × 1018 cm–3. Determine (a) the peak cross section for stimulated emission, (b)
the peak gain coefficient, and (c) the thickness of this gain medium needed to am-
plify the light by a factor of 20.
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In the previous chapter, we found that optical amplification can occur when the popula-
tion N2 in the upper state is greater than the population N1 in the lower state, a situation
known as population inversion. The gain coefficient in the medium is proportional to the
population difference �N = N2 – N1, with the proportionality constant being the optical
cross section �(�) for the transition. In this chapter, we show how to determine the popu-
lation inversion using a rate equation approach. We use this to calculate the net gain of an
optical amplifier, and discuss the efficiency with which the pump power is converted into
amplified light power.

19-1. GAIN COEFFICIENT

In general, the gain coefficient may vary with position in the gain medium. We will there-
fore begin by focusing on a section of the gain medium small enough that the gain coeffi-
cient there can be considered to be approximately constant. The gain coefficient in this
small section depends on the population inversion N2 – N1 in that section. To determine
the level populations N2 and N1, we use a rate equation approach.

Rate Equation Approach

Consider two possible energy level schemes for obtaining a population inversion, as
shown in Fig. 19-1. In both schemes, a higher state (level 3) is excited directly by the
pumping mechanism, and this state decays quickly and nonradiatively to the upper laser
level 2. Stimulated emission then occurs from level 2 to level 1, which is the optical gain
transition. The difference between the two schemes is in the position of the lower laser
level. For the three-level system, the lower laser level is the ground state (lowest energy
level), whereas for the four-level system the lower laser level is an excited state of the sys-
tem. It will be assumed that this lower laser level decays quickly back to the ground state.
To achieve population inversion (N2 > N1) in the three-level system requires that at least
half the atoms be pumped out of the ground state, which requires a good deal of pump en-
ergy. In contrast, the four-level system can achieve population inversion with only a small
number of atoms raised out of the ground state.

Generally, it is easiest to obtain amplification and lasing with a four-level system be-
cause not as much pump energy must be wasted in removing atoms from the ground state.
It is perhaps ironic, then, that the first laser, experimentally demonstrated in 1960, was
based on the three-level energy scheme of ruby (Cr3+:Al2O3). This laser was not efficient,
however, and only operated in a pulsed mode. Soon, other lasers such as Nd:YAG were
introduced, which were more efficient and operated continuously. These other lasers were
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based on the more efficient four-level energy scheme. Since they are easier to treat math-
ematically, we will mostly confine our detailed analysis to four-level systems here.

The movement of population between levels is analogous to the flow of water between
holding tanks in a recirculating system, as illustrated in Fig. 19-2 for a four-level system.
The amount of water in a tank corresponds to the population Ni of that energy level. Wa-
ter in the lowest holding tank (the “ground state”) is “pumped up” by a water pump into
the highest tank (#3), which drains quickly into the next-lowest tank (#2) through a large
hole in the bottom. Tank #2 (the upper laser level) has a much smaller hole in the bottom,
so water tends to build up there. The water that drips from tank #2 down into tank #1 is
quickly drained from tank #1 by a large hole in its bottom, and returns to the lowest tank.

In our analogy, tanks with larger holes in the bottom correspond to levels with faster
relaxation rates, which means that W32 � W21 and W10 � W21 for our system. It is clear
that in the steady state there will be little water in tanks #1 and #3, which means that N1 �

352 Chapter 19 Optical Amplifiers

Figure 19-1 Two common energy level schemes for a laser or amplifier, showing relevant transition
rates between levels. Thick arrows correspond to stimulated emission.

Figure 19-2 Flowing-water analogy for the transfer of population between energy levels in laser
gain medium.
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N3 � 0. Population inversion is, therefore, readily obtained, since �N � N2, which is pos-
itive for any rate of pumping. It is also clear that level 2 is in effect being directly populat-
ed by the pump, since any water placed in tank #3 very quickly passes down to tank #2.

With the above approximations, only a single rate equation is required to describe the
level populations in the four-level system. The rate of change of the upper laser state pop-
ulation can be written as

�
d

d

N

t
2

� = N0Wp – N2W21
ind + N1W12

ind – �
N

�2

2
�

(19-1)

� N0Wp – N2W21
ind – �

N

�2

2
�

where �2 is the fluorescence lifetime of level 2 and the approximation N1 � N2 has been
used. The rate Wp is the pump rate, defined as the probability per unit time that an atom is
promoted by the pump from the ground state up to level 3. The rate W21

ind is, as before, the
probability per unit time for an induced transition.

The induced transition rate was found in the previous chapter to be proportional to the
light intensity I that is resonant with the 2 � 1 transition. Using Eqs. (18-20), (18-10),
and (18-36), it can be written in the form

W21
ind = � �� �g(�)

= � � (19-2)

=

where �(�) is the gain cross section. Eq. (19-2) applies to induced rates for both absorp-
tion and emission,

W21
ind = �

I�e

h
m

�

(�)
�

(19-3)

W12
ind = �

I�a

h
b

�
s(�)
�

where �em(�) and �abs(�) are the emission and absorption cross sections. In the case of op-
tical pumping, the pump rate is given by Wp = I�abs(�p)/(h�p), where �p is the frequency of
the pump light.

Using Eq. (19-2) for W21
ind, the rate equation of Eq. (19-1) can be written as

= R – N2� + � (19-4)

where R � N0Wp is the total number of atoms pumped up to level 2 per unit volume per
unit time. This equation relates the excited-state population N2 to the light intensity I, and
is one of the fundamental equations that will be used in this and subsequent chapters to
understand the operation and behavior of lasers.

1
�
�2

I�
�
h�

dN2
�
dt
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��
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Gain Saturation

The gain coefficient 
 = N2� can be determined by solving Eq. (19-4) for N2. This equa-
tion can be written in the more compact form

= R – (19-5)

where ��2 is an effective lifetime for the upper level, given by

� +

If I is constant in time, and if there is little depletion of the ground state (N2 � N0), then
both ��2 and R are constants. This makes Eq. (19-5) a linear, first-order differential equa-
tion, similar to that for a capacitor being charged through a resistor by a fixed voltage.
The solution (which can be verified by substitution) is

N2(t) = N2(�)[1 – e–t/��2] (19-6)

where N2(�) is the limiting value of N2 as t � �, referred to as the steady-state value of
N2. The time dependence of Eq. (19-6) is that of an exponential rise to the steady state
value, as illustrated in Fig. 19-3.

In the steady state, where dN2/dt = 0, Eq. (19-5) becomes

N2(�) = R ��2
(19-7)

=

Note that a higher light intensity I gives rise to a smaller steady-state population N2(�). In
our water system analogy, this corresponds to placing a second pump below tank #2,

R �2
��
1 + I��2/(h�)

I�
�
h�

1
�
�2

1
�
��2

N2
�
��2

dN2
�
dt
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Figure 19-3 Excited state population N2 versus time for constant pump rate and signal intensity I.
Higher I decreases the population inversion.
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which actively pulls water down from tank #2 to tank #1. It is intuitively clear that this
will result is a smaller steady-state amount of water in tank #2. The steady state is also
reached more quickly with a higher I, since the “time constant” ��2 is smaller.

The gain coefficient in the steady state is then


(�) = N2(�)�(�) = (19-8)

which also decreases with higher I. The reduction in gain with increasing light intensity is
termed gain saturation, and plays a key role in the operation of a laser or amplifier. It is
convenient to characterize gain saturation by the saturation intensity Is, defined as the in-
tensity at which the gain is reduced by a factor of 2 from its low-intensity value. Setting
the denominator of Eq. (19-8) equal to 2, we have

= 1

or

Is = (saturation intensity) (19-9)

The gain coefficient in Eq. (19-8) can then be written as


(�) = �
R

1

�

+
2�

I

(

/

�

Is

)
�

(19-10)

= �
1




+
0(

I

�

/

)

Is

�

where


0 � R �2� = (19-11)

is the unsaturated gain coefficient.
The derivation leading to Eq. (19-8) assumes that all atoms in the gain medium are

equivalent, which means that the lineshape is homogeneously broadened. In this case, a
strong light intensity at frequency �� will saturate each part of the gain curve to the same de-
gree, as illustrated in Fig. 19-4a. If instead the lineshape is inhomogeneously broadened,
then the light at �� will only interact strongly with those atoms that have center frequencies
within a homogeneous linewidth of ��. The gain from these “spectrally nearby” atoms will
be saturated, whereas the gain from atoms in other parts of the lineshape spectrum will re-
main at the unsaturated value. The result is a spectral “hole” in the gain spectrum, as illus-
trated in Fig. 19-4b, a phenomenon known as spectral hole burning. The gain coefficient at
the saturating frequency �� varies with I according to (Hawkes and Latimer 1995)


(��) = (inhomogeneous gain saturation) (19-12)

0(��)
�
�1� +� I�/I�s�

R h�
�

Is

h�
�
��2

Is��2
�

h�

R �2�(�)
��
1 + I� �2/(h�)

19-1. Gain Coefficient 355

c19.qxd  2/14/2006  8:32 AM  Page 355



which is similar to the result for homogeneous broadening except for the square root in
the denominator.

The weaker dependence of gain saturation on intensity I for inhomogeneous broad-
ening can be understood qualitatively in the following way. As the intensity increases
and saturates the atoms in the initial spectral hole, the gain from atoms farther away in
the spectrum becomes more important in comparison with those nearby. Increasing the
intensity still further causes even these farther-away atoms to be saturated, making the
spectral hole wider. The gain saturates more slowly with intensity because the fraction
of atoms that contribute to the gain increases as the intensity increases and the hole gets
wider.

19-2. TOTAL GAIN OF AMPLIFIER

The gain coefficients obtained in the previous section can now be used to calculate the to-
tal gain of an optical amplifier of finite length L. The gain will be defined as G � I2/I1,
where I1 and I2 are the light intensities entering and leaving the amplifier, as shown in Fig.
19-5. The gain coefficient 
 gives the fractional increase in intensity dI/I for light travers-

356 Chapter 19 Optical Amplifiers

Figure 19-4 (a) Uniform saturation of gain for homogeneous lineshape. (b) Spectral hole burning in
saturation of inhomogeneous lineshape. The frequency width of the hole is twice the homogeneous
linewidth.

Figure 19-5 Input intensity I1 and output intensity I2 for optical amplifier of length L, showing inten-
sity increase dI in thin slice dz.
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ing a small slab of thickness dz, according to dI = I
 dz. Using Eq. (19-10) for 
 with ho-
mogeneous gain saturation, this becomes

= (19-13)

To obtain the total gain G, Eq. (19-13) must be integrated over the entire length L of the
amplifier. We consider first two simple special cases, and then the more general case.

Small Signal Gain

For signal intensities I small enough that I � Is, Eq. (19-12) takes on the simple form

= 
0 dz

which can be directly integrated to give

I(z) = I(0) e
0z (19-14)

This result, previously obtained in Eq. (18-34), gives the total gain as

G � = e
0L (small signal gain) (19-15)

Since the small signal gain depends exponentially on the amplifier length, it is useful
to describe this gain in decibel units:

dB gain = 10 log10 G

= 10 
0L log10 e (19-16)

= 4.34 
0L

The dB gain is then linear with the amplifier length, and the unsaturated gain coefficient

0 can be given in units of dB/m. Thus, a value of 
0 = 1 m–1 corresponds to 4.34 dB/m of
gain. Note that each addition of 10 dB to the gain corresponds to a factor of 10 increase in
the gain G.

The decibel concept also applies to the attenuation of light by absorption or scattering.
The dB loss due to an attenuation coefficient 
 was found in Eq. (5-3) to be

dB loss = 4.34 
L

where 
 is the fractional loss per unit length. When both gain and attenuation are present
in the gain medium, the net gain is

dB net gain = 4.34 (
0 – 
) L (19-17)

For a practical amplifier, it is necessary not only that 
0 > 0, but also that 
0 > 
.

I2
�
I1

dI
�
I


0
�
1 + I/Is

dI
�
dz

1
�
I
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A fiber amplifier has a net unsaturated gain of 25 dB in a length of 8 m. If the fiber loss
is 2 × 10–4 cm–1, determine the unsaturated gain coefficient in m–1.

Solution: Writing the net gain in m–1,


0 – 
 = = 0.72 m–1

Therefore,


0 = 0.72 + 0.02 = 0.74 m–1

Large Signal Gain

In the limit I � Is, Eq. (19-13) simplifies to

� 
0Is (19-18)

where the right-hand side is a constant. Integrating this over z gives �I � 
0Is�z, or

I2 – I1 � 
0IsL (19-19)

The output of the amplifier now increases linearly with amplifier length, rather than expo-
nentially as in the small-signal case. The gain is found by dividing Eq. (19-19) by I1,

G � 1 + 
0L (19-20)

which is also linear with L.
In the large-signal limit, each additional amplification length adds a fixed amount of

energy to the beam. This is in contrast to the small-signal limit, where each additional
length multiplies the beam energy by a constant factor. To obtain some physical insight
into this difference, it is instructive to consider the efficiency � with which absorbed
pump power is converted into signal power. The increase in signal power Psig in the large
signal limit is

�Psig = P sig
out – Pin

sig

= (I2 – I1) A
(19-21)

= 
0IsLA

= R h�LA

where A is the cross-sectional area of the signal beam, and Eqs. (19-19) and (19-11) have
been used. The power absorbed from the pump can be expressed as

Is
�
I1

dI
�
dz

25
�
(8)(4.34)
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(19-22)

= R h�pLA

where LA is the volume of the pumped region of the gain medium, and h�p is the energy
needed to put the atom in level 3 of the four-level system. In the case of optical pumping,
this would be the energy of a pump photon. Equations (19-21) and (19-22) can be com-
bined to give the desired energy conversion efficiency for the amplifier,

� � = (large signal) (19-23)

Equation (19-23) gives a particularly simple result for the large-signal amplifier effi-
ciency, which suggests a simple physical interpretation. Referring to the energy level
scheme for the four-level system shown in Fig. 19-6, it is clear that the signal photon en-
ergy h� is less than the pump photon energy h�p, so that � < 1. Each absorbed pump pho-
ton can give rise to one generated signal photon, by the stimulated emission process. Af-
ter the signal photon is generated, the atom returns rapidly to the ground state, where it
may be excited again by the pump. Since the pump energy absorbed is � h�p, and the gen-
erated signal energy is � h� we expect that the maximum efficiency of converting ab-
sorbed pump energy into signal beam energy would be h�/h�p, in agreement with Eq. (19-
23). The difference between pump and signal photon energies is sometimes referred to as
the quantum defect, and gives rise to heating of the gain material if the 3 � 2 and 1 � 0
transitions are mostly nonradiative. The quantum defect also limits the efficiency of
lasers, as will be seen in Chapter 20.

In the small signal limit where I1 � Is, � becomes

�small I = �
(

R

I2

h

–

�p

I

L
1)

A

A
�

(19-24)

=

where Eqs. (19-22) and (19-15) have been used. For small gain lengths such that 
0L � 1,
this becomes

(e
0L – 1) I1
��

R h�pL
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�
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�
Pabs
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Figure 19-6 Emission energy is less than pump energy by the quantum defect.
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using Eq. (19-11). Note that the efficiency given in Eq. (19-25) is much smaller than the
large signal limit h�/h�p, since I1 � Is. As the signal intensity increases, the extraction ef-
ficiency increases proportionately, until the large signal limit is reached. The overall de-
pendence of � on I1 is shown schematically in Fig. 19-7.

The most notable feature of Fig. 19-7 is the low value for efficiency for small I1. It
is natural to ask: in what sense is the amplifier inefficient in this regime? The amplifi-
cation is unsaturated here, so the signal growth is exponential, and it is “efficient” in
that sense. The inefficiency indicated in Fig. 19-7 refers to the efficiency of converting
absorbed pump energy into additional signal-beam energy. This is inefficient for I1 � Is

because much of the absorbed pump energy is emitted by the atoms as spontaneous flu-
orescence. The overall energy flow in the amplifier is depicted in Fig. 19-8. Pump en-
ergy absorbed in the material is converted into three different forms: additional signal
energy, fluorescence energy, and heat energy. Symbolically, we can write

Pabs
pump = (Psig

out – Pin
sig) + Pfl + Pheat (19-26)

where Pfl is the emitted fluorescence power, and Pheat is the heating of the material due to
the quantum defect. Both Pfl and Pheat are limited to some maximum value determined by
the number of optically active ions in the material. However, the change in signal power
�Psig = Psig

out – Pin
sig increases with increasing signal power because it depends on the stim-

ulated emission rate. Therefore, in the strong signal limit stimulated emission dominates
spontaneous emission, and �Psig � Pfl. In the small signal limit, however, �Psig � Pfl,
and the ratio �Psig/Pabs

pump becomes small.

Amplifier Gain: General Case

The general equation for amplifier gain including saturation is given by Eq. (19-13). This
can be rewritten and integrated in the following way:

360 Chapter 19 Optical Amplifiers

Figure 19-7 Energy conversion efficiency increases with input signal intensity I1, reaching a limit
due to quantum defect.
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I2

I1
� + � dI = 
L

0

0 dz

ln � � + = 
0L (19-27)

ln G + = 
0L

which is an implicit equation for the gain G of the amplifier. Although this equation
cannot be solved analytically for G, a plot of G versus L can be obtained by treating G
as the independent variable and 
0 L as the dependent variable. Shown in Fig. 19-9 is a

I1(G – 1)
�

Is

I2 – I1
�

Is

I2
�
I1

1
�
Is

1
�
I
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Figure 19-8 Pump energy is converted into fluorescence and heat, as well as an increase in signal
beam energy. For a small input signal, most of the absorbed pump energy goes into fluorescence
and heat.

Figure 19-9 Total amplifier gain G versus unsaturated gain coefficient 
0L, on log-log scale. The
gain G is reduced by saturation for higher input signal intensity I1. Note that 
0L � pump power. 
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plot of G versus 
0L obtained in this way for different values of I1/Is. For a fixed 
0L
(fixed pump rate), the gain G decreases with increasing I1/Is, due to saturation. If the
gain G needs to be maintained under saturating conditions, a longer gain length L is re-
quired.

It should be noted that our discussion of amplifier saturation so far has assumed a four-
level system with excitation rate R that is spatially uniform within the gain medium. Al-
though these are sometimes good approximations, they are not valid for certain amplifier
systems that are pumped from the end, such as fiber lasers and amplifiers. The modifica-
tions necessary to describe such systems will be discussed in Chapters 23 and 24.

PROBLEMS

19.1 (a) A dye molecule has emission cross section 4 × 10–16 cm2 at � = 550 nm, and flu-
orescence lifetime 3 ns. Assuming the transition is homogeneously broadened, cal-
culate the signal intensity at which the gain is reduced by a factor of two. (b) The
Nd:glass transition has peak emission cross section 4 × 10–20 cm2 at � = 1054 nm,
and fluorescence lifetime 290 �s. If the transition is homogeneously broadened, de-
termine the signal intensity at which the Nd:glass gain is reduced by a factor of two.
Repeat if the transition is inhomogeneously broadened.

19.2 A Nd:glass amplifier material has peak emission cross section 4 × 10–20 cm2 at the
amplifier wavelength � = 1054 nm, and fluorescence lifetime 290 �s. The Nd ion
density is 3 × 1020 cm–3, and the pump rate for one Nd ion is 170 s–1. (a) Determine
the number of Nd ions pumped to the excited state per unit volume per unit time. (b)
If there is no signal light, determine the steady-state, upper-level population (num-
ber of excited ions per unit volume). (c) What fraction of Nd ions are in the excited
state? (d) Determine the gain coefficient at 1054 nm.

19.3 For the Nd:glass amplifier of Problem 19.2, a signal beam of intensity 5 × 104

W/cm2 is now introduced into the gain medium. Determine (a) the spontaneous and
induced emission rates; (b) the new steady-state, upper-level population; (c) the new
effective lifetime of the upper level; and (d) the new gain coefficient.

19.4 An optical amplifier boosts the intensity of a small signal by a factor of 200 over a
path length of 15 cm. Determine the unsaturated gain coefficient, expressed in cm–1.
Also express the gain in dB/cm.

19.5 For the amplifier of Problem 19.4, assume that the saturation intensity is 2 × 104

W/cm2, and that it is a four-level type system exhibiting homogeneous gain satura-
tion. Determine the amplifier gain if the input signal intensity is (a) 4 × 105 W/cm2,
and (b) 2 × 104 W/cm2.

19.6 If the optical amplifier in Problem 19.5 is in the form of a fiber with core diameter
50 �m, determine the amount of pump power that is converted into signal beam
power for the two different input signal intensities.

19.7 An optical fiber amplifier of length 15 m has a small-signal gain of 1.5 dB/m at
1500 nm. When signal light of intensity 25 kW/cm2 is coupled into the fiber, the
measured signal output has intensity 500 kW/cm2. Determine the saturation intensi-
ty of the gain medium assuming spatially uniform excitation and homogeneous gain
saturation.

362 Chapter 19 Optical Amplifiers
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19.8 Consider the three-level system shown in Fig. 19-1. In this case, level 1 is the
ground state, and the population N1 can no longer be neglected in Eq. (19-1). Write
the rate equations for levels 1 and 2 for the three-level system, making the assump-
tion as before that N3 is very small. (a) Derive an expression for the population dif-
ference N2 – N1 in terms of the signal intensity I, assuming that �em(�) = �abs(�). (b)
What is the minimum excitation rate R for a positive population inversion? (c) Write
the expression for N2 – N1 in terms of a saturation intensity Is, such that the gain de-
creases by a factor of two when I = Is. Show how this expression for Is compares
with the one given in Eq. (19-9).

Problems 363
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In the previous two chapters we have seen how light can be amplified by stimulated emis-
sion, which leads to a useful device: the optical amplifier. To make a laser, a feedback de-
vice such as a pair of mirrors must be added to the system. In this chapter, we consider the
conditions under which the feedback provided by the mirrors will be sufficient to achieve
laser oscillation. It will be seen that there is a minimum pumping power required to
achieve lasing, termed the threshold pump power. We will then discuss the output proper-
ties of the laser above the lasing threshold, using a rate equation approach. Two different
measures of the output efficiency of the laser will be discussed and contrasted. We will
see how the mirror reflectivities can be chosen so as to optimize the laser output.

20-1. THRESHOLD CONDITION

The conditions under which lasing will occur can be determined by considering the sim-
ple laser cavity shown in Fig. 20-1. A uniform gain medium fills the region between two
cavity mirrors, which are separated by distance L and have reflectivities R1 and R2. Let us
say that there is a small amount of light at point A that happens to be moving in a direc-
tion toward mirror 2, as shown. As the light makes a round-trip through the cavity from
point A to point B, it is amplified with a gain coefficient �, while at the same time being
attenuated by the loss coefficient � [see Eq. (19-17)]. After reflection from mirror 2, the
light intensity is reduced by a factor R2, and similarly for mirror 1. The intensity of the
light arriving at point B (IB) can then be written as

IB = R1R2e(�–�)2LIA

where IA is the intensity of light originating at point A. If IB < IA, then the light intensity will
become progessively smaller with each round-trip, and lasing will not occur. The time de-
pendence of light intensity in the cavity would be that of a decaying exponential, as in Fig.
16-6. For lasing to occur, it is necessary that IB > IA, so that the light intensity will grow ex-
ponentially in time. The threshold condition for laser oscillation then becomes

R1R2e(�–�)2L � 1 (threshold condition) (20-1)

The smallest value of � that satisfies this inequality is termed the threshold gain coeffi-
cient, and is denoted �th. Taking the log of Eq. (20-1) gives

�th = � + ln � � (threshold gain coefficient) (20-2)
1

�
R1R2

1
�
2L
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so that the condition for threshold can be written � > �th. Note that in Eq. (19-17) it was
found that an amplifier has net gain when � > �. A similar condition applies now to lasers,
except that the losses include not just propagating losses, but also mirror reflection losses.

Writing the gain coefficient as in Eqs. (18-35) and (18-36), the threshold condition be-
comes

�(�) � �th

�(�) �N � �th (20-3)

A21 g(�)�N � �th

Solving this for �N gives

�N � (20-4)

which is the population inversion required to achieve lasing. It takes a higher pump pow-
er to obtain a greater population inversion, so it is generally desirable that the required
population inversion be as small as possible. Recalling from Fig. 18-15 that g(�) takes on
its maximum value gmax at the lineshape center frequency �0, and from Eqs. (18-50)–(18-
52) that

gmax � (20-5)

the minimum population inversion needed to achieve threshold is

�Nth � (threshold population inversion) (20-6)

where �� is the full width at half maximum. Note that here � = (c/n)/� is the wavelength
in the medium of refractive index n. The Einstein A coefficient in Eq. (20-6) is related to
the oscillator strength of the transition f21 by

8	�th��
�

A21�
2

1
�
��

8	�th
��
A21�

2g(�)

�2

�
8	
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Figure 20-1 Lasing occurs when the round-trip gain from point A to point B exceeds the round-trip
loss.
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A21 = f21 (20-7)

using Eqs. (18-43) and (18-44). Substituting Eq. (20-7) into Eq. (20-6) gives an alternate
form for the threshold population inversion,

�Nth � (20-8)

The conditions that influence lasing threshold can be seen by inspection of Eqs. (20-8)
and (20-2). The required population inversion will be lower (lasing more easily achieved)
with:

1. Low loss coefficient � (low �th)

2. High-reflectivity mirrors (low �th)

3. Longer cavity (low �th)

4. Narrow gain linewidth ��

5. Large oscillator strength f21

The first two of these lower the loss of the cavity, whereas the last three increase the
gain. Although a longer cavity length results in a lower �th, this is not due to a reduction
in cavity loss. Rather, the longer cavity allows the total round-trip gain to be larger for a
given gain coefficient �, and this allows � to be smaller at the threshold of lasing.

It is important to note that the five conditions above, though leading to a smaller gain
threshold, are not always desirable for a particular application. For example, a very nar-
row linewidth makes lasing easier, but restricts the ability to tune the laser over a range of
wavelengths. Longer cavities make a laser less compact, which is sometimes undesirable.
High oscillator strengths lead to short upper-state lifetimes, which can make pulsed oper-
ation difficult. Finally, very highly reflective mirrors allow little light to escape the laser
cavity, giving a poor output efficiency. Considerations such as these are part of the engi-
neering design trade-offs inherent in laser development.

A neodymium-doped glass laser is constructed by doping a phosphate glass rod of
length 10 cm with Nd3+ ions, and placing mirrors at each end of the fiber. The mirror
reflectivities are 1 for the end reflector, and 0.95 for the output coupler, and the attenu-
ation coefficient in the rod is 0.2 m–1. The lasing transition has a center wavelength of
1054 nm, a spectral width of 19 nm, and an oscillator strength of 7.5 × 10–6. Determine
the population inversion needed for lasing in this system.

Solution: The frequency width of the transition is

�� = �� � = �� = = 5.1 × 1012 s–1
(3 × 108)(19 × 10–9)
���

(1.054 × 10–6)2

c
�
�2

c
�
�

4
0mc���th
��

e2f21

8	2e2

��
4	
0mc�2
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and the threshold gain coefficient is

�th = 0.2 + ln � � = 0.456 m–1

The threshold inversion is then

�Nth =

�Nth = 1.17 × 1023 m–3 = 1.17 × 1017 cm–3

Since in a solid there are ~ 1023 atoms/cm3, this requires only ~ 1 ppm (parts per mil-
lion) of the atoms in the solid to be excited Nd3+ ions. Nd-doped phosphate glass lasers
can be doped with Nd3+ concentrations in the range of 3 × 1020 cm–3, so that less than
0.1 % of the Nd3+ ions need to be promoted to the excited state.

20-2. ABOVE LASING THRESHOLD

When the gain coefficient is greater than the value needed for lasing threshold, the light
intensity will grow exponentially in time as the beam passes back and forth through the
gain medium. Eventually, the light intensity will be high enough to cause saturation of the
transition, as discussed in Section 19-1. In the steady state, the light intensity does not
change in time, which means that there must be no net gain in a round-trip through the
cavity. The maximum gain coefficient for steady state operation is, therefore, equal to the
threshold value. We say that the gain coefficient becomes “pinned” at the threshold value
for operation above threshold. To develop a quantitative understanding of laser operation
above threshold, we turn next to a rate equation analysis of the excited-state population
and light intensity.

Rate Equation Approach

In Section 19-1, we derived an expression for the rate of change of population in the ex-
cited state N2. Eq. (19-4) relates dN2/dt to both N2 and the light intensity I. To solve this
equation for N2 and I, we need a second equation that relates these variables, since in gen-
eral two equations are required to solve for two unknowns.

The additional equation can be obtained by considering how the light intensity varies
as it propagates between the mirrors of the cavity. The net fractional increase in intensity
after propagating a distance �z is (� – �th) �z, where �th is given by Eq. (20-2). This frac-
tional increase occurs in a time �t = �z/c, since the beam is moving with speed c.* The
fractional increase in intensity can then be written

= (� – �th) c�t (20-9)
�I
�
I

(4)(8.85 × 10–12)(9.1 × 10–31)(3 × 108)(5.1 × 1012)(0.456)
������

(1.6 × 10–19)2(7.5 × 10–6)

1
�
(1)(0.95)

1
�
(2)(0.1)
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*For simplicity, we take the refractive index to be n = 1 in this discussion. When necessary, the equations can be
generalized by making the replacement c � c/n.
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which is positive when � > �th. Solving for �I/�t, we have

�
�

�

I

t
� = c(� – �th) I

(20-10)

= c�N2I – �
�

I

c

�

where Eq. (18-35) has been used with �N � N2, and the cavity lifetime �c has been de-
fined by

�
�

1

c

� � c�th

(20-11)

= c� + �
2

c

L
� ln ��R1

1

R2

��
Eq. (20-11) generalizes the previous expression [Eq. (16-13)] for the cavity (or photon)
lifetime, and is equivalent to it  when � = 0 and R1R2 � 1 (see Problem 20.3).

Taking the limit �t � 0 in Eq. (20-10) gives an equation for the rate of change of light
intensity, which is the desired second equation relating N2 and I. Writing this along with
Eq. (19-4) yields the following set of two differential equations relating N2 and I:

= R – N2� + � (20-12)

= c�N2I – (20-13)

These are coupled equations, since both variables N2 and I appear in each equation, and
they are nonlinear equations because there are terms containing the product of the two
variables. In the general case, these equations are difficult to solve, and numerical ap-
proaches are required. We will consider the time-dependent solutions to these equations
in Chapter 22.

Although a complete solution to these equations is difficult, some general observations
can be made about the time dependence of I. For example, if I is initially zero, then ac-
cording to Eq. (20-13) the rate of change of I is also zero. This means that if there is ini-
tially zero intensity inside the cavity, the intensity will remain zero for all time. This
would seem to preclude the possibility of lasing, unless we deliberately “seed” the cavity
with a small amount of light.

Actually, there is one source of such “seed” light that we have not accounted for: spon-
taneous emission. Atoms in the excited state 2 will spontaneously emit light in random di-
rections, and a very small fraction of this light will be directed into the laser cavity mode.

If there is a small amount of seed light in the cavity, then the light intensity will grow
in time, provided that dI/dt > 0. According to Eq. (20-13) this will occur when N2 > N2,th,
where

N2,th = (threshold inversion) (20-14)
1

�
c�(�) �c

I
�
�c

dI
�
dt

1
�
�2

I�
�
h�

dN2
�
dt
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is the threshold population inversion. This expression for threshold is equivalent to that
obtained earlier in Eq. (20-4), if Eqs. (18-36) and (20-11) are used. When N2 exceeds the
threshold value, the light intensity increases exponentially in time, until it becomes large
enough to saturate the gain transition. Saturation decreases N2, which decreases dI/dt, so
that eventually the steady-state condition dI/dt = 0 is reached. To gain a further under-
standing of the laser’s behavior above and below threshold, we turn next to a solution of
Eqs. (20-12) and (20-13) in the steady state.

Steady-State Laser Output

In the steady state, Eqs. (20-12) and (20-13) become

0 = R – N2� + � (20-15)

0 = c�N2I – (20-16)

These are still coupled, nonlinear equations, but they are algebraic rather than differential
equations. The solutions for N2 and I both above and below threshold can be found in the
following way. Below threshold, I is very small, so I�/h� can be neglected compared to
1/�2 in Eq. (20-15). The excited state population is then

N2 � R�2 (below threshold) (20-17)

which increases linearly with the excitation rate R. When R reaches the threshold value

R th � = (threshold excitation rate) (20-18)

laser action begins, with Eq. (20-13) giving dI/dt � 0. The light intensity I builds up
rapidly, but is prevented from going to infinity by saturation of the population inversion
N2. A further increase in R does not result in any additional increase in N2, because the
steady-state condition of Eq. (20-16) would then be violated. Instead, N2 becomes pinned
at the threshold value:

N2 = N2,th = R th�2 (above threshold) (20-19)

as illustrated in Fig. 20-2.
Although N2 does not increase above threshold, the light intensity I does increase with

increasing R. This can be seen by combining Eqs. (20-19) and (20-15),

R = R th� + 1�
and solving for I to give

I = � – 1� (20-20)
R

�
R th

h�
�
��2

I��2
�
h�

1
�
c��c�2

N2,th
�

�2

I
�
�c

1
�
�2

I�
�
h�
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The light intensity I is seen to increase linearly with excitation rate R, as illustrated in Fig.
20-2. This linear increase in lasing intensity above threshold, along with the pinning of
the population inversion, are key identifying features of laser action.

The dependence of N2 and I on R can be understood physically by considering the flow
of energy into and out of the laser. The pump energy absorbed by the laser material is
converted into different forms, as indicated schematically in Fig. 20-3. Some is converted
into fluorescence, which is light spontaneously emitted by atoms in the excited state. The
power emitted by this fluorescence is proportional to N2. Some of the absorbed pump en-
ergy is converted into heat by nonradiative processes, as discussed in Chapter 18. The re-
mainder is converted into useful laser output energy, which is proportional to I.

20-2. Above Lasing Threshold 371

Figure 20-2 Light intensity I and upper-state population N2 versus excitation rate R. Above thresh-
old, N2 becomes pinned at N2,th and I increases linearly with R.

Figure 20-3 The absorbed pump power is converted into both fluorescence and laser light. The flu-
orescence power is � N2, and becomes pinned above threshold.
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The balance between fluorescence and laser output changes as the excitation rate R in-
creases. Below threshold, there is no laser output, and any increase in absorbed energy from
the pump leads to increased fluorescence. Above threshold, the fluorescence power be-
comes constant, since N2 becomes pinned at the value N2,th. Any increase in pump power
above threshold, therefore, leads to an increased laser output. To make these arguments
about energy flow in the laser more quantitative, we turn next to a calculation of output ver-
sus input power for a laser, and consider different measures for the laser output efficiency.

Laser Output Efficiency

The output power from the laser can be determined by referring to Fig. 20-4. The light
wave inside the resonator has the form of a standing wave, which is equivalent to the su-
perposition of two counterpropagating beams of intensities I– and I+ as shown. Each of
these has half the intensity I of the light in the cavity, so I– = I+ = I/2. Assume for simplic-
ity that one mirror (the left one, say) is perfectly reflecting with a reflection coefficient R1

= 1, and that the other has a transmission T, so R2 = 1 – T. Light will then leave the cavity
only through the right mirror, with an intensity TI+ = TI/2. If the cross-sectional area of
the beam is A, the power exiting the laser becomes

Pout = 1–
2 IAT (20-21)

The input power to the laser can be taken as the absorbed pump power, which was evalu-
ated in Eq. (19-22) to be

Pin = Rh�pV (20-22)

where V = AL is the volume of the pumped region in the gain medium, L is the cavity
length, and h�p is the energy required to put a single atom into the excited state. Combin-
ing Eqs. (20-21) and (20-22) with Eq. (20-20) yields

Pout = ATIs� – 1� (20-23)

where Is = h�/(� �2) is the saturation intensity defined in Eq. (19-9), and

Pth � R thVh�p (20-24)

Pin
�
Pth

1
�
2
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Figure 20-4 The standing wave in the laser cavity results from the superposition of two counter-
propagating beams of intensities I– and I+. Only the I+ beam is transmitted through the right mirror to
give laser output.
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is the threshold pumping power. Eq. (20-23) can be further manipulated into the simple
form

Pout = 
s[Pin – Pth] (20-25)

where


s � (slope efficiency) (20-26)

is the slope efficiency of the laser. The slope efficiency is an important and widely used
measure of a laser’s efficiency, and gives the incremental change in output power for an
incremental change in pumping power. It is defined as the slope of the output power ver-
sus input power curve for the laser, as illustrated in Fig. 20-5. Note that 
s is not simply
the ratio of output to input power, but rather is the ratio of changes in those powers. By
specifying both the threshold pump power and slope efficiency, the output power of the
laser is determined for any given pumping power using Eq. (20-25).

The slope efficiency for the simple laser model developed here can be obtained from Eq.
(20-23) using Eqs. (20-24), (20-18), and (19-9). The result after a few steps of algebra is


s = �
1

2
� AT �

P

Is

th

�

(20-27)

= T �
h

h

�

�

p

� �
c

2

�

L
c

�

The last factor above can be written in a more compact form by using Eq. (20-11) for �c,

= �(2L) + ln � �
= � + ln � � (20-28)

� � + T

where � = �(2L) is the fraction of light lost in one round-trip due to absorption or scatter-
ing, and T is the fraction of light lost in one round-trip due to the finite mirror reflectivity.

1
�
1 – T

1
�
R1R2

2L
�
c�c

�Pout
�
�Pin
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Figure 20-5 The slope efficiency is the slope �Pout/� Pin of the Pout versus Pin curve.
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We will refer to � as the internal loss per round-trip, and T as the coupling loss per round-
trip. It has been assumed in Eq. (20-28) that � � 1 and T � 1, so the total fractional loss
per round-trip is small. Relaxing this assumption leads to much more complicated formu-
lae, and does not provide much added insight. Therefore, we will maintain this small-loss
assumption throughout our further discussion.

Combining Eqs. (20-28) and (20-27) yields the simplified result


s � (low loss slope efficiency) (20-29)

The slope efficiency is seen to depend on two factors: the ratio of coupling loss to total
loss, and the ratio of lasing photon energy to pump photon energy. When T � �, the slope
efficiency is simply given by 
s � (h�)/(h�p), which is the quantum defect discussed ear-
lier in connection with optical amplifiers (see Fig. 19-6). In physical terms, this means
that every additional absorbed pump photon above threshold leads to an additional laser
output photon, and the fact that the slope efficiency is < 1 is simply due to the smaller
photon energy of the laser light compared with the pump light. A similar relation was
found in Eq. (19-23) for the power conversion efficiency of an optical amplifier with a
large signal. Although the mirror transmission T is considered a “loss” in the sense that it
decreases the photon lifetime, it is a “useful loss” in the sense that it allows light to leave
the laser cavity and become the output beam.

In contrast with the “good loss” of the mirror transmission T, the internal loss � is al-
ways a “bad loss,” because it reduces the useful output of the laser. The maximum slope
efficiency occurs for � = 0, so it is desirable to reduce sources of internal loss such as scat-
tering and absorption as much as possible. Any loss other than transmission through the
output mirror is considered to be internal loss. For example, if the left cavity mirror #1 is
partially transmitting, then � includes the fractional loss T1 = 1 – R1 due to that mirror.
Also, if there are any partially reflecting surfaces inside the laser cavity (for example fil-
ters or laser tube windows), then � includes the round-trip fractional loss from these as
well.

If � > 0, then according to Eq. (20-29) the slope efficiency is maximized by making T
as large as possible. This may not maximize the total output power, however, because the
laser threshold also varies with T. To see how Pth varies with T, Eq. (20-24) can be rewrit-
ten with Eqs. (20-18), (20-28), and (19-9), giving

Pth =

= (� + T)� � (20-30)

= (� + T) IsA

The pump threshold is proportional to the total loss per round-trip, and increases with in-
creasing T. The effect of this on laser output is shown in Fig. 20-6. At high pump power,
the advantage of high slope efficiency outweighs the disadvantage of high pump thresh-
old, and a larger T results in a higher output power. For smaller pump power, however,
the reverse is true.

h�p
�
h�

1
�
2

h�p
�
��2

V
�
2L

Vh�p
�
c�c��2

h�
�
h�p

T
�
� + T
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It is clear that to describe the efficiency of a laser requires more than one parameter. The
efficiency 
 � Pout/Pin is not a useful figure of merit for the laser, since it depends on the
pump rate. The slope efficiency is independent of pump rate, but does not by itself give the
output power for a given pump power. The combination of threshold pump power and
slope efficiency, however, does completely describe the laser’s efficiency at any pump
power. These two parameters are often quoted as the figures of merit for various lasers.

At any given pumping power, there will be some value of T that maximizes the output
power. To find this optimum value of T, we rewrite Eq. (20-23) to show explicitly the de-
pendence on T. The ratio Pin/Pth in this equation can be written using Eqs. (20-22), (20-
30), and (19-9) as

�
P

P
i

t

n

h

� = �
(

2

�

R

+

V

T

�

)

�2

A
�

(20-31)

= �
�

�
0(

+

2L

T

)
�

where �0 = R � �2 is the unsaturated gain coefficient defined earlier in Eq. (19-11). Note
that lasing threshold corresponds to the condition �0 (2L) = � + T, which says that the un-
saturated round-trip gain equals the total round-trip loss. Above threshold, the gain � be-
comes pinned at the threshold value, but �0 continues to increase in proportion to the
pump power.

Using the above, the expression for output power in Eq. (20-23) can be written as

Pout = ATIs� – 1� (20-32)

The variation of power output with mirror transmission T is plotted in Fig. 20-7 for sever-
al values of the dimensionless ratio K � �02L/�. For a given value of �0, there is some
value of T that maximizes the output power, designated as Topt. We can determine this op-
timum value of T by setting dPout/dT = 0 in Eq. (20-32), and solving for T. The result is

Topt = �(�	02	L	)�	 – � (optimum mirror transmission) (20-33)

which is valid when � � 1 and Topt � 1. This result shows that the optimum value of T is
larger for larger values of �0, in agreement with Fig. 20-7. When the unsaturated gain is

�0 2L
�
� + T

1
�
2
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Figure 20-6 Laser output power versus pump power for two different values of mirror transmission
T. The output power may increase or decrease with increasing T, depending on the pumping power.
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just above threshold, it can be shown (Problem 20.12) that Topt � (�02L – �)/2. There is
no positive solution for Topt below threshold, since lasing does not occur.

A Nd:YAG laser consists of a Nd:YAG rod of length 7.5 cm, situated between two
mirrors with reflectivities R1 = 1 and R2 = 0.85, as shown in Fig. 20-8. The laser is op-
tically pumped from the side with light of average wavelength 500 nm. The lasing
transition in the Nd ion has the following characteristics: wavelength of 1064 nm, up-
per-level lifetime of 230 �s, and stimulated emission cross section � = 2.8 × 10–19 cm2.
The beam area in the laser rod is 0.23 cm2, and the attenuation coefficient is 5 × 10–3

cm–1. Determine the threshold pump power for the laser.

Solution: The round-trip internal loss is � = (5 × 10–3)(15) = 0.075, and the mirror
transmission is T = 1-0.85 = 0.15. The saturation intensity is (using MKS units)

Is = = = 2.9 × 107 W/m2

Using Eq. (20-30),

Pth � (0.15 + 0.075)(2.9 × 107)(2.3 × 10–5)� � � 160 W

This is the threshold for absorbed optical pump power. If the electrical power to the
pump lamp is converted into absorbed pump power with efficiency 
p = 0.05, the
threshold electrical power to the lamp is

Pth
elec � �

0

1

.

6

0

0

5
� = 3200 W

1064
�
500

1
�
2

(6.63 × 10–34)(3 × 108)
����
(1.064 × 10–6)(2.8 × 10–23)(230 × 10–6)

hc
�
���2
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Figure 20-7 Laser output power versus mirror transmission T for several values of dimensionless
parameter K � �02L/�. Pout normalized to IsA�, and T normalized to �. The optimum value of T in-
creases with increasing �0, and hence with increasing pump power. 

EXAMPLE 20-2
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For the Nd:YAG laser of Example 20-2, determine the slope efficiency.

Solution: Using Eq. (20-29) with h�/h�p = �p/�,


s � ��0.07

0

5

.1

+

5

0.15
�� �

1

5

0

0

6

0

4
� � 0.31

For the laser of Example 20-2, determine the value of T that would maximize the out-
put power if the pump power is twice the threshold value calculated in that example.

Solution: In Example 20-2, the threshold gain coefficient is determined by setting the
round-trip gain equal to the round-trip loss,

�th(2L) = � + T = 0.225

When pumping at twice threshold, the unsaturated gain coefficient �0 is twice �th, so
�0(2L) = (2)(0.225) = 0.45. The optimum mirror transmission is then found from Eq.
(20-33) to be

Topt � �(0	.4	5	)(	0	.0	7	5	)	 – 0.075 = 0.109

Note that the value originally chosen for R2 was not quite optimum for this pumping
rate.

PROBLEMS

20.1 The loss in a laser cavity of length L = 1.5 m is dominated by the 80% transmis-
sion of the output mirror. Determine the threshold gain coefficient for this laser
cavity.

20.2 Assume that the transition linewidth is limited only by the lifetime of the upper

Problems 377

Figure 20-8 Diagram for Example 20-2. 

EXAMPLE 20-3

EXAMPLE 20-4
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state, according to the uncertainty relation (see Appendix B). In this case, derive a
simplified expression for the threshold population inversion.

20.3 Show that the photon lifetime �c defined in Eq. (20-11) reduces to the previous
definition in Eq. (16-13) in the limit � = 0 and R1R2 � 1. (See also Problem
16.5.)

20.4 A Nd:YLF laser has the following parameters: stimulated emission cross section
1.8 × 10–19 cm2, upper-state lifetime 480 �s, rod length 7.5 cm, mirror reflectiv-
ities of 100% and 95%, beam area 0.23 cm2, and loss coefficient 8 × 10–3

cm–1. If the laser is pumped optically with a lamp at an average wavelength of
500 nm, determine the minimum absorbed lamp power to achieve lasing thresh-
old. Also, if the efficiency of converting the lamp electrical power into absorbed
optical power is 5%, determine the minimum electrical power to the lamp for las-
ing.

20.5 A He–Ne laser has a tube length of 20 cm, a tube radius of 1 mm, and has mirror
reflectivities of 0.99 (output coupler) and 0.998 (high reflector). Take other data
for the He–Ne laser from Table 23-2, and assume that the lower laser level has neg-
ligible population. (a) Determine the threshold population inversion. What fraction
of the available Ne atoms need to be in the upper laser state for lasing? (b) Deter-
mine the number of atoms that must be pumped into the upper laser level per unit
time to achieve lasing. (c) The upper laser level is ~ 20 eV above the ground state.
If each excitation of the upper laser level requires this much energy, what is the
minimum pump power required to achieve lasing?

20.6 In the previous problem, the laser output power is 1.5 mW. Using the radiative life-
time of 30 ns, determine the ratio of stimulated emission rate to spontaneous emis-
sion rate for Ne atoms in the cavity.

20.7 An Er-doped optical fiber of length 1 m has the spectroscopic parameters given in
Table 23-1. The fiber is strongly pumped so that the Er ions are nearly fully invert-
ed (all in the excited state) along the entire fiber. (a) Determine the gain coefficient
and the net gain of the fiber in dB. (b) Determine the mirror reflectivities needed
(assume they are the same at each end) for lasing to occur. (c) Will the Fresnel re-
flection from the glass–air interface be enough to initiate lasing?

20.8 An optically pumped laser has a pump wavelength of 810 nm, a lasing wavelength
of 1060 nm, and an output coupling per round-trip of 2%. When pumped with 2.5
W, the output of the laser is 180 mW, and when pumped with 3.5 W the output is
450 mW. (a) Determine the slope efficiency of this laser. (b) Determine the pump
threshold for this laser. (c) It is desired to operate the laser at a pump power of 3.0
W. Determine the laser output at this pump power. (d) Determine the fractional in-
ternal loss per round-trip. (e) If the cavity length is 6 cm and the gain medium has
refractive index 1.5, determine the photon lifetime.

20.9 A laser has an internal loss per round-trip of 1.5%, and when the output mirror
transmission is 1% it has a pump threshold of 70 mW. (a) If this laser is pumped
with 200 mW, what value of the output mirror transmission will maximize the laser
output? (b) With the mirror transmission of part a, what is the new pump thresh-
old? By what factor is the laser above theshold in this case?

378 Chapter 20 Laser Oscillation
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20.10 A laser having an internal loss per round-trip of 0.015 is to be pumped at five times
threshold. Determine the output mirror transmission that maximizes the output
power of this laser.

20.11 The output power of a laser is 4 W when pumped at three times threshold. The op-
tical mode in the laser has diameter 1 mm, and the output mirror transmission is
0.5%. Determine the saturation intensity of the laser transition.

20.12 Show that when the unsaturated gain �0 is just above threshold, the optimum mir-
ror transmission is Topt � (�02L – �)/2.

Problems 379
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In the previous chapter, we considered the conditions under which lasing will occur. With
steady-state pumping, there is a well-defined pump threshold, above which the intensity
of laser light increases linearly with pump power. For some applications, it is not just the
power of the laser light that is important but also its frequency spectrum. In this chapter,
we consider the frequency distribution of laser light in the steady state. This is often re-
ferred to as continuous wave or CW operation. We explore the effect of gain saturation on
the frequency spectrum, and consider ways in which the frequency can be stabilized or
tuned over some range.

21-1. MODE SPECTRUM OF LASER LIGHT

In a laser cavity, the light intensity will build up to a high value only at the resonator
mode frequencies, given by Eq. (16-3). Light in any of these modes will be amplified,
provided that there is optical gain at the frequency of that mode. In order for lasing to oc-
cur in a given mode, the gain at that frequency must exceed or equal the threshold gain
�th. The number of modes that will lase, therefore, depends on how many modes have a
gain � �th. The number of modes with � � �th will in turn depend on the way in which
the gain curve saturates with intensity.

Single-mode Lasing

In our previous discussion of gain saturation, we assumed that all atoms were equivalent,
having the same center frequency �0. In this case, each atom saturates with intensity in the
same way, and the gain curve is reduced by the same factor at each frequency �. This is
referred to as homogeneous saturation, and is illustrated in Fig. 19-4a.

For steady-state operation, the value of �(�) at any frequency � cannot exceed the
threshold value �th, because if it did the light intensity at that frequency would increase
exponentially in time, and this would violate the assumption of steady-state operation.
The gain curve �(�) must, therefore, saturate so that the peak value is just at threshold, as
shown in Fig. 21-1. Only the mode closest to the line center will lase in this case, since
other modes will have � < �th. The result is single-mode lasing, with the output frequency
spectrum as indicated in Fig. 21-1.

Multimode Lasing

Although single-mode operation is the easiest to describe mathematically, in practice,
lasers often oscillate simultaneously in more than one mode. This is referred to as multi-
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mode lasing, and arises when the atoms in the gain medium are not all equivalent. Atoms
can be inequivalent either because the spectrum is different for different atoms, or be-
cause different atoms are located in different spatial regions of the resonator mode pat-
tern. In either case, the gain saturation is inhomogeneous, as shown in Fig. 19-4b. A
strong light signal at one frequency creates a “hole” in the gain spectrum, and the gain is
saturated only for a fraction of the atoms in the gain medium. The gain remains high at
other frequencies, and lasing can occur at any frequency where � > �th. The creation of
such a hole in the gain spectrum is referred to as spectral hole burning or spatial hole
burning, depending on the manner in which the atoms are inequivalent.

Spectral Hole Burning

If the atomic lineshape is inhomogeneously broadened, then the gain saturation is said to
be due to spectral hole burning. In a gas, for example, the atomic center frequency varies
randomly due to the Doppler shift. An atom with velocity component vz along the laser
cavity axis has its center frequency shifted from �0 to

��0 = �0�1 ± � (Doppler shift) (21-1)

where the + sign is taken when the atom and wave are moving in opposite directions, and
the – sign when they are in the same direction. In a laser cavity, a mode with frequency �m

corresponds to the superposition of two plane waves, one moving in the +z direction, and
the other in the –z direction. As a result, a single mode actually saturates two distinct
groups of atoms: those moving both left and right in the resonator with a speed v = |vz|.
This situation is depicted in Fig. 21-2, which shows atoms of group a moving to the left
with speed v, atoms of group b moving to the right with the same speed v, and atoms of
group c at rest. If the line center of the atomic transition coincides with the cavity mode
m, then the mode of frequency �m will interact with atoms at rest, group c. The next-high-
est mode m + 1 will interact with both groups a and b, group a interacting with the travel-

vz
�
c
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Figure 21-1 Homogeneous saturation of gain coefficient results in a single lasing mode.
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ing wave component moving to the right, and group b interacting with the traveling wave
component moving to the left. In a similar way, both groups a and b will interact with the
next-lowest mode m – 1.

The gain saturation that results is illustrated in Fig. 21-3. The mode m at line center
saturates independently of the modes m – 1 and m + 1, because it interacts with a different
group of atoms. Modes m – 1 and m + 1 saturate in a similar manner, since they interact
with the same group of atoms. However, this saturation results in simultaneous lasing at
the distinct frequencies �m–1 and �m+1, which contributes to the multimode character of the
laser output. In general for a inhomogeneously broadened transition, the number of lasing
modes will be equal to the number of modes for which �0(�m) > �th. Therefore, a greater
number of modes will lase when the unsaturated gain coefficient is increased (by increas-
ing the pump power, for example), or when the cavity loss is decreased.

In a solid, inhomogeneous broadening results not from the Doppler shift, but rather
from the variation of the atom’s local environment from one location to another in the

21-1. Mode Spectrum of Laser Light 383

Figure 21-2 In a Doppler-broadened lineshape, modes below or above the atomic center frequen-
cy �0 interact with atoms moving left (group a) and atoms moving right (group b), whereas modes at
�0 interact only with atoms at rest (group c).

Figure 21-3 For an inhomogeneously broadened lineshape, multiple modes can lase simultane-
ously, since the different modes interact with and saturate the gain of different groups of atoms inde-
pendently.
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material. For example, the surrounding atoms in a glassy material or an imperfect crystal
give rise to an electric field at the location of the active atom (i.e., the atom responsible
for the gain transition), the magnitude of which varies randomly from one active atom to
another. This electric field can change the energy level positions for the active atom,
through what is known as the Stark shift.

As a result of the varying Stark shift, the center frequencies �0 vary randomly from one
active atom to another, and the different cavity modes interact with different groups of
atoms, just as for a gas. The gain curve, therefore, saturates independently at the various
mode frequencies, and multimode laser output results, as in Fig. 21-3.

Although multimode lasing is similar conceptually for gas lasers and solid-state lasers,
there is one important difference in how the different modes saturate the transition. In a
gas laser, modes symmetrically located on either side of the gain peak interact with and
saturate the same group of atoms, as discussed above. For a solid gain medium, however,
each mode saturates independently, interacting with a distinct group of atoms. The reason
for this difference is that in a gas, the frequency shift depends on the relative motion of
the atom toward or away from one of the component traveling waves in the cavity, where-
as in a solid, the frequency shift depends only on the position of an atom, not its velocity.

Spatial Hole Burning

If the atomic lineshape is homogeneously broadened, then each atom has the same center
frequency, and there is no spectral hole burning. It might therefore be expected that the
gain curve should always saturate homogeneously, as in Fig. 21-1, resulting in a single
lasing mode. In fact, however, multimode lasing can still occur in this case, due to the
phenomenon of spatial hole burning.

In spatial hole burning, different atoms interact preferentially with different modes be-
cause they are located in different spatial regions of the mode patterns. For example,
higher-order transverse modes TEMlm extend further from the cavity axis than do lower-
order modes such as the Gaussian TEM00, as indicated in Fig. 21-4a. When the TEM00

mode saturates the gain of atoms inside its spatial profile, there are still atoms outside this
profile that are unsaturated. These unsaturated atoms can provide gain and lasing for the
higher-order modes, which occur at different frequencies than the TEM00 mode. The re-
sult is simultaneous operation on more than one frequency, that is, multimode laser out-
put. In this case, the “multiple modes” are different transverse modes.

384 Chapter 21 CW Laser Characteristics

Figure 21-4 Spatial hole burning results from (a) different transverse modes or (b) different longitu-
dinal modes. In both cases, atoms in different spatial locations saturate independently.
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Spatial hole burning can also occur with only a single transverse mode. This can be un-
derstood by referring to Fig. 21-4b, which shows two longitudinal modes with different
mode numbers m. The standing-wave pattern for each mode produces nodal points at
which the intensity is zero at all times. The atoms at these nodal points will be unsaturat-
ed by laser light in that mode. Different modes, however, have their nodal points at differ-
ent positions along the axis, and the nodal point for one mode may be at the same position
as a maximum in intensity for another mode. Different modes can, therefore, interact with
different groups of atoms, and can saturate independently. The laser output is then multi-
mode, with different longitudinal modes lasing simultaneously.

The significance of spatial hole burning actually goes beyond simply the number of
modes. It is clear from the standing wave patterns of Fig. 21-4b that the laser mode does
not interact efficiently with all of the atoms in the gain medium. If pump energy is de-
posited uniformly into the atoms throughout the laser gain medium, this represents a loss
of efficiency for the laser. In effect, some pump energy is being wasted because the atoms
excited by that energy do not efficiently interact with the lasing light in the cavity. The
same thing applies to the transverse modal pattern; atoms outside the spatial profile of the
mode do not strongly interact with the lasing light, and the pump energy deposited there is
wasted.

21-2. CONTROLLING THE LASER WAVELENGTH

In many applications, it is desirable to have some control over the laser wavelength. For
example, holography and other interferometric applications require a long coherence
time, which corresponds to a narrow frequency spectrum. The narrowest frequency spec-
trum is obtained when operating the laser in a single mode. Another application that ben-
efits from single-mode operation is optical spectroscopy, in which the energy level struc-
ture of an atom, molecule, or solid is probed by laser light with a narrow frequency width.
Optical spectroscopy is important not only for fundamental research, but also in applica-
tions such as remote atmospheric sensing, noninvasive medical diagnostics, optical com-
munications, and many others. In all these applications, it is useful to be able to tune the
laser light to different wavelengths, and also to stabilize the wavelength to be independent
of environmental parameters such as temperature. In this section, we consider various
methods for controlling the spectral output of the laser.

Achieving Single-mode Lasing

A single transverse mode can be obtained simply by placing a circular aperture inside the
resonator, as illustrated in Fig. 21-5. This method takes advantage of the fact that higher-
order transverse modes have a larger effective beam width than the fundamental Gaussian
mode TEM00. The aperture increases the loss coefficient � for these higher-order modes
and prevents their lasing. The aperture will also increase � for the TEM00 mode to some
extent, so care must be taken in optimizing the radius of the aperture. An adjustable iris is
sometimes used for this purpose.

Operation in a single longitudinal mode can be obtained by placing a device inside the
cavity that allows only selected frequencies to propagate with low loss. The Fabry–Perot
filter, discussed in Chapter 16, is one such frequency-selective device. When the spacing
between the parallel plates of the Fabry–Perot filter is fixed, the device is often referred to
as an etalon. It can be formed by applying a highly reflective coating to the two surfaces
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of a thin glass slab of thickness d and refractive index n. The etalon’s transmission spec-
trum for normal incidence, shown in Fig. 16-9, is a comb of narrow transmission peaks
separated by the free spectral range c/(2nd). When placed inside the laser cavity, the
etalon provides high transmission (and hence low cavity loss) for only a small number of
laser cavity modes, as illustrated in Fig. 21-6. A particular laser mode will oscillate only
when it is within the gain bandwidth �� of the gain medium, and also within the spectral
passband of the etalon mode. If the etalon modes are sufficiently narrow, single-mode op-
eration can be achieved.

The passband frequency of the etalon can be tuned by tilting the etalon at an angle �
with respect to the cavity axis, as shown in Fig. 21-7. The frequency spacing between
etalon modes can be shown (see Problem 21.1) to be

	�etalon = (etalon mode spacing) (21-2)

where �� is the angle of refraction inside the glass slab, related to the incident angle � by
sin � = n sin ��. As the angle � is changed, the center frequency of each etalon mode

c
��
2nd cos(��)
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Figure 21-5 An intracavity aperture blocks the higher-order transverse modes.

Figure 21-6 An etalon placed in the cavity allows lasing on only a single longitudinal mode.
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moves with respect to the fixed laser cavity modes. In this way, laser oscillation on a par-
ticular laser cavity mode can be selected.

Another method for selecting a single longitudinal mode, commonly used for semicon-
ductor lasers, is Bragg reflection from a corrugated interface between semiconductor lay-
ers. This approach (known as a distributed-feedback laser) was described in Fig. (11-20),
and gives rise to lasing at the (free space) wavelength 
 = 2n�, where � is the corrugation
period. A related method used for fiber lasers is the fiber Bragg grating, discussed in
Chapter 8.

The goal of achieving single longitudinal mode operation can be obtained in a com-
pletely different way, by using the ring laser geometry shown in Fig. 21-8. In the ring
laser, light is forced to circulate in one direction around the ring, by inserting an optical
diode into the beam path. One such device utilizes Faraday rotation, in which a light-
wave’s polarization is rotated in a magnetic field. The direction of rotation depends on the
propagation direction, and this allows a preferred direction to be selected using polariza-
tion filters. With the optical diode in place, the light in the cavity has the form of a travel-
ing wave, rather than a standing wave. As a consequence, there is no spatial hole burning
for the different longitudinal modes, and if the atomic transition is homogeneously broad-
ened, the gain spectrum will saturate as in Fig. 21-1. This leads to single-mode operation
without the need for intracavity filters or gratings. An added advantage of the ring geom-
etry is that the pump energy is more efficiently utilized. The traveling waves in the ring
laser lack the nodal points that are characteristic of standing waves (Fig. 21-4b), so that
atoms at any point along the cavity axis interact equally with the light in the cavity mode.
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Figure 21-7 Rotating the etalon allows different cavity modes to be selected.

Figure 21-8 In a ring laser, the light travels in only one direction, so there are no standing waves to
create spatial hole burning.
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Frequency Stabilization

Operation in a single mode means that the laser has a well-defined frequency, but it does
not guarantee that the frequency is constant in time. The mode frequencies given by Eq.
(16-3) depend on the cavity length L and index of refraction n, both of which vary with
temperature. As gas lasers such as the He–Ne warm up after being turned on, the cavity
length increases due to thermal expansion, causing the mode frequencies to decrease. The
modes then “sweep” across the atomic gain spectrum, in a phenomenon known as mode
sweeping. The laser output power then oscillates slowly in time, as cavity modes enter
and leave the region of maximum optical gain.

To stabilize the frequency against changes in mode frequency, it is necessary to pre-
vent the cavity length from changing. A simple solution is to use materials in the laser
cavity structure with a low thermal expansion coefficient. It is difficult to completely
eliminate small drifts in the mode frequencies, however, and active stabilization is needed
for precise frequency control.

One method for active frequency stabilization utilizes the gain saturation behavior of a
gas laser. As a single lasing mode is tuned across the Doppler-broadened atomic line-
shape, it might be expected that the laser power would be maximum at the atomic line
center frequency �0, where the gain cross section is maximum. Instead, as shown in Fig.
21-9, there is a narrow dip in the power at �0, known as the Lamb dip. This narrow dip can
be used to stabilize the laser frequency by providing a feedback signal to actively control
the mirror separation via piezoelectric transducers.

The physical origin of the Lamb dip can be understood by considering the different
groups of atoms that interact with the cavity mode, as illustrated in Fig. 21-2. Cavity
modes either above or below �0 interact with two groups of atoms, those moving left (a)
and those moving right (b) . A cavity mode right at �0, however, interacts with only one
group of atoms, those at rest (c) . The gain coefficient for a given subset of the atoms sat-
urates according to Eq. (19-12) for an inhomogeneous gain profile. Because of this satura-
tion behavior, less intensity I is needed to pin the gain coefficient � at �th when the light
interacts with a smaller group of atoms, and the result is a dip in the output power as the
mode is tuned across resonance (Siegman 1986).

Tuning the Laser Wavelength

For laser applications, it is often of interest to be able to tune the laser to a particular
wavelength. There are several ways of doing this, depending on the degree of wavelength
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Figure 21-9 Laser output power versus frequency of the single lasing mode, as mode frequency is
tuned across the inhomogeneous atomic lineshape. The decrease in power at line center is the Lamb
dip.
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selection required. For gain media that have a number of discrete laser transitions with
widely separated wavelengths, it is sufficient to use mirrors that are highly reflecting in a
wavelength range corresponding to only one of the transitions. This is illustrated in Fig.
21-10, which shows the laser transition at 
1 being selected over the competing transition
at 
2. Mirrors that efficiently reflect light over a limited wavelength range are made by
depositing multiple thin dielectric layers on a substrate (usually glass). The wavelength
selectivity of the reflection results from constructive and destructive interference of light
reflected from the various layers. As an example of this method of wavelength selection,
the usual oscillation of the He–Ne laser at 632.8 nm can be suppressed in favor of a weak-
er transition at 543 nm by an appropriate choice of dielectric mirrors. Other He–Ne laser
transitions can be selected as well, including 610 nm (orange color), 1.15 �m (near in-
frared), and 3.39 �m (mid infrared).

Another method for selecting individual discreet laser lines utilizes a prism placed in-
side the laser cavity, as shown in Fig. 21-11. The index of refraction of the glass in the prism
varies with wavelength, a phenomenon known as dispersion (see also Fig. 6-2). As a result,
only light of one particular wavelength will be refracted by the prism at the proper angle for
retroreflection at the right mirror; other wavelengths will be deflected out of the laser cav-
ity and will not lase. Rotating the mirror selects different wavelengths for retroreflection.
This is useful for low-gain gas lasers such as the argon ion laser, in which there are discreet
lasing transitions closely spaced in wavelength. The argon ion laser can be tuned in this
way to a number of lines in the green-to-blue region between 514 and 454 nm.

A diffraction grating can also be used as the tuning element, as shown in Fig. 21-12.
Light that satisfies the Bragg condition of Eq. (2-28) will be retroreflected from the grat-
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Figure 21-11 (a) Index of refraction n versus wavelength for glass in a prism. (b) Only one wave-
length (
1) is retroreflected by the mirror through the prism.

Figure 21-10 (a) Mirror reflectivity versus wavelength. (b) Only one wavelength is highly reflected by
the mirrors.
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ing, whereas other wavelengths will be diffracted out of the cavity. Different wavelengths
can be selected by rotating the grating to change the incident angle �. The efficiency of re-
flection from the grating is generally not as high as from a mirror, due to diffraction into
other orders and other loss mechanisms. Therefore, gratings are used mostly with high-
gain lasers such as CO2 and pulsed-dye lasers.

PROBLEMS

21.1 Derive Eq. (21-2) for the etalon mode spacing. (Hint: consider two parallel rays in-
cident on the etalon, and require constructive interference of these two rays.)

21.2 Eq. (21-2) applies to a solid etalon of refractive index n, as shown in Fig. 21-7. An
alternative is the air-spaced etalon, which consists of two dielectric slabs such as
this, coated on their facing surfaces with a high-reflectivity layer. These two sur-
faces are separated by a distance d with precision spacers. Derive an expression for
the mode spacing in the air-spaced etalon when it is tilted at angle � from the beam
in the laser cavity.

21.3 A Nd microchip laser has index of refraction 1.8 and cavity length 3 mm. Mirrors of
reflectivity 0.995 and 0.98 are mounted directly on the faces of the chip. The emis-
sion lineshape of the laser transition can be considered to be Lorentzian, with a
linewidth of 5 THz. (a) Calculate the frequency spacing between modes of the laser.
(b) Calculate the gain coefficient at lasing threshold. (c) Assume that the transition
undergoes homogeneous gain saturation, with the lasing mode right at the center of
the gain profile. Determine the gain coefficient for the mode just adjacent to the las-
ing mode, expressing your answer as a percentage difference. How realistic is it that
only one mode will actually lase, in practice?

21.4 An argon ion laser has high reflectivity mirrors separated by 1.1 m, with a plasma
of refractive index � 1 in between. The inhomogeneously broadened emission line-
shape is Gaussian with a full width at half maximum of 3.5 GHz. (a) Determine the
frequency spacing between the modes of the laser cavity. (b) If the laser is pumped
at twice threshold, how many modes can potentially lase? (c) Repeat part b if the
laser is pumped at five times threshold.

21.5 To select one particular mode in the argon laser of the previous problem, a solid
etalon is inserted into the cavity, at near-normal angle of incidence (� � 0). The
etalon consists of a glass slab of thickness 5 mm and index 1.5, coated on both sides
with a dielectric reflector having R = 0.99. (a) Calculate the frequency spacing of
the etalon modes. (b) Calculate the finesse of the etalon, and the frequency width of
the etalon modes. (c) Does the spacing and width of these etalon modes allow one
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Figure 21-12 Tuning the wavelength with a diffraction grating. Only one wavelength is retroreflect-
ed by the grating. 
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particular argon laser mode to be selected? (d) Determine the frequency spacing of
the etalon modes if the etalon is inserted at an angle � = 40°, where � is defined in
Fig. 21-7.

21.6 The emission lineshape in a He–Ne laser is Gaussian with a width (FWHM) of 1.5
GHz. The refractive index of the plasma in the discharge tube is � 1. If the laser is
pumped at twice threshold, what cavity length is required so that only one longitu-
dinal mode can lase?

21.7 A He–Ne laser (wavelength 632.8 nm) has cavity length 25 cm, and is pumped at
twice threshold. (a) How many modes can lase? (b) Thermal expansion causes the
cavity length to slowly increase. If mode m is initially located at the center of the
atomic transition lineshape, by how much must L change so that mode m ± 1 moves
into this position? Give both the absolute and fractional change in L. Will the mode
number increase or decrease?

21.8 The wavelength of a laser is tuned with a diffraction grating, as shown in Fig. 21-
12. Wavelength 
1 is diffracted directly back in the same direction when incident at
angle �, whereas wavelength 
2 is diffracted at a different angle � + ��. The separa-
tion between mirror and grating is L, and the position of the lasing mode is defined
by an aperture of radius a just in front of the mirror. (a) Using the grating equation
[Eq. (2-28)], derive an expression for the range of wavelengths �
 for which the
diffracted beam will pass through the aperture. Assume that a 
 L. (b) Evaluate �

for a dye laser with 
 = 650 nm, � = 40°, L = 25 cm, and a = 1 mm. (c) Compare this
with the ~ 40 nm width of a laser dye’s emission spectrum. Is this method suitable
for tuning a dye laser? (d) What happens to �
 as � � 90°? Gratings are sometimes
used at “grazing incidence” to increase the spectral resolution.

Problems 391
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So far, our analysis of laser operation has considered only the steady state, in which the
light intensity is constant in time. This type of operation, termed continuous wave (CW),
is useful for applications requiring precise frequency control, such as optical spectroscopy
and optical communications. However, there are applications for which pulses of light are
more desirable. For example, in laser surgery, it is advantageous to deliver the laser ener-
gy in a short burst so the heat deposited in the tissue does not have time to spread out dur-
ing the pulse. This results in a cleaner, more localized cut, with minimum damage to sur-
rounding tissue. Short pulses can also be used for timing the propagation of light, in
applications such as laser-based measurement of distance (laser ranging) and speed (for
traffic enforcement), to mention just a few. In this chapter, we consider the theory behind
pulsed laser operation, and also some practical methods for creating and controlling the
laser pulses.

22-1. UNCONTROLLED PULSING

Although a pulsed laser output can be desirable for certain applications, laser pulsations
sometimes occur even when an attempt is made to operate the laser in a continuous fash-
ion. To understand how this arises, consider a laser in which the pump excitation rate R is
turned on with a step-function time dependence, as shown in Fig. 22-1a.

The resulting time dependence of the laser light intensity I and atomic excited state
population N2 are determined by the rate equations Eq. (20-12) and Eq. (20-13), which are
reproduced here for convenience:

= R – N2� + � (20-12)

= �c�N2 – � I (20-13)

Before N2 reaches N2,th, there is no lasing since dI/dt < 0. The term containing I in Eq.
(20-12) is therefore negligible, and Eq. (20-12) then becomes

� R – (below threshold) (22-1)
N2
�
�2

dN2
�
dt

1
�
�c

dI
�
dt

1
�
�2

I�
�
h�

dN2
�
dt
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The solution for N2(t) is that of an exponential rise with time constant �2, as has been dis-
cussed previously in connection with Eq. (19-6) and Fig. 19-3. If the excitation rate R is
sufficiently great, then at some point in time the excited state population will exceed the
threshold value N2,th. Equation (20-13) then gives dI/dt > 0, and the light intensity starts to
increase exponentially in time. This is the beginning of the laser pulse.

After a small time delay, the light intensity has increased sufficiently that the stimulat-
ed emission rate I�/h� is greater than the spontaneous decay rate 1/�2, and this causes
dN2/dt in Eq. (20-12) to decrease and finally become negative. In physical terms, the ex-
cited state population decreases in time because stimulated emission is pulling the popu-
lation down from the excited state faster than the pump is replacing it (think of the water
pump analogy of Section 19-1). This decrease in N2 will continue until N2 goes below the
threshold value again, making dI/dt < 0. After this time, the light intensity decreases,
which brings an end to the laser pulse.

If the pump excitation rate R remains constant in time, then the excited state population
N2 will build up again, as indicated in Fig. 22-1b. The process just described now repeats
itself, with a second laser pulse appearing a short time after N2 once again exceeds N2,th.
The result of this interaction between light intensity and excited state population is a se-
ries of pulses, as shown in Fig. 22-1c.

Ideally, the solutions for N2(t) and I(t) would tend toward a steady-state solution, each
exhibiting oscillations with an amplitude that decreases in time. These oscillations are
termed relaxation oscillations, and they decay in time at a rate that depends on the degree
to which the laser is excited above threshold. In practice, perturbations such as tempera-
ture fluctuations, mechanical vibrations, and pump-light instabilities can lead to an irreg-
ular pattern of lasing pulses known as spiking. Spiking was observed in many early solid
state lasers, including the first laser to be demonstrated experimentally, the ruby laser. A
typical time separation between spikes is ~ 1–10 �s.

394 Chapter 22 Pulsed Lasers

Figure 22-1. Excited state population N2 and laser intensity I for a step increase in pump excitation
rate R, showing spiking behavior.
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22-2. PULSED PUMP

The spiking behavior discussed above produces pulses which occur randomly in time. To
be useful for applications, the timing of the pulses needs to be controlled. This is generally
accomplished in one of three ways: using a pulsed pump excitation, Q-switching, or mode
locking. The simplest method of producing a pulsed laser output is to pulse the pump exci-
tation, as illustrated in Fig. 22-2. If the relaxation oscillations are sufficiently damped, the
laser output will approximately follow the pump pulse, with the laser operating in a quasi-
CW fashion during the pulse. Used by itself, this method is practical for creating pulses of
long duration (much longer than the lifetime �2 of the upper laser level), in situations where
the pump light is stable enough to avoid spiking. For shorter pulses, either Q-switching or
mode locking must be used. Sometimes, the pulsed pump method is used in combination
with Q-switching or mode locking to more efficiently utilize the pump energy.

22-3. THEORY OF Q-SWITCHING

To obtain intense laser pulses of width on the order of nanoseconds, the technique of Q-
switching is often employed. The quality factor Q of a resonator was defined in Eq. (16-
18) as the ratio of the frequency of a mode to its width. Using Eqs. (16-16), (20-11), and
(20-14), the Q can also be written in the equivalent forms:

Q = 2���c = = (22-2)

The first expression shows that Q can be interpreted physically as 2� times the number of
oscillations of the light wave’s electric field during a time equal to the cavity lifetime �c.
A resonator with high Q “rings more freely” than one with lower Q. The second expres-
sion shows that the threshold gain coefficient is inversely proportional to Q. A high-Q
cavity therefore has a lower threshold for lasing. The last expression shows that the
threshold population inversion N2,th is also inversely proportional to Q. The population in-
version required for lasing is lower for a higher-Q resonator.

The relationship between Q and N2,th allows us to understand the basic principle of Q-
switching, which is illustrated in Fig. 22-3. The Q of the laser cavity is made to be ad-

2��
�
c�N2,th

2��
�
c�th
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Figure 22-2. The laser intensity can be pulsed by pulsing the excitation rate R.
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justable, by mechanisms to be discussed in the next section. When the gain medium is
first excited by the pump, the cavity is in its low Q state, with a very high threshold inver-
sion N2,th. During this initial time period, N2 < N2,th and no lasing occurs. The excited state
population is therefore allowed to build up to a high value, limited only by the pump ener-
gy.

At a time selected by the user, the Q is suddenly switched from a low to a high value.
The inversion threshold correspondingly switches from a high to a low value, so that the
population N2 is now well above threshold. At this point, the light intensity in the cavity
increases exponentially in time, and lasing ensues. There is a short delay (typically ~ 20
ns) between the switching of Q and the laser pulse, because it takes time for stray light in
the cavity to be amplified sufficiently by the gain medium. The pulse intensity I reaches a
maximum when dI/dt = 0. According to Eq. (20-13), this occurs when the excited state
population N2 has been brought down to the threshold value by stimulated emission.
When N2 goes below threshold, dI/dt < 0 and the light intensity decreases. Typical widths
for Q-switched pulses are on the order of a few nanoseconds.

The Q-switching scheme presented in Fig. 22-3 generates only a single pulse, since the
excitation rate R is small after the pulse, and the population N2 is not allowed to build up a
second time. Fig. 22-4 shows an alternative scheme, in which a series of Q-switched puls-
es is generated by continuous pumping and repetitive Q-switching. In this case, the excit-
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Figure 22-3. Laser intensity I, cavity Q, and excited-state population N2 for Q-switching with a
pulsed pump. The threshold inversion Nth shifts from high to low when the Q is switched.
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ed state population N2 recovers after each pulse, rising exponentially with a time constant
equal to the upper state lifetime �2.

The optimum time Tp between pulses in repetitive Q-switching can be determined by
the following considerations. If Tp � �2, then N2 does not have time to fully recover from
the previous pulse, and the pulse energy will be less than it could be. If Tp 	 �2, on the
other hand, then the atoms in the gain medium spend much of their time “idling” in the
excited state, spontaneously emitting photons. These photons correspond to wasted pump
energy, which decreases the overall energy efficiency of the laser. The pulse energy and
laser efficiency can be optimized by choosing a pulse separation of Tp ~ �2. For solid-state
lasers such as Nd:YAG with upper-state lifetimes �2 ~ 10–3 s, this corresponds to an opti-
mum Q-switching rate of ~ 103 pulses/second.

22-4. METHODS OF Q-SWITCHING

There are several practical methods for Q-switching a laser, each using a different ap-
proach to changing the Q of the resonator. A key requirement for all these methods is that
the cavity Q be changed quickly enough that the population inversion N2 remain nearly
constant during the switching process. Generally, a switching time of ~ 10 ns is desirable.
When the switching time is too long, multiple pulses may result as N2 oscillates above
and below threshold. (Svelto 1998)
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Figure 22-4. In repetitive Q-switching, the population N2 recovers in between each pulse.
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Rotating Mirror

A simple mechanical method for Q-switching is illustrated in Fig. 22-5. One mirror in the
laser cavity is fixed in place, and the other rotates at a high speed about a vertical axis.
The Q of the cavity is then high only when the mirrors are parallel within some tolerance

�. If the mirror is rotating at angular speed �, then the cavity Q switches from high to
low in a time ~ 
�/�. If the angular tolerance is 
� � 10–3 rad, and the mirror speed is
10,000 rpm (� 103 rad/s), the switching time is ~ 10–6 s. Although this is longer than op-
timum, the simplicity of the method led to its use in early solid-state lasers such as the
ruby laser. It is still used occasionally for solid-state lasers, and more recently, fiber
lasers.

Electrooptic Shutter

Another way of changing the Q of the laser cavity is to insert a shutter inside the cavi-
ty. Mechanical shutters do not have a sufficiently fast response time, however, so a non-
mechanical mechanism must be employed. One example is the electrooptic shutter, as
illustrated in Fig. 22-6. This shutter is formed by placing two optical elements in the
path of the beam inside the cavity. The first element is a polarizer, oriented to allow
transmission of only one polarization of light (E field vertical, along the x axis, for ex-
ample). The second element is a Pockels cell (see Fig. 9-22 and related discussion), a
nonlinear crystal that rotates the polarization of the light when a high voltage is applied.
With no applied voltage, vertically polarized light is efficiently transmitted through both
elements, and the cavity Q is high. When an appropriate voltage is applied, vertically
polarized light is rotated to horizontal polarization in two passes through the nonlinear
crystal, and this light is then blocked by the polarizer. The net result is a low Q value
when the voltage is applied. The Q-switching process proceeds by initially applying a
high voltage to the Pockels cell, and then rapidly removing the voltage, which switches
the Q from low to high.

The voltage required for the Pockels cell is V�/2 = 0.5V�, where V� is given in Eq. (9-
49). The phase shift between the two polarization components only needs to be �/2 in one
pass through the nonlinear crystal, because the accumulated phase shift in two passes is
then �. In a laser cavity, the beam diameter is typically on the millimeter scale, and the
electrode spacing d must be at least this large. According to Eq. (9-49), V� 
 d, and so the
required voltage for Q-switching is quite a bit higher than the value calculated for a wave-
guide in Example 9-3. Typical voltages required for a Pockels cell are a few kV, and
switching times can be 20 ns or less. This type of Q-switching is in common use, but re-
quires attention to safety because of the high voltages involved.
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Figure 22-5. Q-switching can be achieved by rotating one of the laser mirrors at a high speed.
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Acoustooptic Shutter

Another method for nonmechanical Q-switching is the acoustooptic shutter, depicted in
Fig. 22-7. In this method, a transparent crystal is inserted into the laser cavity, and high
intensity acoustic waves are generated in the crystal by an attached piezoelectric transduc-
er (PZT). The acoustic waves create a periodic variation of the crystal’s refractive index,
which forms a volume-phase grating. Light that is diffracted from this grating increases
the cavity loss and decreases Q. The Q-switching process starts with the acoustic waves
turned on, such that Q is low enough to prevent lasing. The acoustic waves are then
quickly turned off, which increases the Q and enables lasing.

A detailed view of the light passing through the crystal is presented in Fig. 22-8. Light
enters the crystal with an angle of incidence ��B, and is refracted inside the crystal at an an-
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Figure 22-6. Electrooptic Q-switching is achieved by placing a Pockels cell and polarizer in the
laser cavity. Vertical polarization is maintained when V = 0. When a voltage V = V�/2 is applied, the
polarization is rotated from vertical to horizontal after passing through the Pockels cell twice.

Figure 22-7. In acoustooptic Q-switching, sound waves create a refractive-index grating that dif-
fracts part of the beam, spoiling the Q of the cavity.
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gle �B. This light will be Bragg scattered from the acoustic waves if the thickness L of the
crystal is large enough to form a thick grating. The distinction between thick and thin
gratings can be seen by referring to Figs. 2-16 and 2-17. A grating is considered thick if
light that is diffracted by the entrance side of the grating spreads out sufficiently in propa-
gating a distance L that it interacts with several different grating planes at the exit side.
Since light diffracted by an aperture of size d has an angular spread �� ~ �/d, the light is
spread out over a distance L�� ~ L�/d at the exit side of the grating, and the requirement is
that this be much greater than d. The condition for a thick grating can then be written

L 	 (thick grating condition) (22-3)

For a thick grating of acoustic waves, light will be efficiently reflected when the Bragg
condition is satisfied. Using Eq. (2-28) for first order (m = 1), and generalized to a medi-
um with index of refraction n, this becomes

�B �

where the small-angle approximation sin � � � has been used. For small angles, Snell’s
law [Eq. (2-8)] becomes ��B � n�B, so the exterior angle ��B for Bragg scattering is simply

��B � (22-4)

where � is the free-space wavelength. The spacing d between the planes of constant re-
fractive index is just the wavelength of the acoustic wave in the material, given by

d = �a = (22-5)
vs
�
fa

�
�
2d

�/n
�
2d

d2

�
�
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Figure 22-8. Acoustic waves of frequency fa and wavelength d move with speed vs in the crystal.
Light with wavelength � is efficiently scattered when it enters the crystal at an angle of incidence ��B =
�/2d. The deflection of the beam is 2��B.
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where fa is the acoustic frequency, and vs is the velocity of sound in the material. Typical
acoustic frequencies used in acoustooptic switching are in the radio frequency range of
tens of megahertz.

An acoustooptic deflector is constructed using flint glass, which has a refractive index
of 1.95 and a sound velocity 3 × 103 m/s. Acoustic waves with frequency 80 MHz are
generated in the glass in a beam of width 2 cm. Determine the angle through which an
optical beam of free-space wavelength 800 nm is deflected, and verify that the width
of the acoustic waves is sufficient for Bragg scattering.

Solution: The acoustic wavelength is

d = = 37.5 �m

and optical beam is deflected by

2��B = = 2.3 × 10–2 rad = 1.22°

The acoustic wave width should be greater than

= = 1.75 mm

Since L = 2 cm, this condition is satisfied.

Passive Q-Switching

So far we have considered active Q-switching, in which the time and duration of the
change in Q are under active control. The voltage pulse applied to the Pockels cell, or the
RF power sent to the acoustooptic deflector, occurs with a timing and repetition rate de-
termined by the user. An alternative approach is to let the laser cavity Q-switch itself, in-
dependently of actions by the user. Such a method is termed passive Q-switching.

A laser can be passively Q-switched by placing a saturable absorber inside the cavity,
as shown in Fig. 22-9. The saturable absorber has the property that its absorption coeffi-
cient decreases as the light intensity increases. This is the phenomenon of optical bleach-
ing, discussed in Chapter 9 (see Fig. 9-6). As the absorption loss in the saturable absorber
decreases, the Q of the cavity increases, and the threshold gain coefficient �th decreases.
The gain coefficient � in the laser gain medium is adjusted to be just a little above thresh-
old for the low-Q condition, so that laser light starts building up slowly. As the light in-
tensity increases, the difference � – �th increases, which causes the light intensity to build
up faster. This higher light intensity makes � – �th increase still further, causing the light
intensity to increase even faster still, in a positive feedback loop. In effect, the laser light
“digs its own hole” through the saturable absorber. The result is an intense burst of light
in a self-Q-switched pulse.

(37.5 × 10–6 m)2

��
800 × 10–9 m

d2

�
�

0.800 �m
��
37.5 �m

3 × 103 m/s
��
80 × 106 s–1
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The intensity at which the absorption coefficient is reduced by a factor of two is the
saturation intensity Is, given in Eq. (19-9) for a four-level system. It is generally desirable
that Is not be too large, so that Q-switching can occur at a reasonable power level. In prac-
tice, liquid dyes are often used for this purpose, since they have large absorption cross
sections and correspondingly low values of Is.

22-5. THEORY OF MODE LOCKING

The width of Q-switched pulses is generally limited to the order of a few nanoseconds,
due to the finite cavity lifetime �c. To obtain shorter pulses, the technique of mode locking
can be used. In this method, the laser is run continuously above threshold, with multiple
modes lasing simultaneously. This contrasts sharply with the Q-switching technique, in
which the laser makes a fast transition between nonlasing and lasing.

Two Lasing Modes

It may seem surprising at first that continuous-wave (CW) lasing can give rise to pulses of
light. To see how this works, consider first the simple case of two modes lasing simulta-
neously. Let the two modes be designated 1 and 2, with time-dependent E fields given by

E1(t) = A cos [(�0 – ��/2)t]
(22-6)

E2(t) = A cos [(�0 + ��/2)t]

where �0 is the average (angular) frequency of the two modes, �� is the mode separation,
and A is the amplitude of each mode. We will assume that �� � �0, a good approximation
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Figure 22-9. Placing a saturable absorber inside the laser cavity causes the laser to self-Q-switch.
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for laser cavities. The total electric field is the sum of the fields from the two modes, and
with the trigonometric identity cos � + cos � = 2 cos 1–2 (� + �) cos 1–2 (� – �) can be written

E(t) = E1(t) + E2(t) = 2A cos (�0t) cos � t� (22-7)

The time-dependent E field given in Eq. (22-7) is illustrated in Fig. 22-10. It has the
form of a fast oscillation at the average mode frequency �0, modulated by the slowly
varying envelope function cos (��/2)t. The light intensity is 
 |E|2, and will therefore pul-
sate with a repetition time Tbeat given by

�
�

2

�
� Tbeat = �

(22-8)

Tbeat = �
2

�

�

�
� = �

�

1

�
�

These intensity pulsations are the well-known beating phenomenon observed when com-
bining waves of slightly different frequency, and the frequency �beat = 1/Tbeat is the beat
frequency.

We see from the above example of two oscillating modes that intensity pulsations can
be obtained from two continuously lasing modes. The width of each pulse is still rather
large, however, being on the order of half the beat period Tbeat. For a laser with cavity
length L ~ 10 cm, the spacing between adjacent modes is c/2L ~ 1.5 GHz, which corre-
sponds to a beat period of Tbeat = 1/�� = 2L/c ~ 600 ps. Although this is shorter than the
pulse width of most Q-switched lasers, it is not sufficiently short for many applications.
Also, the “pulses” are not well separated, and are more accurately described as smoothly
varying oscillations in the light intensity.

N Lasing Modes

To obtain shorter pulses that are well separated, it is necessary to have a large number of
modes oscillating simultaneously. If the gain bandwidth of the laser medium is inhomo-

��
�
2
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Figure 22-10. Electric field resulting from the addition of two sine-wave components with slightly
different frequencies.
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geneously broadened with width 
�, the number of simultaneously lasing modes will be
roughly

N � 
�/�� (22-9)

where �� is the mode spacing. The precise number of oscillating modes will depend on
the ratio of �0 to �th for each mode, as shown in Fig. 22-11. Any mode with �0/�th > 1 will
lase, and the rest will not. The number of lasing modes therefore depends on how far
above threshold the laser is pumped.

When many modes are lasing, the general expression for the time-dependent E field
can be written in complex exponential notation as

E(t) = �
m

Em ei[�mt+�m(t)] (22-10)

where Em is the amplitude (taken as real), �m is the (angular) frequency, and �m(t) is the
time-dependent phase of the mth lasing mode. The intensity of light varies in time as I(t)

 |E(t)|2 = E(t)E*(t), with E*(t) the complex conjugate of E(t). Using the sum in Eq. (22-
10) for E(t) to evaluate E(t)E*(t) results in many terms, each with the general form

term in sum = EmEnei(�m–�n)tei[�m(t)–�n(t)] (22-11)

If the phase of each mode is constant in time, then the time dependence of each term is a
sinusoidal oscillation with (angular) frequency �m – �n. Since the modes are evenly
spaced by �� in frequency, the oscillation of each term is a harmonic (i.e., an integer mul-
tiple) of the fundamental frequency ��. Adding the various terms together, therefore, re-
sults in a superposition of a fundamental plus higher harmonics, which by the Fourier se-
ries principle should lead to a repeating pattern of short pulses separated in time by
2�/��. The width of each pulse is inversely related to the highest-frequency component
in the Fourier series. A greater number of oscillating modes leads to higher harmonics,
and therefore to shorter pulses.

The critical assumption made above is that the phase of each mode is constant in
time. In general, this would not be true, since each mode is lasing independently, and

404 Chapter 22 Pulsed Lasers

Figure 22-11. Unsaturated gain coefficient �0 versus frequency. Lasing will occur in those modes
for which �0 > �th.
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is subject to random perturbations due to vibrations, thermal effects, and other environ-
mental variables. These perturbations cause the phase �m(t) of each mode to vary
randomly in time, so that terms in Eq. (22-10) such as that of Eq. (22-11) average to
zero for m � n. This leaves only the N terms of the form Em

2 in the sum of Eq. (22-10),
so that

�|E(t)|2� = �
m

Em
2 (no mode locking) (22-12)

where �. . .� indicates a time average. For randomly varying phases, the mode intensities
add to give the total intensity. If each mode has the same intensity, the total intensity for N
lasing modes is therefore just N times the intensity in a single mode.

When the phase difference between modes is constant in time, we say that the modes
are “locked in phase,” and this leads to the phrase mode-locking to describe this method.
Practical methods for causing the modes to lock in phase will be considered in the next
section. For now, we assume that this is possible, and take the phase of all modes to be
fixed at zero. Eq. (22-10) then becomes

E(t) = �
m

Emei�mt (modes locked) (22-13)

For simplicity, we will take each lasing mode as having the same amplitude Em = E0.
Defining �0 as the average lasing mode frequency (at center of gain curve), and �� as the
mode spacing, Eq. (22-13) can be written as

E(t) = �
(N–1)/2

� = –(N–1)/2

E0ei(�0+���)t (22-14)

where � = 0, ±1, ±2, . . . ±(N – 1)/2 is an integer labeling the different lasing modes, and N
is taken as odd. Since N is very large in practice, we will make the approximation N – 1 �
N in what follows. Since E0 and ei�0t are independent of �, they can be factored out of the
sum in Eq. (22-14), leaving

E(t) = E0ei�0t �
N/2

� = –N/2

ei���t (22-15)

The time dependence in Eq. (22-15) depends on the product of two factors, the first
varying rapidly in time with average mode frequency �0, and the second varying much
more slowly, with frequency ��. This is similar to the results obtained previously for two
oscillating modes in Eq. (22-7) and Fig. 22-10. The second factor in Eq. (22-15) can be
thought of as an envelope function that slowly modulates the amplitude of the rapid oscil-
lations at frequency �0. The light intensity I 
 |E(t)|2 depends on the magnitude of this
sum of complex exponentials.

Pulse Width

To gain an intuitive understanding of the nature of mode-locked pulses, it is most in-
structive to perform the summation in Eq. (22-15) graphically rather than analytically.
Each term in the sum is a vector in the complex plane, of unit magnitude and making
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an angle �� = ���t with the real axis. At t = 0, all the vectors are along the real axis,
and E(0) = NE0. This time corresponds to the peak of a laser pulse. As time increases,
the vectors fan out in the complex plane, as shown in Fig. 22-12, and the resultant am-
plitude decreases. When the vector with the highest value of � = N/2 reaches the nega-
tive real axis, as in Fig. 22-13, the vectors are uniformly distributed in angle, giving a
resultant amplitude of zero. The point in time when this occurs corresponds to the end
of the laser pulse.

The width 
tp of the mode-locked pulse is, therefore, obtained by setting �� = � for � =
N/2, which gives

��
tp = �

Solving for 
tp yields


tp � = = (22-16)

where Eq. (22-9) has been used. The last expression above shows that the pulse width is
simply the reciprical of the gain bandwidth of the laser transition. This is another example
of the uncertainty relation between time spread and frequency spread, given in Eq. (15-2).
It is also equivalent to the Fourier transform principle (see Appendix B), which states that
to construct a pulse of duration 
t from pure sine waves requires a distribution of fre-
quencies of order 
� � 1/
t. The pulse duration 
tp � 1/
� is the minimum allowed for
a bandwidth 
�, and a pulse with this minimum value is said to be transform limited.

1
�

�

1
�
N��

2�
�
N��

N
�
2
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Figure 22-12. Phasors in the complex plane representing the terms of the form exp(i���t).
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Pulse Repetition Time

After the end of the laser pulse, the vectors in Fig. 22-13 continue to span the complex
plane as they rotate, and the light intensity remains low. However, when the vector with �
= 1 has rotated by 2� to again coincide with the real axis, the other vectors will have ro-
tated by �2�, and will also be along the real axis. The vectors will then be rephased, re-
sulting in another laser pulse. The time T between rephasings (and hence between laser
pulses) is given by ��T = 2�, or

T = = = (22-17)

The expression in Eq. (22-17) for the time between pulses has a simple physical inter-
pretation. Since 2L is the distance that light must travel in making one round-trip through
the cavity, T is the corresponding round-trip time. This is an intuitively satisfying result,
and leads to the picture of a single pulse of duration 
tp bouncing back and forth between
the mirrors of the cavity. The pulse duration can be expressed in terms of the round-trip
time as


tp � T (22-18)

using Eqs. (22-16) and (22-17). The “duty factor” for the light pulses (i.e., the fraction of
time that the pulses are “on”) is therefore 1/N, as illustrated in Fig. 22-14.

1
�
N

2L
�
c

1
�
��

2�
�
��

22-5. Theory of Mode Locking 407

Figure 22-13. When the phasors span the complex plane, the pulse amplitude becomes very
small.
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(a) A fiber laser of length 5 m operates at a free-space wavelength of 1530 nm with a
gain bandwidth of 30 nm. Taking the refractive index of glass to be 1.5, determine the
shortest possible mode-locked pulse, and the corresponding number of simultaneously
lasing modes.

Solution:
The frequency bandwidth for the fiber laser is


� = 
� = (30 × 10–9) = 3.84 × 1012 s–1

and the pulse width is


tp = = 2.6 × 10–13 s–1 = 260 fs

The mode spacing (free spectral range) is

= = 20 MHz

which gives the number of lasing modes as

N = = 1.92 × 105

(b) Repeat (a) for an argon ion laser of length 1 m, operating on a transition of wave-
length 514.5 nm and frequency bandwidth 8 GHz.

Solution:
For the argon ion laser, the pulse width is


tp = = 1.25 × 10–10 s–1 = 125 ps
1

�
8 × 109

3.84 × 1012

��
20 × 106

3 × 108

��
(2)(1.5)(5)

c
�
2nL

1
��
3.84 × 1012

3 × 108

��
(1.53 × 10–6)2

c
�
�2
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Figure 22-14. Time dependence of mode-locked pulses calculated for N = 15. Pulse width is 
tp

and pulse repetition time is T.

EXAMPLE 22-2
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and the mode spacing and number of lasing modes are

= = 1.5 × 108 s–1

N = = 53

It is clear from this example that solid-state lasers are capable of producing much
shorter pulses than gas-phase lasers, due to the broader width of the gain transition.

Pulse Energy

The power contained in each lasing mode is the same with or without mode locking. The
only difference is whether or not the E fields from the different modes periodically add
together in phase to create pulses. When there is no mode locking, the laser output is con-
tinuous wave (CW), with an average power proportional to

�|E(t)|2� = NE0
2 (no mode locking) (22-19)

Here we have used Eq. (22-12) with the simplifying assumption that each of the N modes
has the same amplitude E0. When mode locking occurs, the E field components in Eq.
(22-13) add together in phase during the pulse to give a total E field Epeak = NE0, for a
peak pulse power proportional to

|Epeak|2 = N2E0
2 (mode-locked pulse) (22-20)

Comparison of Eqs. (22-19) and (22-20) shows that the peak power Ppeak in a mode-
locked pulse is related to the average power �P� by

Ppeak = N�P� (22-21)

A large number of oscillating modes can, therefore, greatly enhance the peak power of the
mode-locked pulse.

The result in Eq. (22-21) has a simple physical interpretation based on Fig. 22-14. Mode
locking does not change the average energy in the laser beam, but instead simply redistrib-
utes this energy in time. In a time interval equal to the pulse separation T, the energy deliv-
ered by the beam can be calculated in either of two ways: �P� T using the average power, or
Ppeak
tp using the peak power. The relation between Ppeak and �P� is therefore

�P�T = Ppeak
tp = Ppeak

which again gives Eq. (22-21).

22-6. METHODS OF MODE LOCKING

If the different modes can lase completely independently of each other, then the relative
phase between modes will naturally drift due to environmental effects such as tempera-

T
�
N

8 × 109

�
1.5 × 108

3 × 108

�
(2)(1)

c
�
2nL
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ture, mechanical vibrations, and so on. In order to achieve mode locking, there must be
some interaction, or coupling, between the modes. There are two general methods for ac-
complishing this.

Active Mode Locking

One technique for mode locking a laser is to introduce a variable loss in the cavity, as de-
picted in Fig. 22-15. This loss is modulated in time at a frequency �mod equal to the mode
separation ��, typically by means of an acoustooptic or Pockels cell placed in the cavity.
This modulation couples two adjacent cavity modes because, as we saw in Eqs. (22-6)
and (22-7), an optical wave with time-dependent amplitude varying at frequency �� cor-
responds to two component waves, with optical frequencies separated by ��. The modula-
tion is said to create sidebands around the center frequency �0, which couples light energy
from one mode into another as shown in Fig. 22-16. If the coupling is sufficiently strong,
the phase of the different modes will be locked, resulting in mode locking.

The mode-locking process can also be understood in the time domain. Fig. 22-17
shows a sinusoidal time variation in cavity loss with modulation frequency �� = c/(2L).
The time between loss minima is T = 2L/c, the round-trip time for a pulse in the cavity.
Light that arrives at the variable loss medium when the loss is a minimum has a lower
round-trip loss than light arriving at other times. The process of mode locking becomes
one of self-selection, the optical equivalent of Darwin’s “survival of the fittest.” Any lin-
ear combination of modes may spontaneously form through random variations in phase,
but only the particular combination in which the modes are locked in phase has the lowest
lasing threshold. The mode-locked laser output shown in Fig. 22-17 has the lowest round-
trip loss of all possible solutions, and is therefore self-selected.

For a laser cavity with L = 1 m, typical for ion lasers, the mode spacing is �� = c/2L =
150 MHz, which is in the “radio frequency” (RF) region of the spectrum. To maintain ef-
ficient mode locking, an RF oscillator is needed that is very stable in frequency.

Passive Mode Locking

In the mode-locking process described above, the cavity loss is actively modulated to se-
lect for the mode-locked combination of modes. This method is therefore termed active

410 Chapter 22 Pulsed Lasers

Figure 22-15. Active mode-locking scheme, in which the cavity loss is externally modulated at fre-
quency �mod.
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mode locking. In contrast to this is passive mode locking, in which the mode-locked com-
bination of modes occurs spontaneously in the cavity, without the need for a user-sup-
plied modulation. This can be accomplished in a manner similar to that of passive Q-
switching, by inserting a saturable absorber inside the cavity. As shown in Fig. 22-9, the
absorption coefficient decreases with increasing light intensity, which favors the develop-
ment of high intensity pulses.

The difference between the Q-switching and mode-locking arrangements is that for
mode locking, the gain coefficient � for CW lasing is set just below threshold, so that las-
ing will not be initiated on a single mode. In order for lasing to occur, the light intensity
must be high enough to decrease the absorption loss in the saturable absorber. This can
occur if the modes lock together in phase to create short pulses, since the peak power in
each pulse is very high compared with the equivalent CW power. The process then again
becomes one of self-selection, in which the mode-locked pulses themselves now create
the conditions under which they can exist.

The time dependence of the gain threshold for passive mode locking is shown in Fig.
22-18. During the laser pulse, the gain is above threshold, and after the pulse it is below.
To create short pulses, it is necessary to use a saturable absorber material that recovers its
original absorption properties very quickly after the light intensity is reduced. Such a ma-
terial is termed a fast saturable absorber, and is typically a dye molecule in solution or a

22-6. Methods of Mode Locking 411

Figure 22-16. When light in a mode of frequency �0 is modulated at frequency �mod = ��, sidebands
are created at frequencies �0 ± �� that inject light into the adjacent modes. In this way, neighboring
modes become coupled.

Figure 22-17. Time dependence of cavity loss in active mode locking. The lasing pulses pass
through the loss medium when the loss is lowest.
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semiconductor. Passive mode locking has the advantage of simplicity, but gives less con-
trol over the pulses compared with active mode locking.

Kerr Lens Mode Locking

In the method described above, the duration of the mode-locked pulse is limited by the re-
covery time of the fast saturable absorber, usually ~ 1 ps. Pulses of much shorter duration
can be obtained using the Kerr lens shutter effect, depicted in Fig. 9-19. This works on a
femtosecond time scale, because it is based on the nonlinear refractive index that arises
from distortions of the atom’s electron cloud. It straightforward to implement, and simply
requires the placement of an adjustable aperture in the laser cavity, as illustrated in Fig.
22-19. At low optical intensity, the beam is partially blocked by the aperture, preventing
lasing. At sufficiently high intensity, however, self-focusing occurs, and this decreases
the divergence of the beam and increases the amount of light getting through the aperture.
This has the same effect on lasing as a saturable absorber, but on a much faster time scale.
Using this method, ultrafast pulses have been generated in Ti:sapphire lasers, with dura-
tions down to about 5 fs.

412 Chapter 22 Pulsed Lasers

Figure 22-18. Time dependence of loss (gain threshold) in passive mode locking. The lasing pulse
occurs when the gain threshold �th is reduced below the gain �.

Figure 22-19. In Kerr lens mode locking, a CW beam of low intensity is partially blocked by an in-
tracavity aperture, but a beam of high intensity is mostly transmitted, due to self-focusing. This natu-
rally selects a combination of modes that corresponds to high-intensity pulses. 
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PROBLEMS

22.1 A Nd:YAG laser operates at 1064 nm, and puts out a Q-switched pulse of energy
100 mJ and duration 5 ns. Take the beam diameter inside the laser cavity to be 4
mm, and use the spectroscopic parameters for Nd:YAG given in Table 23-1. (a)
Determine the peak laser output power. (b) Determine the number of photons in
one laser pulse. (c) Assuming that the output mirror transmission is 70%, deter-
mine the stimulated emission rate at the peak of the laser pulse, and compare this
with the spontaneous emission rate.

22.2 A laser cavity with n = 1 has mirrors of reflectivity 0.98 and 0.90 separated by 25
cm. After pumping and switching the Q, the population inversion in the laser medi-
um is initially six times the threshold value. (a) Calculate the cavity lifetime. (b)
Determine the time required for stray light in the cavity to increase by a factor of
105, assuming no gain saturation.

22.3 The pulse width of a Q-switched laser is generally somewhat greater (factor of two
or three) than the cavity lifetime �c. Consider a fiber laser with index 1.5 and
length 5 m operating at a wavelength of 1 �m. The mirror reflectivities are 0.98
and 0.95, and the loss coefficient in the fiber is 2 dB/km. (a) Determine the mini-
mum duration of Q-switched pulses by calculating �c. (b) Repeat part a with the
fiber length reduced to 1.5 m. (c) If this is the minimum length required for effi-
cient absorption of the pump light, what else can be done to decrease the pulse du-
ration?

22.4 The properties of an Er:glass laser are given in Table 23-1. (a) What is the opti-
mum pulse repetition rate for repetitive Q-switching? (b) If the energy in each
pulse is 5 mJ, what is the average laser output power?

22.5 A LiNbO3 acoustooptic deflector is used to switch the direction of 1030 nm (free-
space) light. LiNbO3 has a sound velocity of 7.4 × 103 m/s, and refractive index of
2.3. (a) If the total deflection angle (external to the material) is required to be 5°,
determine (a) the acoustic wave frequency that will accomplish this, (b) the inter-
nal total deflection angle, and (c) the minimum width of the LiNbO3 chip such that
the thick-grating condition applies.

22.6 The Ti:sapphire laser is a very wideband, tunable laser, with a center wavelength
of 800 nm and operation range from about 700–1100 nm. Take the average output
power to be 3 W, the effective (air-equivalent) cavity length as 90 cm, and assume
all modes from 720–870 nm are lasing with equal amplitude. (a) How many modes
are lasing? (b) What is the width of each pulse? (c) What is the time between puls-
es? (d) Calculate the energy and peak power of each pulse

22.7 A laser with an effective (air-equivalent) cavity length of 25 cm is actively mode
locked with an intracavity modulator. The gain frequency spectrum has a Gaussian
shape, with center wavelength 650 nm and width (FWHM) of 15 nm. (a) What mod-
ulation frequency is required? (b) If the laser is pumped at twice threshold, determine
the number of lasing modes and the laser pulse width. (c) Repeat part b if the laser is
pumped at five times threshold. How much does this decrease the pulse width?

22.8 A researcher wants to actively mode lock a laser using a modulation frequency that
is either twice or one-half the usual value. Do you expect either of these methods
to work? Give an explanation in both the time and frequency domains.

Problems 413
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22.9 The sum in Eq. (22-15) was determined graphically by adding vectors in the com-
plex plane. An alternative is to use the mathematical identity

1 + x + x2 + . . . + xN–1 =

taking x = exp(i��t). Show that this approach leads to a time-dependent total elec-
tric field of magnitude

|E(t)|2 


where T = 2L/c is the cavity round-trip time. You can assume N 	 1.

22.10 Using the results of the previous problem, (a) show that the time interval from the
peak of a pulse to the first zero is given by Eq. (22-16), (b) show that the pulse rep-
etition time is T, and (c) show that the full width at half maximum (FWHM) of the
pulses is approximately given by Eq. (22-16)

22.11 An Er-doped fiber laser has cavity length 200 m, refractive index 1.5, and operates
at wavelength 1550 nm. The laser is passively mode locked and produces pulses of
energy 16 nJ and duration 1.3 ps. (a) Determine the pulse repetition time. (b) Cal-
culate the number of oscillating modes. (c) Determine the wavelength range for the
modes that are oscillating. (d) Calculate the peak power in each pulse. (e) Calcu-
late the average output power.

22.12 The fiber laser in the previous problem is now actively mode locked by modulat-
ing the cavity loss at a frequency of 2 GHz. Assume that the average output power
is the same as before. (a) How many pulses per second are produced now? Explain
how this can be different than in the previous problem. (b) Assuming that the pulse
duration is the same as before, determine the new pulse energy and peak power in
each pulse.

22.13 An argon ion laser has cavity length 120 cm, loss coefficient in the gas discharge
tube of 1.25 × 10–3 m–1, and mirror reflectivities of 0.999 (high reflector) and
0.990 (output coupler). The Doppler-broadened gain linewidth (FWHM) is 3.5
GHz, and measurements using a high-resolution Fabry–Perot interferometer show
that there are 36 modes lasing when the laser is excited with a CW drive current of
25 A. At this drive current, the CW output power (no mode locking) is 4.0 W. Cal-
culate (a) the threshold gain coefficient, (b) the frequency separation between adja-
cent modes, (c) the expected pulse width with mode locking (assume equal-ampli-
tude modes), (d) the modulation frequency �mod needed to achieve mode locking,
(e) the peak power and pulse energy during the mode-locked pulse, and (f)the de-
gree to which threshold is exceeded (i.e., the ratio of unsaturated gain coefficient
to threshold gain coefficient).

22.14 In the previous problem, the drive current to the laser is increased to 50 A. Assum-
ing that the excitation rate is proportional to the drive current, determine (a) the
new pulse width, (b) the number of lasing modes, and (c) the new peak mode-
locked power.

sin2(N�t/T)
��
sin2(�t/T)

1 – xN

�
1 – x
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In the preceding chapters, we have examined the fundamental principles that are com-
mon to all lasers. We turn now to the practical application of these principles in specif-
ic lasers. There are many different types of lasers, and they can be classified most fun-
damentally according to the pump mechanism (how energy is deposited in the upper
laser level) and the nature of the energy levels. The most common pumping mechanisms
are optical and electrical, although other energy sources such as chemical, nuclear, or
particle-kinetic energy are possible as well. The energy levels can be electronic in na-
ture (describing different energy states of an electron), vibrational (describing different
energy states of the atomic vibrations in a solid), or some combination of these two. In
this chapter, we give a brief survey of some of the more important laser types, organized
primarily by pumping mechanism, and secondarily by the nature of the laser transition.
This survey is not meant to be comprehensive, but is intended to give a sense of the dif-
ferent properties of various laser systems. More extensive treatments can be found in the
Bibliography.

23-1. OPTICALLY PUMPED LASERS

In a laser that is optically pumped, the upper laser level is populated by absorption of a
photon from some optical source. This light source can be a high-intensity lamp (lamp
pumping) or another laser (laser pumping). The early lasers were mostly lamp-pumped,
but the trend in recent years has been toward laser-pumped lasers. This may seem strange
on the face of it; if you need a laser to pump another laser, why not just use the first laser
instead? We will see, however, that there are distinct advantages to this approach.

Many optically pumped lasers have a gain medium consisting of rare earth or transi-
tion metal ions doped into an insulating dielectric solid. These are termed solid-state
lasers, and include the historically important ruby laser, as well as the neodymium laser, a
long-time industrial workhorse. In this section, we discuss the operation of these old but
classic laser types, along with some newer ones based on a fiber geometry.

Electronic Transition

Ruby Laser

The first experimental demonstration of laser action (Maiman 1960) utilized a ruby rod as
the gain medium. Ruby is a naturally occuring gem, but can also be produced artificially
under carefully controlled conditions. It consists of Al2O3 (aluminum oxide crystal, also
known as sapphire) doped with Cr3+ (chromium impurity ions). These triply ionized
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chromium ions are responsible for the color of ruby (Al2O3 itself is colorless), and also
for its laser action. The optically active electrons in Cr3+ can occupy states of different en-
ergies, as shown in Fig. 23-1. The origin of the notation 2E, 4T2, and so on, for the levels
need not concern us here, and we can think of these as simply labels for the different elec-
tronic states. Electrons in the 4T1 and 4T2 levels* interact strongly with vibrational modes
of the crystalline lattice, and these levels are significantly broadened in energy. Ruby ab-
sorbs visible light over a wide spectral range in the blue (centered at 400 nm) and the
green (centered at 550 nm) regions. When it is illuminated with white light, the red light
that remains gives ruby its characteristic color.

Electrons in the 2E level interact less strongly with the lattice, and this level is relative-
ly well defined in energy. The laser transition in ruby is from the 2E to the ground state
4A2, and occurs at a well-defined wavelength of 694 nm. To get electrons into the upper
laser level, they are first promoted to the 4T1 and 4T2 levels by optical absorption, and
from there they decay nonradiatively to the 2E level. Because of the strong electron–lat-
tice interaction for electrons in the 4T1 and 4T2 levels, this process occurs rapidly, on a ~
100 ns time scale. The fluorescence lifetime for electrons in the 2E level is comparatively
quite long (3 ms), due to the weak electron–lattice interaction there. A level such as this
with a relatively long lifetime is termed a metastable state.

Since the lower laser level is the ground state, ruby is an example of a three-level type
laser system (see Chapter 19). To achieve the population inversion required for lasing, at
least half the Cr3+ ions must be promoted from the ground state to the upper laser level 2E.
This requires a very high excitation rate, and it is rather ironic that the first example of
lasing was in such a “difficult” system. In ruby’s favor, however, is the broad absorption
throughout the visible region, which allows excitation from a wide range of wavelengths
to be funneled efficiently into the upper laser level. Also advantageous is the the relative-

416 Chapter 23 Survey of Laser Types

Figure 23-1 Energy levels in Cr3+:Al2O3 (ruby). The lasing transition is from the first excited state 2E
to the ground state 4A2, making this a three-level-type system.

*These are sometimes designated the 4F1 and 4F2 levels, respectively.
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ly long lifetime of the upper state, which reduces somewhat the required excitation rate
(see Eq. 19-7).

The high excitation rate required for population inversion is most easily obtained
with a pulsed light source, and the ruby laser is, therefore, generally operated with a
flashlamp pump. The first ruby laser utilized a spiral-shaped flashlamp that surrounded
the laser rod, as depicted in Fig. 23-2. The flashlamp requires a high-voltage pulse of
short duration, which can be obtained from the simple electrical circuit shown. An ap-
plied high voltage charges the capacitor, which is connected across a “spark gap” (two
metal electrodes separated by a small space in air). When the capacitor voltage is suffi-
ciently high, the air in the gap breaks down (becomes highly conducting), which causes
the capacitor voltage to appear across the flashlamp tube. Other more sophisticated
circuits are possible as well, but the basic requirement is that the voltage across the
tube be switched quickly. The resulting optical pulse from the flashlamp has a typical
duration on the order of 1 ms, which is shorter than the excited-state lifetime of ruby.
This ensures that the upper-state population does not significantly decay during the ex-
citation pulse, so the pump pulse energy is efficiently utilized in creating a population
inversion.

When the ruby laser is excited with an appropriate flashlamp, the time dependence of
the laser output exhibits spiking behavior (see Chapter 22). To obtain a more controlled
output pulse, the laser can be Q-switched, for example by the rotating-mirror method.
Typical Q-switched pulses may have an energy of ~ 0.1 J with duration ~ 10 ns, which
corresponds to a peak power of ~ 10 MW. Because of the need for the power supply to
recharge to a high voltage, the repetition rate of the pulses is limited to a few pulses per
second, and so the average power is modest, on the order of a few watts.

23-1. Optically Pumped Lasers 417

Figure 23-2 The early ruby lasers were pumped with a spiral shaped flashlamp, with one end sil-
vered to give high reflection and the other end partially silvered to serve as the output coupler. The
electrical circuit shown represents one simple way of providing a short-duration, high-voltage pulse
to drive the flashlamp.
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The ruby laser is important historically because it was the first to be demonstrated ex-
perimentally. It has found applications in rangefinding, holography, and medical therapy.
However, it is less commonly used today, due to the development of more efficient and
versatile lasers.

Neodymium Lasers

The first operating neodymium laser was developed in 1964 at Bell Labs, not long after
the invention of the ruby laser. Unlike the ruby laser, however, the neodymium laser has
continued to find new applications and to grow in importance, right up to the present day.
The reason for this difference can be understood by considering the nature of the laser
transition.

Neodymium (Nd) is one of the rare earths, the group of atoms with atomic number be-
tween 58 and 70. The triply ionized rare earths (Nd3+, for example) have optical transi-
tions in the visible and near infrared regions that are fairly well defined in energy, de-
pending only slightly on the host solid into which the ion is doped. This insensitivity of
the transition energy to the ion’s environment comes about through a shielding effect
unique to the rare earths. The optically active electron orbitals are designated 4f, which
means principle quantum number n = 4 and angular momentum l = 3. The 4f orbitals hap-
pen to be located, on average, closer to the nucleus than the filled 5s and 5p orbitals. Elec-
trons in these outer 5s and 5p orbitals, therefore, act like a spherical metallic shell in
shielding the inner 4f electrons from the electric fields of neighboring atoms. The shield-
ing is not perfect, but to a first approximation the energy of the various 4f levels is not af-
fected by the environment surrounding the rare earth ion.

The energies of the lower-lying levels of Nd3+ are shown in Fig. 23-3. In principle, las-
ing can occur between any pair of levels, but the required population inversion is easily
achieved only when the upper laser level has a long lifetime (see Eq. 20-18). The lifetime
of most of the Nd3+ levels is rather short, due to efficient nonradiative relaxation to the
next-lowest level. The 4F3/2, however, has a large energy gap to the next-lowest state, and
the probability of nonradiative decay is small. The lifetime of the 4F3/2 is, therefore, rea-
sonably long, making this the best choice for the upper laser level.

The most important laser transition in Nd3+ is from the 4F3/2 (upper laser level 2) to the
4I11/2 (lower laser level 1). Since the lower laser level here is not the ground state, this
constitutes a four-level system (see Fig. 19-1). Achieving population inversion in a four-
level system is much easier than in a three-level system, because it is not necessary to take
half the ions out of the ground state. The required excitation rate is, therefore, much low-
er for the Nd3+ laser than for the ruby laser, and this is a primary reason for the Nd3+

laser’s initial and continuing popularity. Other advantages of Nd3+ over ruby are an order-
of-magnitude-higher peak cross section (for Nd3+ in a crystalline host), and the ability to
use higher ion concentrations without significant lifetime quenching by ion–ion interac-
tions. These both lead to a higher gain coefficient, which improves the lasing threshold
and lasing efficiency.

The crystal host that has been most widely used for a Nd3+ laser is Y3Al5O12 (yttrium
aluminum garnet, or YAG), and the ion:host combination is referred to as Nd:YAG. In
Nd:YAG, the laser transition occurs at 1064 nm, which is in the near infrared region. The
origin of this particular wavelength can be understood by considering in more detail the
nature of the upper and lower energy levels. Each “level” (the 4F3/2 for example) is actual-
ly a multiplet, consisting of a number of sublevels. In general, a transition can occur from
any sublevel of the 4F3/2 down to any sublevel of the 4I11/2, and the energy of the emitted

418 Chapter 23 Survey of Laser Types

c23.qxd  2/22/2006  3:43 PM  Page 418



photon will equal the energy difference between initial and final sublevels. The fluores-
cence spectrum for the 4F3/2 � 4I11/2 transition in Nd:YAG, shown in the lower-left panel
of Fig. 23-4, gives an indication of the relative peak cross sections (and hence peak gain
coefficients) for the various possible transitions. Lasing occurs at 1064 nm in Nd:YAG
because this transition has the highest emission cross section. Once lasing starts on this
transition, the gain becomes clamped, and gain on the other transitions remains below
threshold (assuming homogeneous broadening).

Although the average energy of the sublevels in a manifold is fairly independent of the
host material, the position of the various sublevels within the manifold varies consider-
ably. The upper-left panel of Fig. 23-4 shows the emission spectrum of Nd3+ in a different
crystal, YAlO3. Although Y3Al5O12 and YAlO3 have the same atomic constituents, the
crystal symmetries are different, and this makes the local environment of the Nd3+ ion dif-
ferent enough to significantly change the spectrum. When Nd3+ is doped in a glass, it can
reside in any one of a great number of different “sites,” each having a different local envi-
ronment and symmetry. The emission spectrum in this case is an average over the many
different sites, resulting in the rather smooth and broad spectra shown in the right panels
of Fig. 23-4. The spectra are not entirely featureless, however, and differences in shape,
width, and peak wavlength can be used to advantage for a particular application. This de-
pendence on glass composition applies equally well to other rare earth ions doped into
glass, and has implications for optical amplifiers as well as for lasers.

The Nd3+ laser is typically pumped with a lamp or with a diode laser. For lamp pump-
ing, the lamp and laser rod are often placed at the foci of an elliptical reflector, as depict-
ed in Fig. 23-5a. The law of reflection applied to an elliptical surface dictates that a light
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Figure 23-3 (a) Energy levels in Nd3+. The lasing transition is from the metastable level 4F3/2 to an
excited state, the 4I11/2, making this a four-level type system. The solid and dotted lines represent ra-
diative and nonradiative transitions, respectively. (b) Each level consists of a number of sublevels,
and laser transition is between one particular pair of sublevels.
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ray emitted in any direction from one focus of the ellipse is reflected so that it passes
through the other focus. This geometry ensures optimal coupling of the emitted lamp light
into the laser rod. The pump light enters the laser rod from the side, and the laser is said to
be “side pumped.” In contrast to this, diode pumped lasers are often pumped from the
end, or “end-pumped,” as depicted in Fig. 23-5b. If the medium surrounding the laser rod
is air, the pump light is trapped in the rod by total internal reflection, and the Nd3+ ions are
efficiently excited by the pump.

For lamp pumping, the pump spectrum is very broad, and there are many levels above
the upper laser level (for example, levels 3 and 3� in Fig. 23-3a) that simultaneously ab-
sorb the pump light. Because of the close energy spacing of these levels, they all decay
rapidly (nanosecond time scale) in a nonradiative cascade to the metastable 4F3/2 (� = 0.23
ms for Nd:YAG). In this way, pump-light energy over a broad wavelength range is fun-
neled into the upper laser level.

For diode laser pumping, in contrast, the excitation is at a single pump wavelength. For
example, Nd:YAG has a strong absorption peak at a wavelength of 808 nm, which can be
generated by an AlGaAs diode laser. Absorption of a photon at this wavelength promotes
a Nd3+ ion from the 4I9/2 ground state to the 4F5/2 state (level 3). From here, the ion decays
rapidly to the 4F3/2 (level 2) in a single nonradiative step.

An important advantage of diode laser pumping is its efficiency. The energy difference
between the pumped level (3) and the upper laser level (2) is smaller than the correspond-
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Figure 23-4 Emission spectrum for the 4F3/2 � 4I11/2 transition of Nd3+ in various hosts. In crys-
talline hosts (left two panels) the spectra consist of a series of narrow lines, with a distribution that
depends strongly on the type of crystal. In glasses, the spectra are broad and smooth, with a weaker
dependence on the type of glass. (After Weber 1979.)
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ing difference in lamp pumping, so less pump energy is wasted in the nonradiative cas-
cade to level 2. Stated another way, the quantum defect, defined earlier as the difference
between pump and laser photon energies, is smaller in the case of diode laser pumping.
The pump wavelength is closer to the lasing wavelength, and according to Eq. (20-29)
this improves the laser slope efficiency.

The overall laser efficiency depends not only on how efficiently the laser medium con-
verts absorbed pump power into laser output, but also on how efficiently the laser medi-
um absorbs the pump light. This absorption efficiency is relatively low for lamp pumping,
because the lamp spectrum contains many photons with an energy that falls in between
the Nd3+ energy levels. However, the corresponding efficiency for diode laser pumping is
high, since all of the diode laser power is concentrated at a wavelength at which the medi-
um is highly absorbing. The overall efficiency of a laser is often expressed in terms of the
“wall plug” efficiency, defined as the laser output power divided by electrical input pow-
er. Diode-pumped Nd:YAG lasers have a much higher wall plug efficiency (~ 30%) than
their lamp-pumped counterparts (~ 3%), due largly to the difference in pump absorption
efficiency.

Neodymium lasers have been industrial workhorses ever since their introduction. They
can be operated efficiently in either continuous or pulsed mode, and have found applica-
tion in cutting and drilling and other types of materials processing, as well as various
medical applications (most of which involve cutting tissue). Although YAG has been the
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Figure 23-5 (a) For lamp pumping of a Nd:YAG laser, the lamp and laser rod are often placed at the
foci of an elliptical reflector to maximize the coupling of pump light into the laser rod. (b) For diode-
laser pumping, the pump light can be injected into the end of the rod as shown. Pump light that is not
absorbed by the rod must then be separated from the laser beam.
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most commonly used crystalline host, other crystals such as YVO4 and YLiF4 have been
used as well. Glass hosts have a much lower thermal conductivity than crystalline hosts,
and heat dissipation becomes a problem for Nd:glass lasers operated at high average pow-
er. Also, the peak cross section for a glass host is smaller (see Table 23-1). For these rea-
sons, Nd:glass lasers are mostly operated in pulsed mode. We will see an exception to this
rule, however, when we discuss fiber lasers.

One of the more impressive applications of Nd:glass lasers is in the generation of pow-
er by nuclear fusion. In nuclear fusion, two hydrogen nuclei (or a nucleus of hydrogen
and one of deuterium) are joined together to create a nucleus of helium, thereby releasing
considerable energy. To get the nuclei to come together requires extraordinary conditions
of temperature and compression that are quite difficult to achieve. One proposed scheme
is to illuminate a small pellet of the hydrogen/deuterium mixture from all sides with a
high-power laser pulse, which will then implode the pellet and create the necessary com-
pression. The optical power needed for this is enormous, and the current proof-of-princi-
ple project is the National Ignition Facility (NIF), operated by Lawrence Livermore Na-
tional Laboratory. Current plans call for 192 beamlines, each containing 16 rectangular
slabs of Nd-doped phosphate glass oriented as shown in Fig. 23-6. The slabs are tilted at
Brewster’s angle to avoid reflection losses, and are pumped from the side by a series of
flashlamps. The slabs act as optical amplifiers, increasing the energy of a seed pulse to
over 15 kJ in a pulse duration of 3.5 ns. The total combined energy of the 192 beamlines
would be some 3 MJ, and the peak power in the pulse would be P = E/�t = (3 × 106)/(3.5
× 10–9) = 8.6 × 1014 W! When constructed, this will be the world’s most powerful laser.

Other Rare Earth Lasers

There are several other rare earth ions besides Nd3+ that can be used in an optically
pumped solid-state laser. The lower-lying energy levels for the most commonly used rare
earths are shown in Fig. 23-7, along with the most important laser transitions. Tm3+

and/or Ho3+ can be doped in a crystal such as YAG, to generate laser light in the 2 �m
range. These transitions terminate on the ground state, and so this is a three-level type
system that operates most efficiently in pulsed mode. Light in the 2 �m range is efficient-
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Table 23-1 Typical parameters for selected solid-state or liquid lasers

Excited
Peak Ion Linewidth state  

Ion Refractive Emission emission � density �� lifetime
Laser or dye Host index n � (nm) (10–20 cm2) (1020 cm–3) (THz) � (ms)

Ruby Cr3+ Al2O3 1.76 694 2.5 0.16 0.33 3
Nd:YAG Nd Y3Al5O12 1.82 1064 28 1.38 0.12 0.23
Nd:glass Nd phosphate 1.53 1054 4 3.2 5 0.29

glass
Er:fiber Er silica 1.46 1530–1570 0.6 0.1 5 10

glass
Yb:fiber Yb silica 1.46 980–1100 2.5 0.1 5 0.84

glass
Ti:sapphire Ti Al2O3 1.76 660–1180 34 0.33 40 0.0038
Dye R6G ethylene 1.43 570–640 2 × 104 0.1 35 5 × 10–6

glycol
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Figure 23-6 Light of wavelength 1.053 �m passes through a series of Nd-doped glass slabs in the
amplifier section of the National Ignition Facility (NIF). The tilted geometry of the slabs not only re-
duces Fresnel reflection losses, but also allows convenient side pumping with a series of flashlamps.
The slabs have dimensions 3.4 × 46 × 81 cm, and are oriented so as to present an approximately
square cross section to the propagating beam.

Figure 23-7 Lower-lying energy levels for selected rare earth ions (triply ionized), showing the im-
portant laser and amplifier transitions. The energy scale is written as an inverse transition wave-
length, where E = hc/�, so that 1 eV is equivalent to 8064 cm–1. Transition wavelengths are also giv-
en in units of �m.
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ly absorbed by the water contained in biological tissue, and these lasers have possible
medical applications. The Er3+ ion generates light at 2.7 �m, and this wavelength is even
more strongly absorbed by water, making it ideal for cutting tissue. The 2.7 �m transition
of Er3+ is four-level in nature, and might be expected to be quite efficient. However, the
lifetime of the lower level 4I13/2 is much longer than that of the upper level 4I11/2, because
of the weaker nonradiative decay from the lower level. Steady-state population inversion
is thus difficult to achieve, and the laser is mostly operated in the pulsed mode.

The Yb3+ ion has a particularly simple energy-level structure of just two levels, the
ground state 2F7/2 and the excited state 2F5/2. It might seem at first that population inver-
sion would never be attained here, since pump light resonant with this transition would at
most simply equalize the population in the upper and lower levels (see Problem 23.7).
However, the upper and lower states consist of closely spaced sublevels, as depicted in
Fig. 23-8. The pump transition is, therefore, not the same as the lasing transition, and pop-
ulation inversion can indeed be achieved. For example, Yb:YAG can be pumped at 943
nm by a InGaAs/GaAs strained quantum-well laser, and lasing occurs at 1.03 �m. This
laser wavelength is close to that of Nd:YAG, and Yb:YAG can, therefore, be used for
many of the same applications. An advantage of Yb:YAG is that the quantum defect is
smaller (the pump wavelength is closer to the lasing wavelength), so the slope efficiency
can be higher. A disadvantage of Yb:YAG, however, is that it cannot be lamp pumped.

An interesting question is whether the Yb3+ laser should be classified as four-level or
three-level. On the one hand, the lower laser level is not actually the lowest possible level,
and so it might be considered four-level. But on the other hand, the lower laser level is
thermally populated according to the Boltzmann factor exp(–�/kBT), and this can be non-
negligible at room temperature. Some minimum level of excitation is, therefore, required
to achieve population inversion, and this is characteristic of a three-level system. Systems
like this are often referred to as quasi-four-level,* and they have properties intermediate
between true three- and four-level-type systems. Many of the rare earth transitions that
terminate on the ground state are of this type, including those of Ho3+, Er3+, and Tm3+.
The performance of these lasers generally improves at low temperature, where the lower
laser level is less thermally populated.
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Figure 23-8 The upper and lower states of Yb3+ are split into a number of sublevels, and the pump-
ing and lasing transitions are between different sets of these sublevels.

*But equally often, they are referred to as quasi three-level.
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The other transitions indicated in Fig. 23-7 are in the wavelength range 1.3–1.6 �m,
which overlaps the important second and third telecommunications windows. These tran-
sitions are particularly important for fiber amplifiers, as we will see when we discuss op-
tical communications in Chapter 24. Lasers can also be constructed based on these transi-
tions, but they are most commonly implemented in a fiber geometry, rather than in a
conventional rod geometry of millimeter-to-centimeter scale. In the following section, we
consider the many advantages of a laser with fiber geometry.

Fiber Lasers

Inside a conventional laser cavity (see Fig. 17-5), the spatial distribution of the optical
mode is determined by the curvature and separation of the mirrors. Although there is no ac-
tive confinement of the light perpendicular to the axis of the cavity (no “side mirrors”), the
light is “self-confining” in this direction, according to the properties of a Gaussian beam. A
cavity mode with large waist size w0 has a low angular divergence, and remains nearly the
same diameter everywhere between the mirrors. A mode with small w0 diverges rapidly
with position along the cavity axis, and the beam diameter becomes much larger at the mir-
rors. Because of this beam spreading, it is not possible to have an arbitrarily high intensity
(small beam size) at all points along the axis of a conventional laser cavity.

An alternative approach, which overcomes this limitation, is to use an optical fiber for
the laser cavity. Light in the core of an optical fiber is trapped by total internal reflection,
and this provides a natural way of confining the lasing mode laterally. Light can be con-
fined in the longitudinal direction by a mirror on each end of the fiber, as depicted in Fig.
23-9a. The mirrors in this case can be flat, because the optical mode is defined by the
fiber rather than the mirrors. In this type of laser cavity, light can be confined to a small
lateral size for an arbitrarily long cavity length, subject only to attenuation losses in the
fiber. Gain in the cavity is provided by rare earth ions, which are doped into the fiber core.
A device of this type is termed a fiber laser.

To obtain gain in the fiber laser, the rare earth ions need to be optically pumped with a
suitable light source. The first fiber lasers, proposed and developed by Snitzer in the early
1960s, were lamped pumped from the side. However, this pump scheme does not take ad-
vantage of the long fiber lengths that are possible, and fiber lasers today are nearly always
end pumped. One way to end pump the laser is to send pump light through a dichroic mir-
ror at the fiber end, as illustrated in Fig. 23-9a. This mirror is highly transmitting at the
pump wavelength �p, which allows the pump light to be coupled into the core of the fiber,
but it is highly reflecting at the lasing (or “signal”) wavelength �s, so it can serve as a high
reflector in the laser cavity. This pumping arrangement is generally used for experimenta-
tion and setting up prototypes, since the cavity can be easily altered.

A more robust pumping arrangement is the all-fiber scheme shown in Fig. 23-9b.
Pump light is injected into the lasing cavity using a fiber coupler (for example, the fused
biconical taper coupler of Fig. 7-4), and the laser light in the output is separated from the
unabsorbed pump light by another fiber coupler. Optical feedback in the laser cavity is
provided by two fiber Bragg gratings written into the fiber, rather than end mirrors. The
parameters for the couplers and fiber gratings can be designed for a particular application,
and some limited degree of tunability is possible by stretching the fiber grating (changing
� and therefore the lasing wavelength).

The fiber laser has a number of advantages over a conventional laser. It is compact,
lightweight, and provides a very stable output beam. The spatial distribution of the output
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beam is nearly diffraction limited (Gaussian profile) when the fiber is single mode, and
fiber lasers are ideal for creating a low-power “seed” beam for further amplification. An
example of this is the NIF laser discussed previously, in which a low-power Yb fiber laser
(pulse energy ~ nJ) provides the seed light that is eventually amplified into an enormous
(~ MJ) pulse of energy. In applications of a more modest scale, a fiber laser’s high beam
quality allows the light to be efficiently focused onto a target for cutting or materials pro-
cessing applications. For the same reason, fiber laser light can be efficiently coupled into
a passive fiber for transporting the light to a distant target. This capability is especially
useful, for example, in laser surgery.

The fiber geometry has an added benefit related to heat dissipation. The heat generated
in an object is proportional to its volume (assuming uniform excitation), whereas the flow
of heat away from that object is proportional to its surface area. In the steady state, there-
fore, a higher surface/volume ratio results in more efficient heat dissipation and a lower
temperature rise. For a long rod of radius a and length L, the surface/volume ratio is
(2	aL)/(	a2L) = 2/a. Since a fiber laser has a very small a, its core will rise in tempera-
ture by only a small amount, even with multiwatt power levels. In contrast, a convention-
al solid-state laser has a larger temperature rise that causes thermal lensing (see Fig. 9-8),
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Figure 23-9 (a) A fiber laser can be constructed by doping the core of an optical fiber with a suit-
able rare earth ion, and placing two mirrors at either end for optical feedback. The laser is end-
pumped through one of the mirrors. (b) In the all-fiber version, the mirrors are replaced by fiber cou-
plers, and fiber Bragg gratings replace the end mirrors.
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limiting the output power and degrading the beam quality. As a result, fiber lasers gener-
ally require only air cooling, whereas conventional solid-state lasers must be cooled with
a flowing liquid such as water. This is an important practical advantage of fiber lasers, al-
lowing them to be compact, efficient, and reliable.

The above points are all important practical advantages of a fiber laser. The most fun-
damental advantage of the fiber geometry, however, is the ability to maintain a high opti-
cal intensity over an arbitrarily long path length. Because of the small core area (Ac), the
intensity I = P/Ac can be very high even for modest optical powers (P). These high inten-
sities are sufficient to produce steady-state population inversion and lasing, even in three-
level type systems such as Er, Tm, and Yb. The threshold pumping powers are much
smaller in fiber lasers compared with their conventional laser counterparts, and the over-
all device efficiency is thereby improved. In the following, we consider in more detail the
analysis of threshold and slope efficiency in fiber lasers.

Threshold in a Four-Level System

The condition for lasing threshold in a four-level system was developed in Section 20-1,
under the assumption that the gain coefficient 
 is constant. This assumption is not gener-
ally valid for fiber lasers, however, because the pump light is absorbed as it propagates
down the fiber core, and this causes the pump intensity (and hence the population inver-
sion and gain) to vary with position along the fiber. We must, therefore, generalize the re-
sults of Section 20-1 to include a spatially varying gain coefficient 
(x).

Consider pump light of intensity Ip0 and wavelength �p that is coupled into the core of
a fiber of length L. The core has cross-sectional area Ac and is doped with N rare earth
ions per unit volume. The pump light is attenuated with absorption coefficient

�p = N0�p (pump absorption coefficient) (23-1)

where �p is the pump absorption cross section and N0 is the number of ions per unit vol-
ume in the ground state. We will make the simplifying assumption that most of the rare
earth ions remain in the ground state, so that N0 � N, and the absorption coefficient �p �
N�p is approximately independent of position x along the fiber. In this case, the pump de-
cays exponentially with x according to Beer’s law (Eq. 5-1),

Ip(x) = Ip0e–�px (23-2)

as shown in Fig. 23-10.
To see how the gain coefficient varies with x, we first express it in terms of the level

populations as


(x) = [N2(x) – N1(x)]�se � N2(x)�se (23-3)

where N1 � N2 has been assumed for the four-level transition. The excited-state popula-
tion is N2 = R�2 from Eq. (20-17), and the excitation rate R is

R (x) = NWp(x) = N (23-4)
Ip(x)�p



h�p
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where Wp is the transition probability per unit time for a single ion [see Eq. (19-3)].
Putting these together we obtain


(x) = N 

Ip(x)

h

�

�
p

p

�se�2



(23-5)
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�

�
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 Ip(x)

where Eq. (23-1) has been used in the last step. This result shows that the gain coefficient

(x) varies with x in the same manner as the pump intensity Ip(x).

The gain coefficient gives the fractional increase per unit length of light intensity at the
lasing wavelength �s. For the small section dx of fiber depicted in Fig. 23-10, the incre-
ment in signal intensity is

dI = I
(x) dx (23-6)

Since 
(x) is no longer a constant, the signal intensity now does not increase exponential-
ly with x as it did in our previous analysis. However, it is still a simple matter to integrate
this equation and obtain the net gain in a complete pass through the fiber. Dividing both
sides of Eq. (23-6) by I and integrating over the entire fiber, we obtain

�I2

I1
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(x) dx

(23-7)
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where Eqs. (23-2) and (23-5) have been used. The single-pass gain in an optical amplifier
was denoted previously as G = I2/I1 [Eq. (19-15)]. Using this definition, and taking the
limit �p L � 1, Eq. (23-7) becomes

ln G = (23-8)
Ip0�se�2



h�p
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Figure 23-10 In a fiber laser, the pump light intensity varies along the fiber, giving rise to a position-
dependent gain coefficient for the lasing (signal) light.
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This is the single-pass logarithmic gain, assuming that all of the pump light is absorbed in
the fiber (none is transmitted out the far end). Note that the gain does not depend on ion
concentration, the pump cross section, or the fiber length. Only excited ions contribute to
the gain, and it does not matter where those ions are located along the fiber; only the inte-
grated excited-state population �N2(x) dx is relevant for determining the net gain.

At lasing threshold, the total round-trip gain (treating losses as a gain less than unity) is
1. If the attenuation coefficient in the fiber is � and the mirror reflectivities are R1 and R2,
this condition can be written as

R1R2G th
2 e–2�L (lasing threshold) (23-9)

which is a generalization of the previous expression, Eq. (20-1). Taking the natural log of
this equation gives

ln (R1R2) + 2 ln Gth – 2�L = 0

which can be written as

ln Gth = �L + ln � � (23-10)

Comparing this with Eq. (20-2), we identify 
th L in the previous treatment with ln Gth in
the present treatment. Other formulae in Chapter 20 can be generalized with this new no-
tation as well. For example, the photon lifetime given in Eq. (20-11) becomes

�c = (photon lifetime) (23-11)

As before, the replacement c � c/n should be made if the cavity medium has a refractive
index n. In the case of the fiber laser, n � 1.5 for glass in the core.

The threshold pump power Pth can be evaluated from Eq. (23-8) using Ip0 = Pth/Ac and
G = Gth. The result is

Pth = (four-level pump threshold) (23-12)

with Gth given by Eq. (23-10). This expression is valid for complete absorption of the
pump, and shows how the pump threshold depends on the properties of the fiber cavity
(Ac and Gth) and the active ions (�se and �2). The product �se �2 should be maximized for a
low pump threshold, and can be considered to be a “figure of merit” for the laser material.

Slope Efficiency in a Four-Level System

When the fiber laser is pumped above threshold, the net round-trip gain must remain
clamped at 1 in the steady state. If this were not the case, the light intensity would continue
to increase exponentially in time, violating our assumption of steady-state conditions. This
means that G remains clamped at Gth, in the same way that 
 remained clamped at 
th in the
analysis of Chapter 20. The additional pumping power above threshold cannot go into in-
creased fluorescence power, because the total excited state population �N2(x) dx remains

Ach�p ln Gth




�se�2

L/c


ln Gth

1


R1R2

1


2
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constant above threshold, and the amount of fluorescence is � N2. Therefore, the addition-
al pumping power goes into increasing the laser output power with a slope efficiency �s =
�Pout/�Pin [Eq. (20-26)]. Using Eq. (20-27), along with Eq. (23-11), we obtain

�s = T � � (four-level slope efficiency) (23-13)

Comparing Eqs. (23-12) and (23-13), we see that the threshold and slope efficiency de-
pend in different ways on the cavity losses. For a fixed pump power, the output power can
be optimized by varying the output mirror transmission T, as discussed in Section 20-2.
Equations (20-31)–(20-33) apply as before, with the same asssumptions that R1 � 1, and
T = 1 – R2 � 1.

A Nd:fluoride glass fiber laser is constructed with a fiber length of 50 cm, core diame-
ter 40 �m, and mirror reflectivities R1 = 1 and R2 = 0.9. The fluorescence lifetime of
the upper laser level (4F3/2) is 500 �s, and lasing occurs at 1050 nm. When pumped
with 514.5 nm light from an argon laser, the pump threshold and slope efficiency are
measured to be 35 mW and 0.2, respectively. Determine (a) the loss coefficient of the
fiber, and (b) the stimulated emission cross section.

Solution: (a) Putting Eq. (23-13) in terms of wavelength, we have

2 ln Gth = = = 0.245

Solving Eq. (23-10) for the round-trip internal loss � gives

� = 2�L = 2 ln Gth – ln � � = 0.245 – ln � � = 0.139

and

� = = 0.139 m–1 = 1.39 × 10–3 cm–1 = 600 dB/km

where the conversion factor in Eq. (5-4) has been used.

(b) The core area is Ac = 	 (20 × 10–6)2 = 1.26 × 10–9 m2, and the pump photon energy
is hc/�p = (6.63 × 10–34)(3 × 108)/(514.5 × 10–9) = 3.86 × 10–19 J. Solving Eq. (23-12)
for �se then gives

�se = = = 3.3 × 10–24 m2

�se = 3.3 × 10–20 cm2

This cross section is in good agreement with reported values for the 1050 nm transition
in Nd-doped glass.
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Threshold in Three-level Systems

Several of the more important transitions used in fiber lasers are to the ground state, mak-
ing the laser three-level in nature. Examples include Er at 1.5 �m, Tm at 1.9 �m, and Yb
at 1 �m. We will consider Yb in some detail, to illustrate the principles involved and give
typical numbers.

As discussed earlier, the upper and lower levels of Yb3+ are split into a series of close-
ly spaced sublevels (see Fig. 23-8). Fig. 23-11 shows a typical absorption cross section
spectrum �abs(�) and emission cross section spectrum �em(�) for Yb3+-doped silica glass.
The sharp peaks at 975 nm correspond to transitions between the lowest sublevel of the
upper state and the lowest sublevel of the lower state, while the broader peaks correspond
to transitions between other pairs of sublevels. Since there is both absorption and emis-
sion at the lasing wavelength �, the gain coefficient is not simply N2 �se as in an ideal
four-level laser, but is instead given by the more general expression in Eq. (18-37). For
lasing to occur, the net gain must be positive, and the criterion for lasing at wavelength �
becomes


(�) = N2�em(�) – N1�abs(�) > 0 (23-14)

where N2 and N1 are the populations of the upper (2F5/2) and lower (2F7/2) laser levels. The
degree to which 
 must be greater than zero depends on the cavity losses. For a perfectly
lossless cavity, the condition 
 = 0 would correspond to the lasing threshold, because the
net gain for light circulating in a round-trip through the cavity would be unity. This is re-
ferred to as the transparency condition, because there is no net gain or loss in the laser
medium (it is “transparent”). The transparency condition, therefore, sets a minimum re-
quirement for lasing.

The population ratio at transparency is N2/N1 = �abs(�)/�em(�) for a laser operating at
wavelength �. According to Fig. 23-11, �em(�) > �abs(�) for � > 975 nm, and so for these
wavelengths N2/N1 < 1. This means that fewer than half of the Yb ions need to be raised to
the excited state to achieve lasing, in contrast to the ideal three-level system which re-
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Figure 23-11 Typical absorption and emission cross-section spectra for Yb3+-doped Al/P-silica
glass. See Fig. 23-8 for the Yb3+ energy level diagram. (Data courtesy of Xiaojun Li.)
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quires N2/N1 � 1. The lesser degree of inversion required in the Yb laser for � > 975 nm
is a consequence of the quasi-four-level nature of the lasing transition. The lower laser
level is a thermally populated sublevel of the ground state, and absorption from this level
is reduced by the Boltzmann factor exp(–�/kBT).

We can estimate the pump power required to achieve transparency by writing the rate
equation for level 2,

= N1Wp – N2Wpe – (23-15)

where

Wp = (23-16)

is the “pump rate” (probability per unit time that the ion makes an upward transition from
1 � 2 by absorbing a pump photon), and

Wpe = (23-17)

is the “pump emission rate” (probability per unit time that the ion makes a downward tran-
sition from 2 � 1 by emitting a pump photon). This second process represents stimulated
emission of the pump light, and the third term in Eq. (23-15) represents spontaneous emis-
sion from level 2. Setting dN2/dt = 0 for the steady state, and using the constraint N1 + N2 =
N (the ions must be in either level 1 or level 2), we obtain after some algebra

N2 = N (23-18)

N1 = N (23-19)

These populations can be expressed in terms of the pump intensity Ip by substituting from
Eqs. (23-16) and (23-17), with the result

N2 = N (23-20)

N1 = N (23-21)

In the above, we have defined the pump saturation intensity as

Ips � (pump saturation intensity) (23-22)

and used a simplified notation �p � �abs(�p), �pe � �em(�p). Note the similarity of this de-
finition to that of the signal saturation intensity in Eq. (19-9).
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These expressions can be used to determine the level populations, and hence the gain
coefficient, for any given pumping intensity. At low pump intensity where Ip � Ips, N1 �
N and N2 � 0. Under these conditions, the gain coefficient is 
(�) � –N�abs(�), which is
negative for all wavelengths �. In this case lasing will not occur because all signal wave-
lengths experience a net absorption. As Ip is increased, N2 will increase and N1 will de-
crease, making 
 closer to zero. At some pump intensity the transparency condition 
 = 0
will be achieved, and laser action is then possible.

We now derive an expression for the pump intensity required for transparency. From
Eq. (23-14), the required population ratio is

= � (23-23)

where �se � �em(�) and �sa � �abs(�). Substituting Eqs. (23-20)–(23-21) into the above
and solving for Ip gives

Ip = Ips� � (23-24)

This can be recast in a simplified form using the McCumber relation of Eq. (18-38), with
the result (see Problem 23.8)

Ip = Ips� � (at transparency) (23-25)

An important feature of this equation is that the required pump intensity gets very large as
�p � �, and becomes negative for �p < �. This would be a nonphysical result (power can
only be positive), which indicates that in a quasi-four-level scheme like this, lasing can oc-
cur only at wavelengths longer than the pump wavelength. In fact, this conclusion can be
justified in a fundamental way based on thermodynamic arguments, and is true quite gen-
erally. Exceptions to this basic principle do occur, however, when nonlinear interactions
become important (see Chapter 9). It is also useful to note that if the absorption at the sig-
nal wavelength becomes small (�sa � 0), then Ip � 0. This is to be expected, because in
this case the material is already “transparent,” and no excitation is needed to make it so.

The effect of pump intensity on the Yb gain spectrum is illustrated in Fig. 23-12. This
shows the calculated gain coefficient in a Yb doped fiber that is pumped at 915 nm, for
three different values of the pump intensity Ip. For each value of Ip, the gain is zero at
some transparency wavelength �tr. The gain is positive at longer wavelengths, and nega-
tive at shorter wavelengths. This transparency point shifts to shorter wavelength as the
pump intensity increases, so that the gain becomes positive over a wider wavelength
range. As the pump intensity becomes arbitrarily large, the transparency wavelength ap-
proaches the pump wavelength. However, the condition �tr > �p is always maintained, in
accordance with Eq. (23-25).

A Yb-doped fiber with core radius of 2.3 �m is pumped at 915 nm, where the absorp-
tion cross section is 0.75 × 10–20 cm2. At the lasing wavelength of 1025 nm, the emis-
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sion cross section is 0.64 × 10–20 cm2, and the absorption cross section is 0.054 × 10–20

cm2. Taking the excited-state lifetime to be 0.84 ms, determine the pump power need-
ed to achieve transparency at 1025 nm.

Solution: The photon energies for the pump and signal are 2.17 × 10–19 and 1.94 ×
10–19 J, respectively, using h� = hc/�. At room temperature (20°C = 293 K), kBT =
(1.38 × 10–23)(293) = 4.04 × 10–21 J. Using these, the exponent in the denominator of
Eq. (23-25) is

– = – = –5.7

and the denominator becomes

1 – e–5.7 = 0.997

This value is � 1 here because of the wide separation of pump and signal wavelengths.
The pump saturation intensity is

Ips = = 3.44 × 108 W/m2

The pump intensity for transparency is then

Ip � Ips = (3.44 × 108)� � = 2.9 × 107 W/m2

The core area is Ac = 	(2.3 × 10–6)2 = 1.66 × 10–11 m2, and therefore the required pump
power is

5.4


64
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Figure 23-12 Calculated gain coefficient in Yb-doped silica fiber, for three different pump intensi-
ties. Cross-section spectra are the same as in previous figure, fiber core radius 2.3 �m, N = 1019 Yb
ions/cm3 and �2 = 840 �s. Pump light at 915 nm is assumed to be fully absorbed.
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Ptr = IpAc = (2.9 × 107)(1.66 × 10–11) = 4.8 × 10–4 W = 0.48 mW

This remarkably small value is a consequence of the small core area in a single-mode
fiber. The threshold pump power for lasing will be somewhat higher, in order to over-
come fiber and mirror losses. However, pump thresholds in the mW range are typical
for rare earth doped fibers, even for transitions to the ground state.

Slope Efficiency in Three-level Systems

When a three-level laser system is pumped above threshold, the integrated gain �
(x) dx
remains clamped at the threshold value, as in a four-level system. The behavior of the
three-level system above threshold is similar to that of a four-level system, with the addi-
tional pump power going into the laser output. The slope efficiency of the laser is again
given by Eq. (23-13). Because of the low thresholds that are possible in fiber lasers, both
four-level and three-level, the overall efficiency can be quite high. This capability of high
efficiency holds true even for transitions that would operate only poorly in a conventional
laser, and it is one of the hallmarks and distinct advantages of fiber lasers.

High Power

In principle, the output power of a fiber laser can be increased to any desired level simply
by increasing the pump power. In practice, however, there is a limit to how much pump
power can be coupled into the core of a single-mode fiber. The pump source for a fiber
laser is typically a diode laser, and the coupling efficiency is fundamentally limited by the
brightness of the diode laser light. Higher-power diode lasers require a larger emitting
area, to avoid optical damage from the high intensity, and this larger area limits the
brightness (see page 288). Output powers from diode-pumped, single-mode fiber lasers
are generally less than 100 mW.

One solution to the brightness problem is to use a fiber with a double cladding struc-
ture, as shown in Fig. 23-13. The single-mode core is surrounded by an inner cladding
with lower index, which in turn is surrounded by an outer cladding of still lower index.
Pump light is coupled into the inner cladding, where it is trapped by total internal reflec-
tion at the boundary between the two claddings. The diameter of the inner cladding is
made sufficiently large (~ 50 �m) so that it can accept a high pump power from a low
brightness source. This pump light passes through the small core area as it zigzags down
the fiber, exciting the rare earth ions that are doped in the core. Since the cladding is un-
doped, the fraction of pump light absorbed per unit length is rather small, and this re-
quires long fiber lengths to efficiently absorb the pump. The result, however, is that the
ions in the single-mode core interact with a much higher pump power than would other-
wise be possible, and the maximum output power is correspondingly higher. This type of
fiber is termed double-clad fiber, and the resulting laser is said to be cladding pumped.

Above threshold, the additional pump power is funneled into the laser output power,
just as in a conventional laser. By conservation of energy, the output power must always
be less than the incident pump power. However, since the core area is much smaller than
the inner cladding area, the brightness of the laser output greatly exceeds that of the inci-
dent pump light. The device is essentially a “brightness converter” that transforms low-
brightness pump light into high-brightness lasing light. This would seem to violate the
brightness theorem (Appendix A). However, the brightness theorem only applies to pas-
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sive optical systems (lenses, mirrors, waveguides, etc.) that contain no energy sources.
The laser is an active optical system that uses stimulated emission to create an output
beam of high brightness. This is one answer to the question posed earlier: why would you
use one laser to pump another, when you could just use the first laser? The reason is that
the second laser may have much higher brightness and improved beam qualities, which
makes it more useful for certain applications.

Cladding-pumped Yb fiber lasers have seen remarkable development in recent years.
One key design feature that improves the performance is an asymmetrical inner cladding,
depicted in Fig. 23-13b. The “Dee” or rectangular-shaped cladding suppresses helical in-
ner cladding modes that would exhibit poor overlap with the core, and ensures that the
pump beam uniformly fills the cladding area. With careful attention to such design de-
tails, CW powers of ~ 100 W can now be routinely obtained in a near-diffraction-limited
Gaussian beam (M2 < 1.1), and over 1 kW has been demonstrated in a beam with M2 ~
3.* These high power fiber lasers are now in a position to compete directly with more tra-
ditional solid-state lasers in applications such as laser cutting, drilling, and marking. With
their higher efficiency, compactness, and reliability, they are destined to play an increas-
ingly important role in this market niche.

Vibronic Transition

The rare earth transitions that we have considered in the previous sections are said to be
electronic in nature, because they occur between two different electronic states of the ma-
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Figure 23-13 (a) A double-clad fiber has a core region that confines the signal light, and a larger in-
ner cladding region that confines the pump light. To ensure that the pump uniformly fills the inner
cladding, it often has a (b) “Dee” shape or (c) rectangular shape.

*SPI (Southampton Photonics) press release, Jan. 2005.
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terial. A different type of transition is also possible, in which the vibrational state of the
material changes along with the electronic state. These are termed vibronic transitions,
and they form the basis for widely tunable lasers.

The rare earth ions do not exhibit vibronic transitions to any significant degree, due to
the efficient shielding of the 4f orbitals, and the resulting weak electron–lattice interac-
tion. This is the exception to the general rule, however, and in most materials the elec-
tron–lattice interaction is strong enough to enable vibronic transitions. We consider here
two examples that are representative of this type of laser system.

Dye Laser

In a dye laser, the optically active material is an organic dye molecule (the same type of
molecule that is used to stain the fabric in your clothes). A typical dye molecule, depicted
schematically in Fig. 23-14a, consists of a hydrocarbon backbone chain terminated by a
more complicated structure on each end. In contrast to the solid-state lasers considered so
far, the host for the dye molecules is a liquid, known in the language of chemistry as a sol-
vent. Typical solvents for dye molecules might be water (H2O) or ethylene glycol
(C2H6O2).

When an outermost electron in the dye molecule is optically excited, it becomes delo-
calized along the chain, and to a first approximation can be considered to be confined to a
box of dimension L. The energy states for such an electron are given by the “particle in a
box” model of quantum mechanics, and transitions between these energy states can give
rise to laser action. One benefit of the great variety of organic dyes is that a molecule with
the appropriate effective length L can be chosen so as to give a transition energy with the
desired wavelength.

There are two details regarding these energy states that are important for the operation
of dye lasers. The first is that each state actually consists of a number of sublevels, each cor-
responding to different vibrational and rotational motion of the molecule.* These sublevels
are strongly coupled, with energy exchanged between them on a picosecond time scale, and
this results in a quasithermal distribution within the sublevels of each state. The second de-
tail is that each state is characterized by a quantity known as spin, which can be thought of
as the “orientation” of the excited electron. In singlet states, the electrons in the molecule
all pair up in opposite orientations, whereas in triplet states, one pair of electrons has the
same orientation. Radiative transitions between two singlet states or between two triplet
states can occur readily, but transitions between a singlet and a triplet state are strongly sup-
pressed. Nonradiative transitions between these two types of states are allowed, however.

The resulting energy level structure for a typical dye molecule is shown in Fig. 23-14b.
To achieve lasing, molecules originally in the ground state (the singlet S0) are promoted
to the first singlet state S1 by absorption of a pump photon. The energy in the S1 rapidly
relaxes to the lower vibrational sublevels of this state, and laser action then occurs on
transitions to the various vibrational sublevels of S0. Because of the large vibrational
width of the S0 and S1 states, light is emitted over a wide wavelength range. The dye laser
is thus broadly tunable, a typical range being �� ~ 40 nm for a center wavelength � ~ 600
nm. This tunability is the key advantage of dye lasers, which made them very popular af-
ter their introduction in the mid-1960s.

Because of the rapid nonradiative relaxation within the emitting state S1, the average
energy of light emission is lower than the average energy of light absorption. The spec-
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*Rare earth levels also consist of sublevels, but these are different electronic states, not vibrational states.
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Figure 23-14 (a) Schematic view of typical dye molecule. (b) Energy states of dye molecule, show-
ing singlet state on left and triplet states on right. Dotted and dashed lines represent nonradiative
(NR) decay. (c) Absorption and emission spectra for a common laser dye, rhodamine 6 G.

(c)
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trum of the emitted light is, therefore, shifted to longer wavelengths (lower energy) com-
pared with the spectrum of absorbed light. This feature, illustrated in Fig. 23-14c, is
known as the Stokes shift, and it is a universal feature of vibronic transitions. The Stokes
shift is advantageous for laser action because it makes the system quasi-four-level. A
larger Stokes shift leads to less overlap between absorption and emission spectra, and this
reduces the undesirable reabsorption of emitted light.

The triplet states introduce a complication in this lasing scheme. The lowest triplet state
T1 is lower in energy than the lowest excited singlet state S1, and energy can be transferred
nonradiatively from S1 � T1 (an intersystem crossing). Light emitted on the laser transition
(S1 � S0) can then be absorbed by the triplet states (T1 � T2), which tends to quench the
lasing. This is referred to as triplet quenching, and was a significant problem in the early
development of dye lasers. One solution is to operate only in the pulsed mode, so the T1 lev-
el never has time to build up a significant population. The short lifetime of the S1 state (typ-
ically 2–5 ns) requires a very short pump pulse for efficient operation.

Another solution to the triplet quenching problem is to flow the liquid dye at a high ve-
locity through the pumped region, so that fresh dye (with no triplet population) is contin-
ually introduced into the laser cavity. A typical arrangement suitable for CW lasing is il-
lustrated in Fig. 23-15, which shows a three-mirror folded cavity with space for a tuning
element. The dye flows through a flattened nozzle, creating a thin sheet of liquid flowing
at high speed without turbulence (laminar flow). The flowing dye stream has the further
advantage that heat deposited in the pumped region is rapidly carried away, thereby great-
ly reducing thermal distortions in the liquid.

Dye lasers are typically pumped in the blue or UV regions, where organic dyes are high-
ly absorbing. Energy deposited in the higher singlet states (such as S2) relaxes nonradia-
tively to the upper laser level S1. Possible pump sources include the Ar ion laser (for CW
operation), and the nitrogen or excimer laser (for pulsed operation). Dyes can be chosen to
cover the entire visible and near-infrared regions, making this the ideal choice when a wide
spectral coverage in the visible region is required. They can be highly efficient as well, with
conversion efficiencies of 20% (absorbed pump to laser output) not uncommon. They can
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Figure 23-15 Typical pump and cavity arrangement for CW dye laser. The pump is focused with
mirror Mp onto a thin stream of dye flowing perpendicular to the page. The laser cavity mode (light
shaded area) has a beam waist at the pumped spot. A tuning element such as a birefringent filter can
be inserted to select the lasing wavelength.
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also be mode locked, with extremely short pulse durations (femtosecond range) made pos-
sible by the broad spectral width. Dye lasers have played (and continue to play) an impor-
tant role in scientific research. However, due to the need for handling messy dye solutions
and additives, which pose a health hazard and tend to degrade over time, they have not been
as successful in commercial applications. There are now alternative choices for a widely
tunable laser in the near infrared, as we will see in the next example.

Ti:Sapphire Laser

Earlier in this chapter, we saw examples of lasers based on rare-earth-doped solids. The
transition metals also give rise to optical absorption and emission when doped in a trans-
parent solid, and can serve as the gain medium for a laser. In the transition metal ions, it is
the 3d orbitals (quantum numbers n = 3, l = 2) that are optically active, and these are less
well shielded from the surroundings than are the 4f orbitals of the rare earths. As a conse-
quence, the electron–lattice interaction is stronger, and the transitions become vibronic,
rather than purely electronic as in the rare earths. This results in broad optical transitions
that can be used to make a widely tunable solid state laser. There are now many such
lasers with different ion/host combinations, the Ti:sapphire laser having the distinction of
the widest tuning range, from 660–1180 nm. Other tunable solid state lasers include
alexandrite (Cr:BeAl2O4), tunable from 700–820 nm; Cr:LiSAF (Cr:LiSrAlF6), tunable
from 780–1010 nm; and Co:MgF2, tunable from 1.8–2.5 �m. We focus on the Ti:sapphire
laser here because it is the most commonly used.

The energy level structure of Ti3+ is particularly simple, since there is just one 3d elec-
tron. There is a ground state (2T) and excited state (2E), each broadened into a series of vi-
brational sublevels, as shown in Fig. 23-16a. The absorption is strong in the wavelength
range 450–580 nm, which permits pumping with an Ar ion laser (514.5 and 488 nm) or
frequency-doubled Nd:YAG (532 nm) laser. Lasing can occur from the lower vibrational
levels of the 2E to any of the vibrational levels of the 2T. The potential tuning range is so
large that ordinary laser mirrors (typically multilayer dielectric stacks) are not sufficiently
reflective over the entire range. It is therefore common to have a number of mirror sets for
the laser, as indicated in Fig. 23-16b.

The Ti:sapphire laser has many of the advantages of the dye laser, without the problem
of messy laser dyes. It is not only widely tunable (690–1080 nm in commercial lasers),
but also highly efficient, with 20–30% conversion efficiency of pump light into laser out-
put typical around 800 nm. When pumped with a frequency-doubled Nd:YAG, it makes
an all-solid-state laser system that is efficient and highly reliable. Furthermore, the wide
emission bandwidth of Ti3+ allows generation of extremely short pulses in mode-locked
operation (as short as 5.5 fs, � 35 fs typical in commercial lasers). The principle disad-
vantage compared with dye lasers is that the tuning range is limited to ~ 670 nm on the
short-wavelength side. However, frequency doubling the Ti:sapphire laser output can pro-
vide continuously tunable laser light in the range 400–550 nm.

23-2. ELECTRICALLY PUMPED LASERS

We turn now to the large class of lasers that achieve population inversion in the gain
medium via electrical excitation. One important example is the semiconductor laser, but
since this has been treated in Chapter 11 we do not consider it further here. The other
lasers that are electrically pumped are mostly lasers with an active medium in the gas
phase. The reason that these lasers are not optically pumped is that the optical transitions
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have a much narrower spectral width than those in solids, due to the weaker interaction
between adjacent atoms. Optical pumping in this case would be quite inefficient due to
poor spectral overlap.

Gas-phase lasers have certain advantages compared with solid-state lasers. For exam-
ple, the gain medium is resistant to optical damage and distortion, and is easily replen-
ished. Also, the laser wavelengths are sharply defined, a feature that can be useful in opti-
cal spectroscopy and metrology. There are some disdvantages, however. The low atomic
density that is characteristic of a gas leads to a small gain coefficient, and this necessitates
high-reflectivity mirrors for achieving lasing threshold. The narrow spectral widths at
well-defined wavelengths can be a mixed blessing as well, since this restricts operation to
one of several fixed wavelengths. These lasers can be “tuned” in the sense of choosing be-
tween certain fixed wavelengths, but cannot be continuously tuned over a large wave-
length range as can solid-state lasers.

In this section, we illustrate the variety of electrically pumped lasers by describing
three lasers with an electronic transition, and one with a vibrational transition.

Electronic Transition

In the visible, UV, and near IR regions, most lasers operate on an electronic transition.
We will consider here the He–Ne, argon ion, and excimer lasers, which represent electri-
cally pumped lasers of this type.
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Figure 23-16 (a) Energy levels for Ti:sapphire. (b) Typical tuning range for a Ti:sapphire laser (cour-
tesy of Coherent Inc.). Generally, different mirror sets are required to cover the entire range.
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He–Ne Laser

The He–Ne (helium–neon) laser is one of the most familiar lasers, often used for class-
room demonstrations of optical phenomena. Although it can operate on a number of
transitions in the visible and near infrared regions, the most commonly used by far is the
red line at 632.8 nm. A typical construction is shown in Fig. 23-17. A glass tube with
two metal electrodes inside is evacuated and then backfilled with a low-pressure (a few
torr) mixture of helium and neon gas. High voltage (a few kilovolts) is applied between
the anode (positive electrode) and cathode (negative electrode), and this results in an
electrical discharge, with electrons accelerated to a high kinetic energy. When these
fast-moving electrons collide with gas atoms, they transfer some of their kinetic energy,
raising the atoms to an excited electronic state. The excited atoms then emit light on
various transitions, in much the same way that light is emitted by a neon sign. Laser os-
cillation occurs when this emitted light is efficiently reflected back by the mirrors at ei-
ther end. One mirror (the end reflector) has a very high reflectivity at the lasing wave-
length, while the other (output mirror) has a mirror transmission T that optimizes the
laser output [see Eq. (20-33)]. Only one of the mirrors need be curved to form a stable
cavity (see Fig. 17-7).

The energy states involved in the He–Ne laser are depicted in Fig. 23-18. The lasing
transitions are all within the excited states of Ne, and the purpose of the He atoms is sim-
ply to facilitate the excitation of Ne. In the excitation scheme shown, He atoms are pro-
moted from their ground state (both electrons in the 1s orbital) to the first two excited
states (one electron promoted to the 2s orbital) by collisions with fast-moving electrons, a
process termed electron-impact excitation. The two states 23S and 21S correspond to the
two He electrons having the same or different spin “orientation,” respectively. The excit-
ed He atoms then collide with and transfer their energy to Ne atoms, promoting them
from their ground state (1s, 2s, and 2p shells filled) to an excited state (one Ne electron in
the 4s or 5s orbital).* The important 632.8 nm transition is from the 5s state to the 3p
state, an “allowed” transition with �l = ± 1. Spectroscopic parameters for this transition
are given in Table 23-2. To achieve population inversion, the 3p lower laser level must be
depleted at a sufficiently high rate. Fortunately, this is the case because the 3p � 3s ra-
diative decay is fast (again, an allowed transition). However, the 3s level does not decay
as rapidly, and electron impact excitation can repump the Ne atom from the 3s back up to
the 3p state, thereby destroying the population inversion. This problem is partially miti-
gated by collisions of Ne atoms with the walls of the laser tube, which depopulate the 3s
nonradiatively. The result is a practical limit on tube diameter for a given pressure. Opti-
mum performance in the He–Ne laser is found to occur when the product of tube diameter
and total gas pressure is D × P � 3.6-4 torr × mm.

Attempts to scale the He–Ne laser up to high output power are not successful, because
as the discharge current increases, the lower laser level (3p) becomes fed more efficiently
than the upper laser level (5s). Beyond some optimum current density, the laser output
power then starts to decrease with increasing current. The only way to make a higher-
power He–Ne laser is to increase the tube length, but this requires a proportionate in-
crease in the high voltage, which at a certain point becomes impractical. He–Ne lasers are
thus inherently low power, with typical output powers of a few mW for a laser 10–20 cm
long. The efficiency is quite low, with electrical-to-optical conversion efficiencies of
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*These excited Ne states are often labelled 2s and 3s, the so-called Paschen notation. We follow here the more
intuitive notation that labels the states according to the principal and angular momentum quantum numbers n
and l.
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� ~ 0.02%. In comparison, a diode laser in the same wavelength range can be quite effi-
cient (� > 10%), and requires only a low-voltage power supply.

The reason that He–Ne lasers are still widely used, in spite of the above limitations, is
that they have an inherently circular beam, with a beam divergence that is close to being
diffraction limited. In contrast, the diode laser beam is inherently asymmetrical, and must
be circularized with specialized optics. Another advantage of the He–Ne laser is that the
coherence length is naturally long—typically 10–20 cm for a laser with multiple longitu-
dinal modes, and hundreds of meters for a laser with a single longitudinal mode. This
makes the He–Ne laser ideal for holography and interferometry when the optical power
required is not too high.

The lasing transition at 632.8 nm is the most well known and commonly used, but oth-
er wavelengths are possible as well. In fact, the first He–Ne laser (made by Javan in 1960)
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Figure 23-18 Energy levels of helium and neon that are relevant for laser operation. The thick solid
arrow is the important 632.8 nm transition, thin solid arrows are other lasing transitions, and dotted
arrows are other radiative and nonradiative decays. Level positions are not drawn to scale (the heli-
um 21S and neon 3s states are � 20.6 eV and � 16.7 eV above the ground state, respectively).

Figure 23-17 Schematic view of He–Ne laser with external mirrors. Windows at end of tube are at
Brewster’s angle to minimize reflection losses. This results in vertically polarized laser light.
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operated at 1.15 �m, and is important historically as the first gas laser, as well as the first
CW laser. The infrared transition at 3.39 �m is also quite efficient, and must be sup-
pressed in order to obtain lasing at 632.8 nm. Lasing on the 1.15 and 3.39 �m transitions
can be prevented by using mirrors that are highly reflective at 632.8 nm, but transmitting
at those longer wavelengths. Another lasing wavelength that is possible in the He–Ne
laser is 543 nm, which corresponds to a transition between the 5s and 3p states, the same
pair of states involved in 632.8 nm emission. The reason that different wavelengths can
be emitted on the same transition is that the 5s and 3p “states” are really manifolds of
closely spaced sublevels, and the two emission wavelengths are generated by transitions
between different pairs of sublevels. To achieve lasing at 543 nm, the 632.8 nm lasing
must be suppressed by the use of wavelength-selective mirrors.

Argon Ion Laser

The argon ion laser is similar in many ways to the He–Ne laser just discussed. The gain
medium is a noble gas (Ar) that is confined at low pressure (0.1 torr) inside an evacuated
tube, and the gas is excited by energetic electrons in an electrical discharge. The primary
difference is that lasing occurs in an ion, rather than a neutral atom. The krypton ion laser
operates in a similar manner, using another noble gas (Kr). The Kr ion laser can operate
on a wide range of discreet wavelengths across the visible spectrum, whereas the Ar ion
laser operates only in the green, blue, and UV regions. Because of their similarity, we dis-
cuss only the argon ion laser in detail here.

Fig. 23-19 depicts the laser excitation process on an energy level diagram. First, a neu-
tral argon atom is ionized by electron impact excitation, creating the singly charged ion
Ar+, a process requiring � 16 eV of energy. Next, one of the 3p electrons in the Ar+

ground state is excited by electron impact excitation into the upper laser level (4p), which
requires an additional � 19.5 eV of energy. The 4p and 4s states consist of a number of
sublevels, and transitions can occur between the various sublevels in the 4p to the various
sublevels in the 4s. This results in a number of discrete laser transitions in the blue-green
portion of the spectrum, the most prominant of which are at 514.5 and 488.0 nm. When
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Table 23-2 Typical parameters for selected electrically pumped lasers.

Concentration
Gas partial of active  Emission Peak Excited state Transition 
pressures gas molecules wavelength emission � lifetime � linewidth ��

Laser (torr) (1014 cm–3) (�m) (10–14 cm2) (ns) (GHz)

He–Ne 2.5 He 120 0.6328 30 ~100a 1.5
0.5 Ne

Ar ion 0.1 Ar 24 0.5145 25 6 3.5

KrF 90 Kr ~1b 0.248 0.05 ~10 3000
5 F

1800 He

CO2 1 CO2 240 10.6 0.018 �6 × 105 0.06
1 N2

8 He

aLonger than the 30 ns radiative lifetime due to radiation trapping.
bSince there are no “ground state” KrF molecules, this is typical excimer concentration.
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maximum output power is desired, simultaneous lasing on several lines can be achieved
by using a mirror that is highly reflective at all the relevant wavelengths (a “broadband re-
flector”). Alternatively, individual lines can be selected for lasing using the prism tuning
method (Fig. 21-12).

Unlike the He–Ne laser, the Ar ion laser can be scaled up to high power by increasing
the drive current. Since it takes two excitation steps to populate the upper laser level (first
to ionize Ar, then to raise Ar+ to an excited state), the effective pumping rate goes as the
square of the drive current, and very high current densities (~ 103 A/cm2) are required to
achieve lasing threshold. A typical medium-power Ar laser, shown schematically in Fig.
23-20, has an optical output on all lines of ~ 5 W when driven by a 400 V, 30 A power
supply. The low wall-plug efficiency (� = 5 W/12 kW = 0.04%) means that most of the
electrical power is converted into heat, which must be removed from the tube to prevent
thermal damage. Lasers with output powers > 1 W are generally cooled by flowing water
around the tube. The output power can be scaled up to � 100 W by increasing the electri-
cal pump power to � 60 kW.

Tube lengths range from � 10 cm for low-power (100 mW) lasers, to � 2 m for the
highest-power lasers. There is often a magnet surrounding the tube, creating a B field
along the laser axis that serves to confine the electrons to the center of the discharge re-
gion. A filament inside the tube is heated to generate the free electrons needed for the dis-
charge. To initiate the discharge, a high-voltage starting pulse is applied to the tube from
an inductively coupled starter circuit. After the discharge starts, it can be maintained with
a lower voltage (a few hundred volts), and the current is controlled with a current regula-
tor. Typical currents are ~ 30 A for a 5 W laser, and ~ 60 A for a 25 W laser.

The argon ion laser has applications in ophthalmology, and has been used for laser
light shows (along with the similar krypton ion laser) because of the visible wavelengths.
Its most important application has perhaps been as a pump for dye and Ti:sapphire lasers,
since the 514.5 and 488 nm lines are efficiently absorbed by both. In recent years, howev-
er, this role has been somewhat supplanted by the frequency-doubled Nd:YAG laser,
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Figure 23-19 Energy levels (not drawn to scale) relevant for an argon ion laser. The lasing transi-
tions (thick arrow) occur between various sublevels of the 4p and 4s states of the Ar+ ion.
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which operates at 532 nm. The all-solid-state nature of the doubled Nd:YAG/Ti:sapphire
combination has important advantages in efficiency, compactness, and reliability. The ar-
gon ion laser still has its niche, however, because like the He–Ne laser, it naturally pro-
duces a near-Gaussian beam of low divergence and high spectral purity. It continues to
find new applications such as mastering of video disks, detecting latent fingerprints, stere-
olithography (making 3-D images), as well as in optical spectroscopy research.

Excimer Laser

The excimer laser is a pulsed laser that operates in the UV region. As in the He–Ne and
argon ion lasers, the laser transition is between electronic energy states, and it is excited
by an electrical discharge. In contrast to those lasers, though, the gain medium in the ex-
cimer laser consists of molecules rather than isolated atoms. The molecules involved in
excimer laser operation are rather peculiar, however, since they exist as bound molecules
only when the molecule is in the excited electronic state. When the molecule returns to
the ground state, it dissociates, breaking up into two separate atoms. Such a molecule is
termed an excimer, which is a contraction for “excited dimer.”

Laser action in the excimer molecule can be understood by referring to the energy lev-
el diagram of Fig. 23-21. This shows the electronic energy of a KrF “molecule” as a func-
tion of the separation of the two nuclei. When an atom of Kr and F are brought together,
each in their ground state, the energy of the system increases monotonically due to
Coulomb repulsion. Since systems always tend toward the point of lowest energy, the
atoms naturally tend to separate, and the “molecule” is unbound. This is characteristic of
the noble gases (He, Ne, Ar, Kr, and Xe), which are generally unreactive and not inclined
to form stable molecules.

If the KrF molecule is promoted to the next-highest electronic state, however (by elec-
tron bombardment in an electrical discharge, for example), then the energy curve has a
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Figure 23-20 Schematic view of a typical 5 W argon ion laser. Windows at the tube ends are ori-
ented at Brewster’s angle to minimize reflection loss. External mirrors define the laser cavity modes.
To start the laser, a capacitor is charged to high voltage, and this is then switched to an inductor that
couples a larger voltage spike into the tube, initiating the plasma discharge.
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minimum at an internuclear separation R = 0.23 nm. This gives rise to a bound state at this
value of R, which remains stable as long as the molecule remains in the excited state (�
10 ns for KrF). During this excited-state lifetime, lasing can occur on the transition from
the bound excited state to the unbound ground state. Since there is no stable population in
the lower laser level, this is an example of a perfect four-level system. In KrF, lasing oc-
curs at a wavelength of 248 nm. Other noble-gas–halide pairs operate in the same fashion,
but with different transition wavelengths. Commonly used excimer lasers include XeCl at
309 nm, XeF at 351 nm, and ArF at 193 nm.

Excimer lasers have moderate efficiencies (~ 1%), short pulse duration (~ 10 ns), high
pulse energies (0.1–1 J), and can be scaled up to high average power (100 W). They have
numerous applications, including pumping dye lasers, photolithography, materials pro-
cessing, laser surgery, and ophthalmology. The short wavelengths are strongly absorbed
by most materials, and this is a distinct advantage for precision cutting. The principal dis-
advantage of these lasers is the need to work with highly reactive gases such as fluorine,
which requires proper ventilation and safety precautions. Typically, the gases are circulat-
ed through the electrical discharge chamber to maintain the purity of the reactants. A high
concentration of helium (about 2 atmospheres of pressure) is added as a buffer gas to fa-
cilitate the reactions between noble and halide gases.

Vibrational Transition

In all the laser types discussed so far, the laser transition has involved a change in elec-
tronic state. We now consider lasers in which the vibrational state changes, but the elec-
tronic state remains the same. These are termed vibrational transitions, and should not be
confused with the vibronic transitions discussed earlier.* Vibrational energy levels in a
molecule have energy separations on the order of ~ 0.1 eV, rather than the ~ 1 eV separa-
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Figure 23-21 Energy versus Kr–F nuclear separation for ground and excited electronic states of
KrF. The excited state is bound, and known as an excimer state. The lower state is unbound, so the
KrF dissociates into two separate atoms of Kr and F.

*In vibronic transitions, both the electronic and vibrational states change.
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tion typical of electronic levels, and this means that lasers operating on a vibrational tran-
sition will generate wavelengths in the infrared region. The most important laser of this
type is the carbon dioxide (CO2) laser, operating in the range 9–11 �m, with principal
lines at 9.6 and 10.6 �m. Other vibrational lasers include the carbon monoxide (CO) laser
operating at 5–6.5 �m, and the nitrous oxide (NO2) laser operating at 10–11 �m, although
these are much less commonly used. Some vibrational lasers utilize a chemical reaction to
achieve an excited vibrational state, and are termed chemical lasers. Examples are the hy-
drogen fluoride (HF) laser operating at 2.6–3.3 �m, and the deuterium fluoride (DF) laser
operating at 3.5–4.2 �m. We will focus our attention on the CO2 laser here, since it illus-
trates well the characteristics of vibrational lasers, and is the most common.

CO2 is a linear molecule, with the carbon and two oxygen atoms lying along a com-
mon axis. There are three fundamental ways that such a molecule can vibrate, as illustrat-
ed in Fig. 23-22a. Each of these fundamental vibrational patterns is referred to as a vibra-
tional mode, and has a characteristic frequency fv [see Eq. (5-8) for the simpler case of
two atoms]. In general, the vibrations of the molecule can be described by a linear combi-
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Figure 23-22 (a) Vibrational modes of a CO2 molecule. (b) Energies of CO2 vibrational modes,
showing two possible laser transitions. Also shown is the molecular nitrogen vibrational level, which
is nearly coincident with (001) vibration of CO2. Each vibrational state contains a number of closely
spaced rotational sublevels.
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nation of these fundamental modes. In CO2, the frequencies of the modes are fv1 � 40
THz, fv2 � 20 THz, and fv3 � 70 THz, where the subscripts refer to the modes as labelled
in Fig. 23-22a. According to quantum mechanics, the energy contained in each vibra-
tional mode can be any integer multiple of the energy quantum hfv, so the spectrum of al-
lowed energy states is a ladder of equally spaced levels. When there are n1 quanta in mode
1, n2 quanta in mode 2, and n3 quanta in mode 3, we use the notation (n1n2n3) to describe
the complete vibrational state of the molecule.

Fig. 23-22b shows the vibrational levels of CO2 that are relevant for laser action. The
upper laser level corresponds to one quantum in the asymmetric stretch mode, with no
quanta in the other two modes. This is denoted (001) in the notation described above. The
lower laser level has either one quantum in the symmetric stretch mode (100), or two
quanta in the bending mode (020). Both of these states have approximately the same ener-
gy, since 2fv2 � fv1, and, therefore, 2hfv2 � hfv1. The laser photon energy will be equal to
the difference in energy between the upper and lower levels, which in this case is hfv3 –
hfv1. It is easily shown (see Problem 23.15) that this leads to a laser wavelength � 10 �m.
The transition to the (020) level occurs at a slightly shorter wavelength than the transition
to the (100) level, because the (020) level is slightly lower in energy and the correspond-
ing photon energy is greater.

Treating the vibrational energy levels of the CO2 molecule as single states gives the
basic idea of the CO2 laser, but it leaves out one important detail. The molecule can rotate,
as well as vibrate, and in quantum mechanics this rotational motion is also quantized.
Each level, such as the one labeled (100), actually consists of a number of discrete sub-
levels, spaced by ~ 10–4–10–3 eV. This is more than two orders of magnitude smaller than
the spacing between vibrational levels, and would not be noticeable when the energy lev-
el diagram is drawn to scale. However, it has important implications for the CO2 laser, be-
cause it means that the laser can be tuned over a limited range, to any one of the individ-
ual vibrational–rotational transitions. Tuning in the CO2 laser is usually performed with a
grating, as shown in Fig. 21-13.

A typical configuration for the CO2 laser is shown in Fig. 23-23. An electrical dis-
charge excites the gas, and lasing occurs between two mirrors (often made of copper, a
good reflector for � = 10 �m). In addition to CO2, the gas mixture includes nitrogen (N2)
to help populate the upper laser level, and helium (He) to help depopulate the lower laser
level. The relative concentration of CO2, N2, and He varies from laser to laser, but they
are usually comparable.

The added gases N2 and He function in the following way. The N2 molecule has a sin-
gle vibrational mode of frequency fv � 70 THz, which is excited by electron bombard-
ment in the discharge. When an excited N2 molecule collides with a ground state CO2

molecule, the close energy match between the excited N2 and CO2 (001) levels allows the
molecules to exchange energy, with the N2 going down to the ground state and the CO2

up to the excited state (001). This process is called energy transfer, and it is efficient be-
cause the N2 remains in the excited state a long time (it is metastable). This long lifetime
is due to the symmetry of the N2 molecule, which inhibits radiative transitions between
the vibrational states. The He gas depopulates the lower vibrational levels by a different
kind of energy transfer process, in which the vibrational energy is converted into transla-
tional kinetic energy of the He atoms. He atoms serve best for this purpose, because they
have a small mass, and can take up a greater amount of energy in an elastic collision.

CO2 lasers are very efficient, with wall-plug efficiencies of � 30% possible. This is
due in part to the rather direct excitation of the upper laser level, which does not require
excitation of higher-lying levels. These lasers can also be scaled up in power quite readi-

23-2. Electrically Pumped Lasers 449

c23.qxd  2/22/2006  3:43 PM  Page 449



ly, by increasing the gas pressure and length of the laser. However, for high gas pressures
and long cavity lengths, it becomes impractical to use a longitudinal discharge such as
that in Fig. 23-23a. At 10 torr of pressure, the discharge requires an electric field of ~ 8
kV/m, and this value scales in proportion to the pressure. The required voltage for high-
power lasers would then be prohibitively high.

An alternative scheme is the transverse discharge geometry, depicted in Fig. 23-23b.
Here, the required voltage depends on the lateral separation between electrodes, not on
the cavity length. By placing the electrodes close together, lasers with this type of config-
uration can achieve the required electric field with reasonable voltages. The gas is often
flowed transversely through the discharge region as well, for more efficient cooling. The
power can be scaled up as high as desired by increasing the gas pressure to � 100 torr,
and increasing the cavity length. CW powers as high as a few kW per meter of gain length
are possible in this way. At pressures >100 torr, instabilities in the discharge make it nec-
essary to operate the laser in the pulsed mode. When operated at atmospheric pressure or
higher, these are often called TEA lasers (for Transverse Excitation Atmospheric).

Since its invention in 1964, the CO2 laser has been an industrial workhorse. Although
the 10 �m wavelength is not efficiently absorbed by metals, the very high power of these
lasers overcomes this drawback and makes them useful for a variety of materials process-
ing applications such as cutting, drilling, welding, surface heat treatment, and so on. They
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Figure 23-23 Excitation schemes for CO2 laser. (a) Longitudinal discharge, with current in same di-
rection as optical beam. (b) Transverse discharge, with current perpendicular to direction of optical
beam.
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have also been used for laser surgery, because biological tissue strongly absorbs the 10
�m light. Pulsed lasers are particularly suited for this application because less average
power is required, and this minimizes the damage to surrounding tissue.

PROBLEMS

23.1 (a) The sides of a Nd:YAG rod are surrounded by flowing water for cooling. What
fraction of the fluorescence emitted from within the rod will be trapped by TIR in-
side the cylindrical rod? Repeat for a glass rod of index 1.5. (b) The Nd:YAG rod
in part a is end pumped. What is the maximum angle an incident ray can make with
the rod axis if it is to be trapped in the rod by TIR? Repeat for a glass rod.

23.2 Carry through the steps leading to Eq. (23-7)

23.3 A Pr-doped fiber laser is pumped at 1015 nm, at which the absorption cross section
is 4 × 10–22 cm2, and it lases at 1310 nm, at which the stimulated emission cross
section is 4 × 10–21 cm2. The laser operates as a four-level system, with an upper-
state lifetime of 110 �s. The fiber has length 3 m, core diameter 40 �m, attenua-
tion coefficient 10 dB/km, and mirrors of reflectivity 0.99 (high reflector) and 0.97
(output coupler). The refractive index of the core glass is 1.5, and it is doped with 3
× 1019 Pr ions per cm3. (a) Determine the cavity lifetime. (b) Verify that most of
the pump light is absorbed in the fiber. (c) Calculate the threshold pump power. (d)
Determine the slope efficiency. (e) If the laser is pumped with 250 mW, determine
the laser output power

23.4 In the previous problem, the fiber length is shortened to 30 cm. (a) Determine the
fraction of pump light absorbed in the fiber. (b) Determine the new pump theshold
power. (c) Determine the new slope efficiency. (d) Which of the quantities calcu-
lated in parts b and c is most affected by the shorter fiber length? Explain.

23.5 The ruby rod in a ruby laser has length 6 cm and diameter 6 mm, and is pumped
with a short lamp pulse that excites nearly every Cr3+ ion into the excited state.
Once the medium is fully inverted, the cavity Q is switched and a single laser pulse
is produced. Additional data for ruby are given in Table 23-1. (a) Considering this
to be an ideal three-level system, determine the maximum possible output pulse
energy. (b) If the pulse duration is 10 ns, calculate the peak power during the pulse.

23.6 Show that Eq. (23-12) for the four-level pump threshold can be obtained using
Eqs. (20-24) and (20-18).

23.7 Consider an optically pumped atomic system consisting of just two energy levels,
with populations N1 and N2 in the lower and upper states, respectively. Write the
rate equation for the upper level, and show that no matter how high the pump in-
tensity, at most one-half the atoms can be pumped to the excited state.

23.8 Show that Eq. (23-25) follows from Eq. (23-24), using the McCumber relation of
Eq. (18-38).

23.9 Use the McCumber relation to show that the gain coefficient is always negative
when the pump wavelength is longer than the signal wavelength.

23.10 Consider the Yb-doped fiber of Example 23-2, with the pump wavelength changed
to 975 nm. At this wavelength, the absorption and emission cross sections are both
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2.4 × 10–20 cm2. Assume the signal wavelength is still 1025 nm. (a) Repeat the cal-
culation of the pump power required for transparency. (b) Obtain an analytical ex-
pression for the gain coefficient as a function of pump power. Sketch this graph,
and compare with the results of part a.

23.11 In Fig. 23-12, each gain curve is seen to cross the zero point only once, with posi-
tive gain at longer wavelength and negative gain at shorter wavelength. Show that
this is a universal feature of such gain spectra, valid whenever the absorption and
emission cross-section spectra are connected by the McCumber relation of Eq.
(18-38).

23.12 Using the data in Fig. 23-14, estimate the shortest wavelength that can lase in the
R6G dye laser, assuming that two-thirds of the dye molecules are pumped into the
excited singlet state S1. Repeat this if only 10% of the molecules are in the excited
state.

23.13 The 2 1S level in He is � 20.6 eV above the He ground state. Using this and other
data given in Fig. 23-18, determine the energies of the 4p, 4s, and 3p levels in Ne
with respect to the Ne ground state. Assume that the He 2 1S level has the same en-
ergy as the Ne 5s level.

23.14 An argon ion laser operates with an output power of 2 W at 488 nm, and the tube is
excited with a voltage of 250 V and drive current 30 A. (a) If the distance between
electrodes is 60 cm, calculate the electric field in the tube, and the tube resistance
(assume Ohm’s law applies when there is a plasma discharge in the tube). (b) As-
suming that the electrons in the tube give up all their energy in steps, sequentially
exciting the 4p level of a number of Ar+ ions (see Fig. 23-19), calculate the maxi-
mum number of Ar+ ions that could be excited to the 4p level per unit time. (c) As-
suming steady-state operation, calculate the number of stimulated emission decay
processes occuring per unit time. (d) If the laser is far enough above threshold that
the stimulated emission rate dominates the spontaneous emission rate, estimate the
actual number of Ar+ ions excited to the 4p level per unit time. (e) Compare the an-
swers to parts b and d, and comment on the efficiency with which the Ar+ 4p level
is excited.

23.15 Take the frequencies of the three CO2 vibrational modes (see Fig. 23-22) as fv1 �
40 THz, fv2 � 20 THz, and fv3 � 70 THz. (a) Show that the laser wavelength for a
(001) � (100) transition is � 10 �m. (b) If the CO2 laser were made to lase on the
(001) � (010) transition, what would be the lasing wavelength?
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We have seen in the preceding chapters how light is generated for photonics applications,
how that light propagates, both in fibers and in free space, and how the light can be de-
tected and transformed into an electrical signal. In this final chapter, we show how these
different parts all work together in one important application, that of optical communica-
tions. This is by no means the only important application, but it nicely illustrates the ele-
ments of design that are common in photonic systems. Some of these design issues have
already been mentioned earlier in the text. We will now take more of a systems point of
view, and consider how the behavior of the various components affects the overall perfor-
mance of a communications system.

24-1. FIBER OPTIC COMMUNICATIONS SYSTEMS

In the introductory chapter, we overviewed the topics to be covered by relating them to
the simplified optical communications scheme of Fig. 1-2. This overall scheme is repeat-
ed in Fig. 24-1, but now with more detail about the choices for the various components.
The data can be in analog or digital form, and can modulate the light source either direct-
ly, by varying the source’s drive current, or indirectly by passing the light through an ex-
ternal modulator. An example of an external modulator is the electrooptic Mach–Zehnder
device (Fig. 9-21). The light source can be an LED or a laser diode, and the laser diode
can be either multiple longitudinal mode (MLM) or single longitudinal mode (SLM). The
MLM laser has no frequency-selective element other than the natural Fabry–Perot reso-
nances between end facets, and is sometimes referred to as a Fabry–Perot laser diode
(FP). The SLM laser has an additional frequency-selective element, such as the Bragg
grating in a distributed feedback (DFB) or distributed Bragg reflector (DBR) laser. Light
can be coupled into the fiber using an evanescent wave device such as the fused biconical
taper coupler (Fig. 7-4) or a fiber grating (Fig. 8-5). The fiber can be step-index or graded
index, and the step index fiber can be single-mode or multimode. Finally, light exiting the
far end of the fiber can be detected with a PIN photodiode or avalanche photodiode
(APD).

The combination of these photonic elements that is appropriate for a particular com-
munications system depends on the length scale over which data is transmitted, and the
maximum required data rate. Fiber optic networks generally fall into one of the three
broad categories listed in Table 24-1. The smallest in scale is the local area network
(LAN), in which different rooms and/or buildings in a campus setting are connected over
a distance of ~ 0.1 – 2 km. This often requires only modest data rates, and the short fiber
lengths mean that fiber losses do not have to be as low as possible. For the LAN, connec-
tor losses can dominate fiber losses.
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The metropolitan area network (MAN, or simply “metro”) is wider in geographic
scope, encompassing large sections of a city, or regions in a rural or suburban area. Trans-
mission distances can be as great as 100–200 km, so fiber losses here become much more
important. Optical amplifiers are generally not needed for fiber links less than 100 km in
length, provided that data rates are not too high, and that the low-loss second (1300 nm)
or third (1550 nm) telecommunications windows are used. Although the boundary be-
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Figure 24-1 Overview of fiber optic communications system, showing different choices for the var-
ious components.

Table 24-1 Characteristics of different types of fiber optic systems

LAN MAN Long-haul/WAN

length (km) 0.1–2 2–200 > 200
light source LED/MM laser diode MM/SM laser diode SM laser diode
modulation direct direct external
fiber type graded index single-mode single-mode
detector PIN photodiode PIN photodiode APD
wavelength (nm) 850/1310 1310 1550
data rate (Mb/s) 10–1000 500–2500 2500–40,000
geographical scope building or campus city or metropolitan area state/nation or global

�
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tween these categories is fuzzy, the lack of need for amplification can be thought of as a
defining characteristic of the MAN.

The third category is the wide area network (WAN), which extends over a scale
greater than 200 km. Included here is the long-haul global telecommunications backbone
that carries voice and internet data between cities, countries, and continents. The dis-
tances are too great for unamplified transmission, and electronic repeaters or optical am-
plifiers must be inserted periodically, with a typical separation of 40–120 km. To mini-
mize the number of required amplifiers, fiber loss must be kept as low as possible, and
this makes 1550 nm the band of choice. The receiver is often an APD for improved sensi-
tivity. Chromatic dispersion limits the maximum data transmission rate in the single-
mode fiber, and can be minimized using a narrow-linewidth SLM diode laser, with exter-
nal modulation. Direct modulation is not used at the highest data rates because it causes
frequency chirp, a time-varying optical frequency in the laser-diode output.

The three categories of fiber optic networks can be likened to the hierarchy of roads in
the physical transportation network. The long-haul WAN backbone is analogous to the in-
terstate highway system, with limited access but very high speed and high volume traffic
possible. Branching off the long-haul backbone are the metro networks, which are analo-
gous to the numbered state highways. These have a higher level of access and connectivi-
ty, but still with moderately high speed and capacity. Branching off the metro networks
are the LANs, which in our analogy are equivalent to the local roadways of villages and
towns. These are lower-speed roads with more limited capacity, but they have the advan-
tage of a much higher connectivity that is more easily modified. Although the boundaries
between these three categories can sometimes be blurred, their functioning is usually dif-
ferent enough to make the separation useful.

24-2. SIGNAL MULTIPLEXING

The data-rate capacity of a single optical fiber is far greater than what is required for a
single data source, such as a phone conversation or a computer connecting to the Internet.
In order to take advantage of a fiber’s large capacity, it is necessary to combine data from
many different sources, a process termed multiplexing. There are two basic types: time-
division multiplexing, in which data trains from different sources are interleaved in time,
and wavelength-division multiplexing (WDM), in which data signals at different optical
wavelengths are sent simultaneously down the same fiber. Before discussing each of
these in detail, we first consider the format of the data that needs to be multiplexed.

Data Format

Data can be represented in analog format, with a voltage varying continuously in time, or
in digital format, with a series of “ones” and “zeros” that correspond to a binary coding.
Voice and video signals start off as analog signals, and can be transmitted in that format
through an optical fiber. To do this, the light intensity in the fiber is continuously modu-
lated in proportion to the signal voltage, and this faithfully reproduces the original data af-
ter photodetection. Any interuption in this data stream will distort the signal, and these
analog transmission schemes, therefore, require a dedicated line for one signal.

In contrast to this, computer data is inherently digital, and is sent through a network in
a very different manner. The computer data is broken up into small bunches called pack-
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ets, each packet containing directions for the final destination (a header), along with the
actual data. These packets are directed to their destination by a series of network hubs
called routers, in a process known as packet switching. Different packets may take very
different physical routes in getting from their origin to their destination, even if they are
part of the same “message.” This method of data transfer is efficient for computers be-
cause for much of the time, any given computer is just idling away, waiting to send or re-
ceive data. It sends and receives data in short spurts of activity, and is then idle again for
some time. When many computers are sending information over the same network, pack-
et switching turns out to be a very efficient way to utilize the network’s capacity.

From the above, it is clear that analog voice and digital computer data are rather in-
compatible, and therefore not easily multiplexed. However, if the voice signal were in
digital rather than analog format, then multiplexing could be readily accomplished. In
fact, telephone signals were converted to digital format long before the advent of optical
communications, largely for this reason. This process is known as analog to digital con-
version, and it has other benefits as well, as we will see in the following.

Consider the representative analog waveform shown in Fig. 24-2, which could corre-
spond to the voltage waveform for a telephone conversation. The waveform’s voltage is
sampled periodically with a time Tphone between samples, and the voltage level at the time
of each sample is allocated to one of 256 “bins” along the voltage axis. The bin number is
expressed in binary notation, so that, for example, the bin 178 becomes

178 = (1 × 27) + (0 × 26) + (1 × 25) + (1 × 24) + (0 × 23) + (0 × 22) + (1 × 21) + (0 × 20)

which is the binary number 10110010. In a digital data stream, this 8-bit number would
be transmitted as indicated in Fig. 24-3, as a series of high and low voltage levels.* A
high voltage level corresponds to a digital “one,” and a low voltage level corresponds to a
digital “zero.” A separate 8-bit number such as this would be transmitted for each sample,
so the total bit rate for digitizing the analog signal is (8 bits/sample) × (sampling rate).
According to the Nyquist criterion, the sampling rate must be at least twice the signal
bandwidth in order to digitize the signal without any loss of information. Taking 4 kHz as
a sufficient bandwidth for a telephone connection, the required bit rate for one phone con-
versation becomes

BRphone = �8 ��2 × 4 × 103 � = 64 kb/s (24-1)

where the unit kb/s stands for kilo (103) bits per second.
A key advantage in digitizing the data is that it becomes more immune from degradation

due to noise. When noise is added to a digital signal, the receiver compares the average sig-
nal level during a bit period to a preset decision level, as depicted in Fig. 24-4. If the aver-
age signal is higher than the decision level, the bit is interpreted as a digital “one,” and if it
is lower, the bit is interpreted as a digital “zero.” Even in the presence of significant noise,
it is still possible to reconstruct the original waveform almost perfectly. This high fidelity
in signal transmission comes at a cost, however. Processing the 64 kb/s digital signal elec-
tronically requires a receiver bandwidth of ~ 64 kHz, which is much greater than the origi-
nal 4 kHz bandwidth of the analog signal. Fortunately, this increased bandwidth require-

samples
�

s

bits
�
sample
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*This is the so-called NRZ (non-return-to-zero) format, in which there is no “dead space” between bits. In the
alternative RZ format, the voltage always returns to zero for a full period T between the data bits.
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Figure 24-2 An analog waveform can be sampled periodically to generate a digital representation.

Figure 24-3 Digital waveform representing the decimal number 178, which is 10110010 in binary.
An 8-bit number such as this would be sent for each of the sampled voltages in the waveform of Fig.
24-2.

Figure 24-4 A digital signal is interpreted as a “one” or “zero” depending on whether the average
signal level during a bit period is higher or lower than the decision level. Moderate amounts of noise
do not result in any significant loss of data.
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ment is not really a problem. As we will see in the following section, there is enough avail-
able bandwidth in a fiber for thousands of simultaneous phone conversations.

Time-Division Multiplexing

The basic idea of time-division multiplexing is illustrated in Fig. 24-5 for three represen-
tative data sources labeled A, B, and C. In this discussion, we will consider the data to be
digitized phone conversations, but the same concept applies to computer data and other
forms of digital data as well. The multiplexer combines the three data streams by inter-
leaving them in time, as shown. If the time between bits in the original phone data is des-
ignated Tphone, then the time between bits in the combined data stream is T = Tphone/3.
Generalizing this to N phone conversations, the relation becomes T = Tphone/N. Since the
bit rate is the reciprical of the time between bits, the number of phone channels that can be
multiplexed into a single bit stream is

# phone channels = = = (24-2)

The channel capacity for an optical fiber is, therefore, proportional to the bit rate in the
multiplexed data stream.

To promote the compatability of data exchanged between different users, a number of
telecommunications standards have evolved that specify data format and standard bit rates.
Table 24-2 lists the most commonly used standard rates in North America, and Table 24-3
lists the corresponding European/international rates. The North American rates designated
T1, T2, and T3 were developed for the long-distance transmission of telephone traffic
through so-called trunk lines, which connect different telephone switching centers. Well
before the advent of fiber optics, long-distance telephone data was being multiplexed in a
hierarchic fashion, with four T1 lines multiplexed into one T2 line, and seven T2 lines mul-
tiplexed into one T3 line. In fact, the first use of fiber optics in a public phone system was
as a replacement for a trunk line operating at the T3 rate of 45 Mb/s. Today, these standard
rates are still in common use, especially the T1 and T3 rates, and they are used not only for
digital telephone, but also for other types of data. For example, a “high-speed” connection
to the internet for a business or university is often one or more T1 connections.

BR
�
64 kb/s

BR
�
BRphone

Tphone
�

T
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Figure 24-5 A time-division multiplexer interleaves a number of original data streams into a single
data stream with a time T between bits.
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The higher-speed OC-1 to OC-768 rates have been developed more recently, in con-
nection with the Synchronous Optical Network (SONET) standard. The European/inter-
national counterpart to this is the Synchronous Digital Hierarchy (SDH) standard, with
rates designated STM-1 to STM-256. The purpose of these new standards is to facilitate
the transmission of mixed data types over fiber. They are designed to be compatible with
the older data standards, so that, for example, the OC-1 rate can contain data from a T3
line. Although the SONET and SDH standards are somewhat different, especially in their
compatibility with the older digital telephone standards, they are very similar in the high-
er-speed realm, where compatibility across international borders is especially important.

Today, the OC-192 rate is in common use for long-haul applications, and the OC-768
rate is starting to be used. There is a limit to this upward march in data rates, however. For
one thing, it becomes increasingly difficult to design light modulators, detectors, and as-
sociated electronics that work at such high speed. More fundamentally, however, the
maximum transmission rate is limited by dispersion in the fiber, as we saw in Chapter 6.
To pack even more information into a fiber requires a different kind of multiplexing,
which we consider in the following section.

Wavelength-Division Multiplexing (WDM)

The transmission capacity of a single optical fiber can be greatly increased by sending
separate optical signals at different wavelengths down the fiber simultaneously. This is
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Table 24-2 Data rate standards for North America

Rate name Type Data rate # voice channels

T1 digital telephone 1.544 Mb/s 24
T2 digital telephone 6.312 Mb/s 96
T3 digital telephone 44.736 Mb/s 672
OC-1 SONET 51.84 Mb/s 672 (1 T3)
OC-3 SONET 155.52 Mb/s 2016
OC-12 SONET 622.08 Mb/s 8064
OC-48 SONET 2.5 Gb/s 32,256
OC-192 SONET 10 Gb/s 129,024
OC-768 SONET 40 Gb/s 516,096

Table 24-3 Data rate standards for Europe and international

Rate name Type Data rate # voice channels

Level 1 digital telephone 2.048 Mb/s 30
Level 2 digital telephone 8.448 Mb/s 120
Level 3 digital telephone 34.3 Mb/s 480
Level 4 digital telephone 139 Mb/s 1920
STM-1 SDH 155.52 Mb/s (1 Level 4)
STM-4 SDH 622.08 Mb/s 8064
STM-16 SDH 2.5 Gb/s 32,256
STM-64 SDH 10 Gb/s 129,024
STM-256 SDH 40 Gb/s 516,096
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known as wavelength-division multiplexing (WDM), and is depicted schematically in Fig.
24-6. A set of laser diodes with wavelengths �1, �2, �3, . . . , �N are modulated individual-
ly with separate data signals, and the wavelengths are then combined in a multiplexer and
sent through the fiber. After leaving the far end of the fiber link, the individual wave-
lengths are separated in a demultiplexer, and the data stream carried by each wavelength
is detected in a separate receiver. These different wavelengths constitute a set of channels
for optical data transmission, in much the same way that different frequencies in the elec-
tromagnetic spectrum are assigned to the various TV channels and radio stations. The
main difference is that optical frequencies are in the 1014 Hz range, whereas radio and TV
channels are in the 106–109 Hz range.

The optical channels in WDM can be represented in terms of a frequency spectrum, as
shown in Fig. 24-7. This shows the optical power in the fiber as a function of optical fre-
quency � = c/�. It is customary in WDM to space the channels evenly in frequency, rather
than wavelength. The ITU (International Telecommunications Union) has set up a series
of standard frequencies for WDM channels, spaced by 100 GHz or 50 GHz. For example,
two adjacent frequencies with 100 GHz spacing would be at precisely 195.90 THz and
195.80 THz. Using the value c = 2.99792458 × 108 m/s, this corresponds to wavelengths
1530.33 and 1531.12 nm, respectively, which is a wavelength spacing between channels
of � 0.8 nm. Note, however, that this wavelength spacing is not a constant.

To maximize the number of channels, and hence the data carrying capacity of the fiber,
the channels should be spaced as closely as possible. This is termed dense wavelength di-
vision multiplexing (DWDM), which is roughly defined by a channel spacing �� < 200
GHz. The limit on how closely the channels can be spaced is determined by the spectral
width ��ch of each channel. When ��ch � ��, the light from one channel can cross over
and be detected on another channel, resulting in “cross-talk.” Therefore, a small value of
��ch is desirable for DWDM. There are many sources of linewidth for an optical source,
but at a minimum, the width is determined by the Fourier transform of the time-dependent
waveform. Since the waveform varies on a time scale of T for bit rate BR = 1/T, the Fouri-
er transform-limited linewidth is

��ch ~ 1/T = BR (transform-limited channel width) (24-3)

If the channel spacing is reduced to the minimum value �� ~ ��ch, then the number of
channels in an available optical bandwidth ��band is
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Figure 24-6 In wavelength-division multiplexing, signals at several different wavelengths are com-
bined and sent through the same fiber.
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Nch = ~ (number of channels in bandwidth) (24-4)

Since each of these Nch channels carries BR bits/s, the combined bit rate in all channels is

BRtot = Nch BR ~ ��band (combined bit rate, all channels) (24-5)

This last equation gives the remarkably simply and important result that the combined
maximum bit rate in all channels is on the order of the available bandwidth. Note that
BRtot does not depend on BR, the data rate in one channel. The reason for this is that as BR
goes up, the maximum number of channels Nch goes down, so that their product remains a
constant. The result is an engineering trade-off, in which the choice of bit rate and chan-
nel spacing depends on the practical difficulties of high-speed electronics on the one
hand, and the demultiplexing of closely spaced wavelengths on the other hand.

Spectral Efficiency

The exact numerical proportionality factor to be used in Eq. (24-5) depends on the type of
modulation and the coding scheme, among other things. It can be written as a spectral ef-
ficiency, defined as

�sp � (spectral efficiency) (24-6)

In practice, it has been possible to achieve spectral efficiencies of about �sp � 0.4
(bits/s)/Hz for well-designed systems. The following example illustrates the bit rate ca-
pacity made possible by this optimized multiplexing.

An optical fiber communications system uses WDM to obtain an optimized spectral
efficiency of 0.4 (bits/s)/Hz. Determine the combined maximum bit rate capacity in the
wavelength interval 1530–1560 nm (this corresponds to one of the bands of the Er-
bium-doped fiber amplifier).

total bit rate
��
total bandwidth

��band
�

BR

��band
�
��ch
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Figure 24-7 Optical power per unit frequency in wavelength-division multiplexing. Channels of
width ��ch are spaced evenly in frequency with a separation ��.

EXAMPLE 24-1
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Solution: Taking �1 = 1530 nm, and �2 = 1560 nm, the two corresponding optical fre-
quencies are

�1 = = 1.9594 × 1014 Hz = 195.94 THz

and

�2 = = 1.9217 × 1014 Hz = 192.17 THz

The frequency bandwidth is then ��band = �1 – �2 = 3.77 THz, which gives a maximum
combined bit rate of

BRtot = �sp ��band = �0.4 �
b

H

/

z

s
�� (3.77 THz) = 1.5 Tb/s

Bit rate capacities in the Tb/s (1012 bits/s) range are truly enormous. To put it in per-
spective, we can divide this by the required bit rate for one phone conversation, 64 kb/s,
to obtain an estimated capacity of � 2.3 × 107 phone channels. That’s a lot of talking on
one fiber! By way of comparison, the maximum bandwidth in a microwave or wireless
link is limited to a few GHz, some three orders of magnitude less than an optimized fiber
link. Although wireless has its conveniences, it can never approach the raw data capacity
of fiber.

WDM Multiplexers

There are a number of methods for combining and separating wavelengths in a WDM
system. One approach using a fiber Bragg grating is shown in Fig. 24-8a. For separating
out more than one wavelength, several fiber gratings can be cascaded, and this is a practi-
cal method when the number of wavelengths is not too large. Another approach uses a
bulk-optic diffraction grating to separate the wavelengths, as shown in Fig. 24-8b. Light
signals at different wavelengths are diffracted at different angles from the grating, and are
then focused by a graded index lens into one of a series of fibers attached to the lens. The
spectral resolution for this type of device is not generally good enough for DWDM, but it
can be used in coarse wavelength division multiplexing (CWDM), which is characterized
by a channel separation �� � 1 THz.

A third approach to wavelength separation in WDM is the arrayed-waveguide grating
(AWG), depicted in Fig. 24-8c. This is a planar waveguide device that separates the
wavelengths by multiple-path optical interference. Light containing several wavelengths
enters the input slab waveguide coupler, where it spreads out and is uniformly distrib-
uted among a number of individual waveguides in a waveguide array. The waveguides
in this array are designed so that each one is longer or shorter than its neighbor by a
fixed amount �L. There is then a fixed optical path length difference n�L between ad-
jacent waveguides, where n is the index of refraction. When the light reaches the output
slab waveguide coupler, it again spreads out, and is coupled into another series of wave-
guides.

2.99792458 × 108

��
1560 × 10–9

2.99792458 × 108

��
1530 × 10–9
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The amount of light that is coupled into any one of these output waveguides depends
on the linear superposition of the lightwave fields from the various arrayed waveguides.
Because of the path length difference �L between waveguides, the lightwave field com-
ing from each waveguide in the array is shifted in phase by (2�/�) (n�L), which depends
on wavelength. Constructive interference will then occur in different directions (at differ-
ent output waveguides), depending on the wavelength. The operating principle here is
much the same as in a diffraction grating (Fig. 2-16), in which phase shifts due to path
length differences cause the direction of the diffracted beam to depend on wavelength.
This similarity to a diffraction grating gives the arrayed waveguide “grating” its name,
even though there is no physical grating in the device. The AWG can be designed to sep-
arate channels as closely spaced as 50 GHz, and can therefore be used for DWDM.

Nonlinear Channel Mixing in WDM

In DWDM it is important to minimize coupling (cross talk) between adjacent channels.
One source of cross talk that we have already discussed is the finite spectral width of each
channel in comparison to the channel separation. Another source of cross talk arises from
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Figure 24-8 Wavelengths can be combined and separated in WDM systems using (a) fiber Bragg
gratings, (b) bulk-optic gratings, or (c) arrayed-waveguide gratings.
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nonlinear interactions between light at different frequencies, as depicted in Fig. 24-9.
Light in three adjacent frequency channels �1, �2, and �3 can couple together in a four-
wave mixing process (see Section 9-2) to create light at a fourth frequency �4. Energy
conservation requires that �4 be at some combination of sums and differences of the input
frequencies. In the example shown, �4 = �1 – (�3 – �2). Since �3 – �2 is the channel spacing
��, the new frequency is �4 = �1 – ��, exactly on resonance with the frequency channel
one step lower than �1. The even spacing of the frequency channels makes this coupling
process quite efficient for high powers and long path lengths.

One way to minimize this problem is to make the different frequencies travel at slight-
ly different velocities down the fiber. The phase matching that is necessary for frequency
conversion then occurs over a limited path length, and this reduces the overall efficiency
of the process. But we have seen in Chapter 6 that different frequencies do in fact travel at
different velocities, due to dispersion. From this point of view, dispersion is not some-
thing to be eliminated entirely, but rather to be managed for optimum performance. The
dispersion should be great enough to reduce the efficiency of four-wave mixing between
channels, but small enough to allow a high bit rate. This has led to the development of
dispersion-flattened fiber, as discussed in connection with Fig. 6-4.

24-3. POWER BUDGET IN FIBER OPTIC LINK

In the previous section we examined several techniques that can be used to maximize the
rate of data transmission in an optical fiber. These high data rate capacities are certainly
an important benefit of fiber optic communications. Equally important, however, is the
ability to transmit this data over great distances. The transmission distance can be limited
by either dispersion or by optical losses, which reduce the optical signal below the de-
tectable level. A convenient way to analyze the effect of losses is to set up an optical pow-
er budget, which systematically accounts for the different losses and gains in the fiber
link. Losses and gains are fundamentally multiplicative (signal power is decreased or in-
creased by a certain factor), but when expressed in decibel units, they are additive. The
overall power budget can therefore be written as

injected power – losses + gain = received power 

with all quantities expressed in dB. It is always a good idea to design a fiber link in such a
way that the expected (nominal) level of received power is somewhat greater than the
minimum detectable level. This difference, expressed in dB, is known as the system mar-
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Figure 24-9 At high signal powers, four-wave mixing in the fiber can cause nonlinear coupling be-
tween WDM channels.
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gin. Denoting the signal power in dBm as P, using the definition in Eq. (1-7), the power
budget can be expressed symbolically as

PT – 	L – K + GdB = M + PR (24-7)

where PT is the signal power (in dBm) injected into the fiber by the transmitter, 	 is the
fiber loss coefficient in dB/km, L is the fiber length in km, K is the dB loss due to fiber
connections and splicing, GdB is the dB gain (if any) due to amplifiers inserted into the
link, M is the system margin, and PR is the minimum receiver power (in dBm) that can de-
tected reliably. The power level PR is known as the receiver sensitivity.

Typical values for these parameters are as follows. Injected powers are ~ 1 mW (0
dBm) for laser diodes, but only ~50 
W (–13 dBm) for LED’s coupled into multimode
fiber. The lower value for an LED comes from the source–fiber coupling efficiency,
which was found in Eq. (12-11) to be NA2. LEDs are seldom used with single-mode fiber,
because the area mismatch makes the coupling efficiency much lower still. Fiber connec-
tion losses are usually ~0.1 dB per splice, and 0.2–1 dB per connector. Fiber attenuation
depends on the wavelength, typically ~0.25 dB/km for 1550 nm, and 2.5 dB/km for 850
nm. System margins in the range 3–10 dB are generally desirable.

It is not as easy to specify the receiver sensitivity PR as a single number. It depends not
only on the type of photodetector used, but also on the bit rate. To understand the reason
for this, we turn next to a detailed examination of receiver sensitivity.

Receiver Sensitivity

The signal to be detected can be represented by a plot of received power versus time, as
depicted in Fig. 24-10. The power is P1 when the pulse is on (digital “one”), and P0 when
the pulse is off (digital “zero”). Usually P0 = 0, so the average power PR is one–half the
peak power P1. Fundamentally, the job of the receiver is to determine whether each bit in
the digital data stream is a “one” or a “zero.” To be considered a digital “one,” a bit must
have at least one photon of energy, since this is the minimum amount that will give rise to
photoexcitation of an electron–hole pair. However, more photons per bit than this are re-
quired for reliable detection, because photons do not come evenly distributed in time.
Photon generation and detection is a statistical process, with the number n1 of photons de-
tected in one bit varying according to the Poisson probability distribution:

P(n1) = (Poisson distribution) (24-8)

We previously encountered this distribution function in connection with electrical current
shot noise (Section 13-3). Here, n�1� is the average number of photons in a digital “one” bit,
taken over many such bits. If there were only a single photon on average per “one” bit (n�1�
= 1), the probability that no photons would be present in any particular “one” bit would be

P(0) = e–1 = e–1 = 0.368

This means that every third “one” would be read as a “zero,” an unacceptably large error
rate. For the general case of n�1� photons on average per “one” bit, the probability of an er-
ror (i.e., getting n1 = 0) is

10

�
0!

(n�1�)n1 e– —n1

��
n1!
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P(0) = = e–—n1 (24-9)

Clearly, there are fewer errors when there are more photons per bit.
The reliability of digital data is often expressed in terms of the bit error rate, or BER.

This is defined as the probability that a digital bit will be read incorrectly—either a “one”
will be read as a “zero,” or vice versa. However, a “zero” cannot be mistakenly read as a
“one,” because the light beam is switched off during a digital “zero,” and there are no
fluctuations about an average of zero. Therefore, the overall BER is P(0)/2, assuming an
equal number of digital one’s and zero’s overall. There is no hard and fast rule about what
error rate is acceptable, but for purposes of comparison a maximum BER = 10–9 is often
assumed. Using this criterion, the condition on n�1� becomes

10–9 = 1–
2 e–—n1

or

(n�1�)min = –ln(2 × 10–9) = 20 (24-10)

This is the quantum limit for the number of photons in a logical “one” bit, and sets a
lower limit on any receiver’s sensitivity. It is customary to express this limit as n�, the av-
erage over all bits (in contrast to n�1�, which is an average over just the “one” bits). The
“zero” bits contain no photons, and so if half the bits are “zero” on average, the quantum
limit becomes

n�min = 1–
2 (n�1�)min = 10 (quantum limit) (24-11)

We therefore conclude that, on average, there must be at least 10 photons per bit in a dig-
ital signal for an acceptably low error rate.

For a power-budget analysis, the receiver sensitivity must be specified as a power lev-
el in dBm, rather than as a number of photons per bit. To relate the two, we write

power = = � �� �� �bits
�
time

photons
�

bit

energy
�
photon

energy
�

time

(n�1�)0e–—n1

�
0!
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Figure 24-10 Time dependence of optical power incident on receiver in an optical communications
system. Illustrated here is the NRZ scheme, in which the pulse duration of each bit (�tb) is equal to
the time spacing between bits, T = 1/BR. In the RZ scheme, �tb = T/2.
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which translates symbolically into

PR = h� n�minBR (receiver sensitivity) (24-12)

This equation gives the average power required at the receiver in terms of the minimum
average number of photons per bit. It can also be written in terms of the peak power, as P1

= h�(n�1�)minBR. The interesting (and important) feature of this result is that the required re-
ceiver power increases in proportion to the bit rate. This has implications for a power-
budget analysis, because it means that the receiver sensitivity is not a fixed number;
rather, it must be specified at a particular bit rate. We will pursue this point further, but
first we need to consider how these results apply to real detectors.

Real photodetectors never do quite as well as the quantum limit, because they are sub-
ject to thermal noise and electronic shot noise. Well-designed APD receivers can respond
at the quantum level, but there is added noise due to the statistics of avalanche multiplica-
tion. They typically require ~ 500 photons per bit, rather than the quantum limit of 10.
PIN photodiode receivers are invariably thermal-noise limited, and in this case detectabil-
ity is better understood in terms of a signal-to-noise ratio, as discussed in Section 14-5.
Under small signal conditions, SNR � P2/B, where P is the incident optical power and B
is the detector electronic bandwidth. The optical power required to maintain a constant
minimum SNR is then expected to be P � �B�. The electronic bandwidth required to de-
tect a waveform with bit rate BR is B ~ BR and, therefore, one would predict that the re-
ceiver sensitivity for thermal-noise-limited amplifiers would vary as �B�R�, rather than
linearly with BR. This scaling assumes that all other amplifier parameters remain the
same, whereas, in practice, amplifier circuits are optimized in different ways for different
frequency regions. For practical purposes, therefore, the relation PR � BR can be taken to
hold approximately for PIN receivers, as well as for APD and quantum-limited receivers.
A typical n�min value for PIN receivers is ~ 5000 photons/bit. This is a factor of 500 (27
dB) higher than the quantum limit.

A digital receiver operates at a wavelength of 1.3 
m and a bit rate of 400 Mb/s. De-
termine the receiver sensitivity in dBm for (a) the quantum limit, and (b) a PIN photo-
diode circuit requiring 5000 photons per bit.

Solution: (a) The photon energy is

h� = = = 1.53 × 10–19 J

For the quantum limit, the required receiver power is

PR = (10)(1.53 × 10–19 J)(4 × 108 s–1) = 6.12 × 10–10 W

which corresponds to

PR = 10 log10 � � = –62.1 dBm
6.12 × 10–10

��
1 × 10–3

(6.63 × 10–34)(3 × 108)
���

1.3 × 10–6

hc
�
�
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(b) For the PIN photodiode receiver,

PR = (5000)(1.53 × 10–19 J)(4 × 108 s–1) = 3.06 × 10–7 W

which corresponds to

PR = 10 log10 ��3.

1

06

×

×

10

1
–

0
3

–7

�� = –35.1 dBm

We now use the receiver sensitivity given in Eq. (24-12) to analyze the power budget.
Taking the log of this equation to obtain the receiver sensitivity in dBm, we obtain a bit
rate dependence of the form

PR(BR) = PR(BR0) + 10 log10� � (24-13)

where BR0 is a reference bit rate. The receiver sensitivity measured in dBm is seen to vary
logarithmically with bit rate. For example, if the bit rate increases from BR0 = 3 Mb/s to
BR = 300 Mb/s, this equation predicts an increase of 10 log10(300/3) = 20 dB in the re-
quired receiver power. This corresponds to a factor of 100 increase, which is consistent
with the scaling prediction of Eq. (24-12). The effect of bit rate on power budget calcula-
tions is illustrated in Fig. 24-11, which shows typical variations of PR with bit rate on a
semilog scale. In this graph, the separation between transmitter power PT and receiver
sensitivity PR gives the maximum total loss from all sources, including system margin. As
the bit rate increases, less and less total loss is allowable. One of the sources of loss is

BR
�
BR0
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Figure 24-11 Receiver sensitivities in dBm versus bit rate, calculated from Eq. (24-12) for a wave-
length of 1.3 
m. Values of n�min used for the plot are 10 for the quantum limit, 200 for a PIN photodi-
ode with an optical preamplifier, 500 for an APD, and 5000 for a PIN photodiode without an optical
preamplifier. Also shown are typical injected powers for a laser diode (1 mW) and an LED (50 
W).
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fiber attenuation, and the limits on total loss lead to limits on fiber length. This is consid-
ered in more detail in the following section.

Maximum Fiber Length

The maximum allowable fiber length in a optical communications system is found by
solving Eq. (24-7) for L:

Lmax = [PT – K + GdB – M – PR] (24-14)

with 	 in dB/km, losses in dB, and powers in dBm. The use of this equation is best made
clear by considering some examples.

An 850 nm LED couples 0.1 mW into a multimode fiber that has an attenuation coeffi-
cient of 2.5 dB/km. The LED is modulated at 100 Mb/s, and a PIN photodiode receiv-
er is used that requires 5000 photons per bit. Losses due to splices and connectors are 3
dB, and the desired system margin is 3 dB. Determine the maximum fiber length.

Solution: The photon energy is

h� = = = 2.34 × 10–19 J

and the receiver sensitivity is

PR = (5000)(2.34 × 10–19)(108) = 1.17 × 10–7 W

which corresponds to PR = –39.3 dBm.

The maximum length is, therefore,

Lmax = = 9.3 km

The above system utilizes relatively inexpensive components in the original 850 nm
telecommunications window. It may be suitable for LAN networks or short-distance metro
applications. In contrast, consider the following example using higher-end components.

A 1550 nm laser diode couples 1 mW into a single-mode fiber that has an attenuation
coefficient of 0.25 dB/km. The laser is modulated at 100 Mb/s, and an APD receiver is

–10 – 3 – 3 – (–39.3) dB
���

2.5 dB/km

(6.63 × 10–34)(3 × 108)
���

850 × 10–9

hc
�
�

1
�
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used that requires 500 photons per bit. There are 20 splices, each with a loss of 0.1 dB,
and two connectors, each with a loss of 0.8 dB. The desired system margin is 6 dB. De-
termine the maximum fiber length.

Solution: The photon energy is

h� = = = 1.28 × 10–19 J

and the receiver sensitivity is

PR = (500)(1.28 × 10–19)(108) = 6.4 × 10–9 W

which corresponds to PR = –51.9 dBm. The combined loss from splices and connectors
is

K = (20 × 0.1) + (2 × 0.8) = 3.6 dB

The maximum length is, therefore,

Lmax = = 169 km

The more expensive components used in the above example might be employed in a
long-haul system, where separating repeater stations by the greatest distance is a high pri-
ority. This minimizes overall system expense and simplifies maintenance.

Dependence on Bit Rate

We have seen in these examples that the maximum fiber length depends, among other
things, on receiver sensitivity. But the receiver sensitivity depends on the bit rate, and,
therefore, the maximum fiber length depends on bit rate. This dependence can be made
explicit by combining Eqs. (24-7) and (24-13), giving

Lmax = �PT – K + GdB – M – PR(BR0) – 10 log10� �	 (24-15)

According to this result, the maximum fiber length decreases logarithmically with in-
creasing bit rate. To illustrate this dependence graphically, we plot Lmax versus BR in Fig.
24-12, calculated using Eq. (24-15) with the system parameters given in Example 24-4. It
can be seen that up to ~ 1 Gb/s, there is only a modest (less than factor of two) reduction
in maximum length, and only at the higher rates (BR > 10 Gb/s) does the fiber length be-
comes significantly limited by attenuation.

There is another limit to the fiber length, however, due to dispersion. We saw in Chap-
ter 3 that when dispersion spreads a pulse in time by �t, the bit rate is limited to BRmax =
1/(2�t) [Eq. (3-37)]. The time spread in a multimode fiber is �t � Ln�/c [Eq. (3-35)],
whereas in single-mode fiber it is �t = LDc�� [Eq. (6-11)]. In both cases, �t � L, making

BR
�
BR0

1
�
	

0 – 3.6 – 6 – (–51.9) dB
���

0.25 dB/km

(6.63 × 10–34)(3 × 108)
���

1550 × 10–9

hc
�
�
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BRmax � L–1. There is thus a maximum product of bit rate and fiber length for each case,
given by

(BR × L)max = (multimode) (24-16)

and

(BR × L)max = (single-mode) (24-17)

When limited by dispersion, bit rate can be traded off against fiber length. One system
might have a higher bit rate over a shorter length, while another might have a slower bit
rate over a longer length. However, subject to the restrictions given above, a system can-
not have both a high bit rate and long length.

(a) Calculate the product of maximum bit rate and length for a system using multimode
fiber with fractional index difference � = 0.01. (b) Repeat part a for a system using sin-
gle-mode fiber and a laser diode at 1550 nm with spectral linewidth 0.1 nm. (c) For the
system of part b, determine the dispersion-limited fiber length when operating at bit
rate 100 Mb/s.

Solution: (a) Using Eq. (24-16),

(BR × L)max = = 1010 m/s
3 × 108

��
2(1.5)(0.01)

1
�
2Dc��

c
�
2n�
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Figure 24-12 Limit on fiber length in a communications system due to fiber attenuation and disper-
sion. Attenuation parameters are taken from Example 24-4, and dispersion parameters are taken
from Example 24-5b. The operating point must lie below both the attenuation and dispersion curves.

EXAMPLE 24-5
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To put this in more useful units we write it as

1010 � 	� 	 = 10 km · Mb/s

(b) From Fig. 6-3, we estimate the chromatic dispersion at 1550 nm to be Dc � 15
ps/(nm · km). Eq. (24-17) then gives

(BR × L)max = = 0.333 

Converting units this becomes

0.333 = 333 = 333 km · Gb/s

This is over four orders of magnitude higher than the BR × L product found in part a.
(c) Writing the bit rate as 0.1 Gb/s, we have

Lmax = �
333

0.

k

1

m

G

·

b

G

/s

b/s
� = 3330 km

Comparing this last result with that of of Example 24-4 (which assumed a similar fiber
and bit rate), we see that the fiber length is actually limited by attenuation rather than dis-
persion. This conclusion only applies to the particular fiber and bit rate assumed, howev-
er. To see more generally what limits the fiber length, we show in Fig. 24-12 the maxi-
mum length versus bit rate for both attenuation and dispersion in the same fiber. The
attenuation data is taken from Example 24-4, and the dispersion data is taken from Exam-
ple 24-5b. It can be seen that there are two regions, separated by the point at which the
curves cross. At bit rates below the crossover point, the fiber length is limited by attenua-
tion, whereas at bit rates above this point, the length is limited by dispersion. The bit rate
at which the curves cross depends on many parameters, including the fiber loss coeffi-
cient, the light source wavelength and spectral width, and the type of receiver used.

It should be noted that in practice, the bit rate is limited not only by fiber dispersion
and attenuation, but also by the response time of the transmitter and receiver. Designating
these by �txmtr and �trcvr, respectively, the total response time that limits the bit rate is

�t = ���t2x�m�tr�+� ��t2f�ib�er� +� ��t2r�cv�r� (system response time) (24-18)

where �tfiber is the total fiber dispersion, given in Eq. (6-15). The maximum bit rate is
then BRmax = 1/(2 �t), with �t calculated from Eq. (24-18).

24-4. OPTICAL AMPLIFIERS

We have seen that fiber attenuation is often the factor that limits the length of an optical
fiber link. For very long fiber spans, it is necessary to periodically amplify the light sig-

km
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nal, either with an electronic repeater, or with an optical amplifier. Optical amplifiers
have the advantage that the data format does not need to be known in order for amplifica-
tion to occur. What comes out of the optical amplifier is simply a higher-power replica of
what came in. In contrast, an electronic repeater must be designed to decode and retrans-
mit digital data with a specified rate and format. The optical amplifier has the related ad-
vantage that it can simultaneously amplify signals at several different wavelengths, a feat
not possible with traditional repeaters. This has made the optical amplifier an enabling
technology for wavelength-division multiplexing in long-haul telecommunications.

The principle drawback of optical amplifiers is that they do not reconstitute a signal that
has been degraded by dispersion. At certain points in a long-distance system, it is still oc-
casionally necessary to reshape and retime the pulses using electronic amplifiers. The need
for this can be minimized, however, by using various dispersion-compensation techniques.
An example of this would be to pass light that has been dispersed in one fiber through a sec-
ond fiber, which has a dispersion coefficient Dc of sign opposite that of the first. The pulse
dispersion is then “undone” in the second fiber, and the original pulse shapes are restored.

There are two basic types of optical fiber amplifiers. The first type utilizes stimulated
emission in a rare-earth-doped fiber for the amplification, and is essentially a fiber laser
without the end mirrors. The second type utilizes stimulated Raman scattering, a nonlin-
ear optical process that becomes efficient at very high optical intensities. The optical am-
plifier that has so far had the greatest impact on fiber optic communications is of the first
type, the erbium-doped fiber amplifier or EDFA. In this section we first consider the
EDFA in some detail, and then follow this with a look at other kinds of doped amplifiers,
as well as Raman amplifiers.

Erbium-doped Fiber Amplifier (EDFA)

The elements and operation of an EDFA are shown schematically in Fig. 24-13. There are
many similarities to a fiber laser (Fig. 23-9), with pump light injected into the doped fiber
core through a fiber coupler. However, in this case there are no Bragg reflectors in the
fiber, and no laser oscillation occurs. Instead, weak-signal light that is coupled in through
the fiber coupler is amplified by stimulated emission, drawing energy from the pump, and
exits as a higher-power version of the input signal.

The Er3+ ion has a number of energy levels (see Fig. 23-7), but only the lower three of
these, shown in Fig. 24-14, are normally relevant for EDFA operation. Amplification oc-
curs on the 4I13/2 � 4I15/2 transition, which occurs at ~ 1550 nm. This coincides nicely
with the wavelength of minimum attenuation in silica fiber (the third telecommunications
window), making the EDFA a good fit with the needs for amplification in long-haul
telecommunications. The quantum efficiency of the transition is high as well, because
nonradiative decay processes are weak over the large energy gap between the 4I13/2 and
4I15/2 levels. These two features of high efficiency and optimum wavelength range have
made the EDFA an important component of fiber optic communications systems. The
lower level in the Er3+ transition is the ground state, which makes this a three-level-type
system. One way to excite the upper level is to pump on the short wavelength (high ener-
gy) side of the 4I15/2 � 4I13/2 absorption transition, around 1480 nm. This is very similar to
the pumping of Yb3+ in a Yb-doped fiber laser, and much of the analysis and discussion
relating to the Yb fiber laser in Section 23-1 applies to Er3+ as well. One difference is that
Er3+ has several excited states, whereas Yb3+ has just one. This allows Er3+ to be pumped
at other wavelengths, for example at � 980 nm. Absorption of a 980 nm photon promotes

24.4. Optical Amplifiers 473

c24.qxd  2/22/2006  3:50 PM  Page 473



Er3+ to the 4I11/2, which decays rapidly to the 4I13/2 by nonradiative relaxation. One advan-
tage of 980 nm pumping over 1480 nm pumping is a higher possible population inversion,
leading to higher gain (see Problem 24.12).

Gain Transparency

The gain coefficient for a transition from level 2 to level 1 is given in Eq. (18-37) as

�(�) = N2
em(�) – N1
abs(�) (gain coefficient)

written here in terms of wavelength rather than frequency. Since N1 is the population of
the ground state, it is much larger than N2 under conditions of weak pumping, and the

474 Chapter 24 Optical Communications

Figure 24-13 Schematic representation of erbium-doped fiber amplifier (EDFA).

Figure 24-14 Lower three energy levels in Er3+, showing pump transitions at 1480 and 980 nm, and
signal transitions at ~1550 nm. Several wavelengths can be amplified simultaneously without inter-
ference.
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gain is negative. A minimum pump intensity is, therefore, required to achieve the trans-
parency condition � = 0, just as for Yb3+. In fact, the analysis in Eqs. (23-15)–(23-24) de-
veloped for Yb3+ applies equally well to Er3+, provided that 
pe is set to zero for 980 nm
pumping.*

The dependence of gain coefficient on pump power is illustrated in Fig. 24-15, for a
pump wavelength of 1480 nm and signal wavelength of 1550 nm. Eqs. (23-20) and (23-
21) were used to calculate the level populations N2 and N1 for this plot, with cross-sec-
tion data taken from Fig. 18-10. Fiber parameters assumed were core radius 2.5 
m, ion
density 1019 cm–3, and upper-state lifetime 10 ms. The transparency condition occurs in
this fiber at a pump power slightly over 2 mW, a remarkably small value for a three-lev-
el-type transition. This ease of achieving transparency is a direct result of the small core
size, and is one of the primary benefits of the fiber geometry for fiber lasers and ampli-
fiers.

Above the transparency point, the gain coefficient is positive and increases with in-
creasing pump power. However, it saturates at some maximum gain coefficient �max, be-
cause the upper-state population N2 is limited by N, the total number of Er ions per unit
volume. Under conditions of complete population inversion, where N2 � N and N1 � 0,
the maximum gain coefficient is

�max(�) = N
em(�) (maximum gain coefficient) (24-20)

With 1480 nm pumping the maximum gain will be somewhat less than this, due to the in-
complete inversion.

Gain Spectrum

We saw in Fig. 24-15 how the gain varies with pump power at a fixed signal wavelength.
Also of interest is how the gain varies with signal wavelength at a fixed pump power. This
is referred to as the gain spectrum, and is calculated in Fig. 24-16 assuming four different
pump powers. The fiber parameters are taken to be the same as those in Fig. 24-15. An
important characteristic of these curves is that each one crosses the zero gain line only
once, with positive gain at longer wavelengths and negative gain at shorter wavelengths.
A similar behavior was seen in Fig. 23-12 for the gain spectrum of Yb3+. This is a univer-
sal feature of such gain spectra, valid whenever the absorption and emission cross-section
spectra are connected by the McCumber relation, Eq. (18-38). As the pump power in-
creases, the zero-crossing point moves to shorter wavelength, and approaches the pump
wavelength. However, as mentioned in connection with Yb3+, it never becomes shorter
than the pump wavelength. As a result, positive gain can only occur for signal wave-
lengths longer than the pump wavelength.

An interesting aspect of the gain spectrum curves is how they change shape and grow
in magnitude as the pump power is increased. For low pump powers, the curves appear
“distorted,” because near the transparency point, the gain spectrum is a nearly equally
weighted combination of 
em(�) and 
abs(�). At high pump powers, however, far above
the transparency point, the gain spectrum is mostly due to 
em(�), since N2 � N1. Note
also that the magnitude of the peak gain coefficient increases only slightly when the pump
power is increased from 5 mW to 100 mW. This is in accord with the saturation of gain
with pump power shown in Fig. 24-15.
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*This is due to the short lifetime of level 3, which makes N3 small and emission from this level insignificant.
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Integrated Gain

The gain coefficient gives the fractional increase in signal intensity per unit length, �I/I =
��x. To determine the total gain over a fiber of length L we must integrate,


I2

I1

= 
L

0
�(x) dx (24-21)

dI
�
I
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Figure 24-16 Gain spectrum for different values of pump power, calculated using the same para-
meters as in Fig. 24-15. Pump wavelength position is indicated by the arrow. Note that positive gain
only occurs for �s > �p.

Figure 24-15 Gain coefficient � versus pump power at 1480 nm, for signal wavelength 1550 nm.
Parameters assumed are core radius 2.5 
m, Er density 1019 ions/cm3, �2 = 10 ms, and cross-sec-
tion values from Fig. 18-10.
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where I1 and I2 are the signal intensities entering and leaving the fiber, respectively. If the
gain coefficient �(x) were independent of x, this would lead to the simple result

G = = e�L (constant gain coefficient) (24-22)

However, the gain coefficient depends on pump power, as we have just seen, and the
pump power decreases along the fiber length due to absorption. This makes the integra-
tion fairly complicated in general, and numerical integration is often needed in practice.
We showed in Eq. (23-7) how this integration can be performed in a four-level type sys-
tem, when the pump power decreases according to Beer’s law. However, Beer’s law ap-
plies only when the majority of ions are in the ground state, and this will not be true for
three-level systems because the ground state must be significantly depleted to achieve
transparency. It would seem, then, that any simple analytical expression for gain in a
three-level system is out of the question.

Fortunately, there is a considerable simplification at high pump power. The variation
of pump power with position along the fiber can be determined by applying energy con-
servation to a small length �x of fiber, as depicted in Fig. 24-17. The pump power enter-
ing this small section is Pp(x), and the pump power leaving it is Pp(x + �x). Also leaving
this small section is fluorescence, emitted at a rate

= N2(Ac�x)

where Ac is the area of the fiber core. For each of these fluorescence photons, a pump pho-
ton of energy h�p must be absorbed. The energy balance equation then becomes

Pp(x) – N2(Ac�x) = Pp(x + �x)
h�p
�
�2

1
�
�2

fluorescence photons emitted
���

unit time

I2
�
I1
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Figure 24-17 By applying energy conservation to the small fiber section shown, it is found that un-
der strong pumping conditions, the pump power Pp(x) decays linearly with position x along the fiber.
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which can be written

�Pp � Pp(x + �x) – Pp(x) = –� � �x (24-23)

where �Pp is the change in pump power in distance �x. The quantity in brackets is ap-
proximately a constant for large pump power, because in that case N2 approaches a limit-
ing value independent of Pp. For simplicity, we will consider 980 nm pumping, in which
case N2 � N at large Pp. Eq. (24-23) therefore predicts a linear decrease in pump power
with position, as indicated in Fig. 24-17. This is quite different from a Beer’s law depen-
dence, which is exponential. In Beer’s law, the pump loses a fixed fraction of its energy
per unit distance, whereas in a strongly pumped fiber, the pump loses a fixed amount of
energy per unit distance.

This linear decrease in the pump power makes it a simple matter to estimate the fiber
length Lp required to fully absorb an incident pump power Pp0. Setting �x = Lp and �Pp =
0 – Pp0 in Eq. (24-23), we obtain

Lp � (absorption length for strong pump) (24-24)

The required fiber length is thus proportional to the incident pump power, and can be
many times longer than the Beer’s law attenuation length 1/	p = 1/(N
p). Over most of
this distance, the gain coefficient � has a constant value, given by Eq. (24-20). Combining
this with Eq. (24-24), the integrated gain over a fiber of length Lp becomes

ln G � (small signal gain, strong pump) (24-25)

It is interesting to note that this result agrees precisely with the relation derived in Eq. (23-
8) for a four-level system, where the pump light was assumed to decay according to
Beer’s law. The agreement between these two expressions points to the fact that the gain
depends only on ��(x) dx, and not on the way that �(x) is distributed along the fiber.

An EDFA is pumped at 980 nm with a power of 10 mW, and amplifies signals at 1550
nm. It contains fiber with core radius 2.5 
m, Er concentration 1019 cm–3, and Er up-
per-state lifetime 10 ms. (a) Estimate the fiber length required to absorb the pump
light, and (b) estimate the gain of the amplifier in dB for this fiber length.

Solution: (a) The photon energy of the pump light is

h�p = = = 2.03 × 10–19 J

The core area is Ac = �(2.5 × 10–6)2 = 1.963 × 10–11 m2, and the emission cross section
is estimated from Fig. 18-10 to be 
em(1550 nm) � 3.2 × 10–25 m2. Putting these into
Eq. (24-24) yields

(6.63 × 10–34)(3 × 108)
���

980 × 10–9

hc
�
�p

Pp0
em�2
�

Ach�p

Pp0�2
�
NAch�p

N2Ach�p
�

�2
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Lp � = 2.5 m

(b) The maximum gain coefficient is �max = (1025 m–3)(3.2 × 10–25 m2) = 3.2 m–1, and
the gain is, therefore,

G � e(3.2 m–1)(2.5 m) � 3 × 103

or

10 log10 G � 35 dB

The efficiency of an optical amplifier is often given in terms of the dB gain per mW of
absorbed pump power. In this example, the gain efficiency is 35/10 = 3.5 dB/mW, a typi-
cal value for an EDFA. With special attention to design, such as a small core and Er con-
finement to the center of the core where the pump intensity is highest, values at high as �
10 dB/mW can be achieved.

Gain Saturation

So far, we have assumed that the gain is determined by the pump intensity Ip, but not by
the signal intensity I. This amounts to the small-signal limit, where the stimulated emis-
sion rates due to I are much smaller than the pump and spontaneous emission rates. As I
becomes larger, stimulated emission reduces the upper-state population, which decreases
the gain. This is termed gain saturation, and was discussed in Section 19-2 for spatially
uniform pumping. Fig. 19-9 shows how the gain G is reduced as the signal intensity in-
creases in relation to the signal saturation intensity Is.

A similar calculation for the general case of nonuniform pumping is beyond the scope
of this book, but qualitatively the same behavior is observed. Figure 24-18 shows gain
measurements on an erbium-doped fiber with core diameter of 5.5 
m, pumped at 975
nm with powers ranging from 18 to 33 mW. At low signal levels, the gain is constant (in-
dependent of signal power), but at higher signal levels the gain saturates. The degree of
saturation for a given signal level depends on the pump power. As the pump power in-
creases, the signal output power at which saturation starts to occur also increases.

This behavior can be easily understood in terms of energy conservation. The optical
amplifier can be thought of, essentially, as a device for converting pump power into sig-
nal power. The conversion efficiency must be less than the quantum limit � = h�/h�p giv-
en in Eq. (19-23). The data in Fig. 24-18 are consistent with this, with the increase in sig-
nal power always less than the incident pump power.

Gain Flattening

An optical amplifier is often used in combination with wavelength division multiplexing
(WDM), to increase the span length of high-data-density telecommunications links. If
there is a significant gain difference between wavelength channels, then after several am-
plifying steps there will be much more optical power in some channels than in others.
This complicates system design and results in poor system performance. It is therefore de-

(10–2 W)(10–2 s)
�����
(1025 m–3)(1.963 × 10–11 m2)(2.03 × 10–19 J)
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sirable that the gain be as “flat” as possible, “flat” here meaning independent of wave-
length. The gain spectrum of Er in a typical silicate glass is not at all flat, however, as can
be seen from Fig. 18-10. Therefore, special materials or methods need to be employed to
make the gain curve more uniform, a process referred to as gain flattening.

One way to make the EDFA gain spectrum flatter is to use a different glass host. High-
aluminum-content silica glass and fluoride glass have both been found to have a fairly
smooth gain profile. The Al-silica glass is more practical, since it is more compatible with
conventional silica glass fiber. Another approach is to use an optical filter that is designed
to attenuate the spectral regions of high gain. This works quite well, although it lowers the
overall amplifier efficiency. One type of spectral filter is the long-period fiber grating,
which is similar to the fiber Bragg grating except that the grating period � is about 100
times longer. This type of fiber grating couples light at certain wavelengths from guided
core modes into cladding modes, resulting in selective spectral attenuation. Still another
method for spectral flattening is to operate the amplifier at less than full population inver-
sion. As seen in Fig. 24-16, the gain curve is flatter at lower pump power, where the in-
version ratio N2/N1 is lower.

In practice, a number of these approaches are often combined. For example, Fig. 24-19
shows the gain spectrum of a two-stage EDFA using high-aluminum Al-silica fiber. One
stage is pumped at 1480 nm and the other at 980 nm, so the degree of inversion can be
controlled. Spectral filtering with a long-period fiber grating is added between the stages,
which results in a gain that is flat to within 1 dB over a spectral range of 40 nm.

Other Optical Amplifiers

We saw in Fig. 5-4 that the wavelength range for low fiber loss (	 < 1 dB/km) extends
from about 1200 to 1700 nm. The EDFA normally operates over only a portion of this
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Figure 24-18 Measured gain at 1532 nm in erbium-doped fiber amplifier with 5.5 
m diameter
core, pumped at 975 nm with powers ranging from 18 to 33 mW. Gain saturation occurs at higher
signal power when higher pump power is used. (After Lindgard et al. 1990.)
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range, from 1530 to 1565 nm, and this has come to be called the “C band” (C for conven-
tional). The gain of Er-doped glass extends out to longer wavelengths as well (see Fig.
18-10), so the EDFA can also be used in the range 1565–1625 nm, the so-called “L band”
(L for long). The gain of Er3+ is smaller here, however, and it is difficult to design a single
amplifier that works well in both bands. If both C and L bands are needed for WDM, the
wavelengths are separated with a coarse wavelength filter into two groups, one with C
band wavelengths and one with L band wavelengths. Each group is then amplified sepa-
rately with an EDFA optimized for that band.

To promote consistency in nomenclature, the ITU (International Telecommunications
Union) has proposed a naming scheme for other bands in the 1200–1700 nm range. Fig-
ure 24-20 shows the spectral range for each band, with the “O band” (O for original)*
from 1260 to 1360 nm, the “E band” (E for extended) from 1360 to 1460 nm, the “S
band” (S for short) from 1460 to 1530 nm, the “C band” from 1530 to 1565 nm, the “L
band” from 1565 to 1625 nm, and the “U band” (U for ultralong) from 1625 to 1675 nm.
Amplifiers for the bands other than C and L are not currently in widespread use, although
they are under development. In this section, we take a look at possible amplifiers for these
other bands, as well as some competing technologies for amplification in the C and L
bands.

Other Rare Earth Dopants

Although the third telecommunications window at 1.5 
m is now the clear choice for the
lowest-possible attenuation loss, much of the fiber that is currently installed is so-called
“legacy fiber,” designed with operation at 1.3 
m in mind. In fact, the 1.3 
m (“O”) band
is still in common use, and it has been a long-standing goal to find a doped-fiber amplifi-
er for this band that works as well as the EDFA does for the C band.
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Figure 24-19 Measured gain spectrum in a two-stage EDFA using high-aluminum silica fiber, with
spectral filtering by a long-period fiber grating to flatten the gain. (After Wysocki et al. 1997, © 1997
IEEE.)

*This was the “original” band for long-haul telecommunications, but it was actually the second telecommunica-
tions band, the first being at 850 nm.

c24.qxd  2/22/2006  3:51 PM  Page 481



Unfortunately, nature has not been as kind to us here. The energy levels of some rele-
vant rare earth dompants are shown in Fig. 23-7. The 4F3/2 � 4I13/2 transition of Nd3+ was
considered at first, but it has the problem that signal photons are absorbed from the 4F3/2

level, promoting the Nd3+ ion to a higher level. This process is termed excited-state ab-
sorption, or ESA, and it prevents the gain at certain wavelengths from ever being positive.
The ESA can be reduced somewhat by using a fluoride glass host, but there is still anoth-
er problem, that of competing strong emission to the 4I11/2 level (the well-known 1.06 
m
Nd3+ transition). As a result, Nd3+ has lost favor as a 1.3 
m amplifier.

A more promising approach is the praseodymium-doped fiber amplifier (PDFA),
which operates on the 1G4 � 3H5 transition of Pr3+ at ~ 1.3 
m. Unlike Nd3+, there are no
stronger competing emissions from the upper level, and no significant ESA. However,
Pr3+ does have the problem that in a silica glass host, the upper level 1G4 is strongly
quenched by nonradiative relaxation to the next-lowest level. The nonradiative quenching
can be reduced by using a fluoride glass host, but the resulting amplifier efficiencies (typ-
ically ~ 0.15 dB/mW) are still much lower than for an EDFA. Commercial PDFAs are
available, but have not found widespread use.

As the need for additional bandwidth in the 1.5 
m low-loss window has grown, there
has been increasing interest in optical amplifiers for the S band. Most prominant among
these is the thulium-doped fiber amplifier (TDFA), which operates on the 3H4 � 3F4 tran-
sition of Tm3+. Nonradiative quenching of the upper level by nonradiative relaxation is a
problem for Tm3+, as it is for Pr3+, and this requires the use of a nonsilica glass host such
as fluoride glass or heavy-metal oxide glass. The amplifying transition has the additional
complication that the lower-level lifetime is significantly longer than the upper-level life-
time. This is not a good feature for any laser or amplifier transition, because it tends to
prevent a steady-state population inversion. One solution for the TDFA is to pump simul-
taneously with two different pump wavelengths (the “dual-pumping” scheme). The first
pump puts population into the 3H4 by ground-state absorption, while the second pump
takes population out of the 3F4 by excited-state absorption. Fiber amplifiers with efficien-
cies of ~ 0.1–0.2 dB/mW have been demonstrated in this way, covering the spectral range
1460–1520 nm. The TDFA has promise, but is still in the developmental stage.

There has not been much interest to date in developing optical amplifiers for the E
band, because of the strong absorption at ~1400 nm in conventional optical fibers. This
absorption is due to vibrations of the OH molecule, a ubiquitous impurity in glass that
comes from water contamination during the fiber manufacturing process. Methods are
now available, however, to significantly reduce this “water peak” in telecommunications-
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Figure 24-20 Proposed ITU nomenclature for the telecommunications bands. Also shown are the
gain regions for three doped fiber amplifiers. Fiber Raman amplifiers can operate over the entire
range.
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grade fiber. For newly installed fiber systems, it might, therefore, be advantageous to
have an amplifier in the E band. But the number of fiber links that contain this new fiber
is likely to remain small for some time, and in practice the E band will likely continue to
be avoided for long-haul systems.

Semiconductor Amplifiers

Since any laser can be turned into an amplifier by removing the optical feedback ele-
ments, it is natural to consider the use of semiconductor laser diodes, which are already
quite well developed. Indeed, there are several advantages to this approach. The gain co-
efficient is very high, which makes these amplifiers compact and compatible with inte-
grated optics. In fact, the gain is so high that lasing can occur due to just the Fresnel re-
flections from the end facets of the semiconductor chip. For an optical amplifier, this
feedback must be reduced by antireflection coating or beveling the ends. Another advan-
tage is that the amplifier gain can be modulated or switched electrically, by varying the
drive current. This again makes them highly compatible with integrated optics. Finally,
and perhaps most importantly, the wavelength of operation depends on the bandgap of the
semiconductor, and this can be chosen for a particular application. By varying the semi-
conductor composition, virtually the entire range from 1250 to 1675 nm can be covered.
This is in distinct contrast to doped fiber amplifiers, which rely on a few rare-earth transi-
tions at particular wavelengths.

There are several drawbacks to the use of semiconductor optical amplifiers, however.
Some problems arise from their planar waveguide geometry, which is quite different from
the cylindrical geometry of fibers. For example, the coupling of light from fiber into
waveguide is inefficient, due to the small (usually <1 
m) thickness of the semiconductor
waveguide. Another consequence of the semiconductor’s rectangular geometry is a strong
polarization sensitivity, which makes the gain different for different polarizations. Optical
fiber amplifiers, in contrast, are mostly polarization insensitive. Semiconductor amplifiers
also tend to introduce more noise into the signal beam than optical fiber amplifiers.

There is one feature of the semiconductor amplifier that is both a blessing and a curse.
Because the upper-state lifetime can be short (subnanosecond), it is possible to rapidly
switch the gain, a distinct advantage in optical processing applications. However, this fast
time response becomes a disadvantage in WDM applications, where more than one wave-
length is being amplified in the same device. A strong signal in one wavelength channel
causes the gain to saturate, and this changes the amplification in a second wavelength
channel. Because of the fast response time, the time-dependent intensity (signal informa-
tion) of one channel becomes impressed on the signal in another channel. This is known
as cross-gain modulation, and is generally undesirable.

A similar interaction between signals occurs in an EDFA, but the Er3+ ion response
time is on the order of milliseconds, rather than nanoseconds. This slow response time is a
great benefit, because it significantly attenuates gain fluctuations on the time scale of the
signal bit rate. Even though the average gain may change slowly, as the amount of signal
power changes, there is little cross talk between channels.

The semiconductor optical amplifier is no match for the EDFA as a power booster in
long-haul systems, but it does have applications in optical processing and switching. One
example is frequency conversion, in which a digital waveform at one wavelength is used
to generate a duplicate digital waveform at another wavelength. This is essentially what
happens in the cross-gain modulation process described above, and is one case in which it
can be considered an advantage. Frequency conversion can also occur via nonlinear four-
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wave mixing processes in the semiconductor, which are especially efficient because of
the large nonlinear �3 coefficients in semiconductors.

Fiber Raman Amplifiers

All the optical amplifiers and lasers that we have discussed so far are based on stimu-
lated emission, in which an atom in an excited state is stimulated to emit a fluorescence
photon into a light mode that already contains one or more photons. The enhancement
of the emission rate into this mode is proportional to the number of photons in the
mode, according to Eq. (18-14). We now consider an entirely different type of amplifi-
er, in which it is a scattering process that is stimulated, rather than a fluorescence
process.

Fig. 24-21 illustrates how this stimulated scattering works for the case of Raman
scattering, which was discussed previously in Section 5-2.* In Raman (Stokes) scatter-
ing, light of frequency � interacts with molecules having vibrational frequency fv, and
this creates scattered light of a lower frequency ��. The difference between incident and
scattered light frequencies, � – �� � ��R, is known as the Raman frequency shift.
Spontaneous Raman scattering occurs under weak pumping conditions, when the scat-
tered light intensity is small enough that the number of scattered photons per mode is �
1, on average. When the incident pump intensity becomes sufficiently large, there will
be more than one scattered photon per mode, and the scattering process will be en-
hanced. This is termed stimulated Raman scattering (SRS), and is the physical basis for
the fiber Raman amplifier.

The gain coefficient in a traditional optical amplifier is proportional to the Einstein A
coefficient, which is the rate at which fluorescence is spontaneously emitted from an ex-
cited state. In a similar way, the gain coefficient in a Raman amplifier is proportional to
the rate at which pump photons are spontaneously scattered. This scattering rate is pro-
portional to the pump intensity Ip, because when more photons come in (higher intensi-
ty), more photons are scattered. It also depends on the frequency shift ��R, because en-
ergy conservation requires ��R = fv, and there is only a limited range of vibrational
frequencies available in a given material. The gain coefficient for SRS can therefore be
expressed as

� = gRIp (Raman gain coefficient) (24-26)

where gR is the Raman gain function.
The dependence of gR on the frequency shift ��R is shown in Fig. 24-22 for silica

glass. The peak gain occurs at ��R � 13 THz, and the width of the main peak (FWHM) is
� 8 THz. At a wavelength of 1500 nm, this corresponds to a gain bandwidth of 60 nm,
larger than that of the EDFA C band. A key advantage of the Raman amplifier is that the
range of signal wavelengths �s that can be amplified is not restricted by any dopant ener-
gy levels, as in the EDFA, but instead depends only on the pump wavelength �p. To pro-
vide amplification in a different spectral region, it is only necessary to select a different
pump wavelength, and the entire 1.2–1.7 
m range can be covered in this way. The fiber
Raman laser can also be combined with an EDFA to create a single hybrid amplifier with
a very large gain bandwidth. Such a device can be used to increase the maximum number
of channels in WDM applications.
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*Brillouin scattering can also be stimulated, but we do not discuss this here.
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Figure 24-21 (a) In stimulated Raman scattering, a signal beam of frequency �s propagating along
a particular direction is amplified by the large number of pump photons that are spontaneously scat-
tered in this same direction. (b) In a fiber, the pump and signal beams propagate in the same direc-
tion, and the signal is amplified while extracting energy from the pump.

Figure 24-22 Raman gain function gR in silica glass versus Raman frequency shift ��R, normalized
to unity at the gain peak. (After Stolen et al. 1989.)
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The value of the Raman gain function in silica glass, at the peak of the gain curve, is
given by

gR,max � �units of 	 (24-27)

where the pump wavelength �p is expressed in units of 
m. If the pump intensity is ap-
proximately uniform over a length L of fiber, the total gain can be written as

G � = e�L = egRIpL (Raman gain) (24-28)

This equation, along with Eq. (24-27) and Fig. 24-22, allows us to make an estimate of
the pump power required to achieve a particular value of gain in a fiber Raman amplifier.

A fiber Raman amplifier is to be designed that will amplify light at 1550  nm with 30
dB of gain. It will use 1 km of single-mode silica fiber with a mode field diameter of
2w = 10 
m. Determine (a) the required pump wavelength, and (b) the required pump
power.

Solution: (a) The optical frequency of the signal light to be amplified is

�s = = = 1.935 × 1014 Hz = 193.5 THz

The Raman frequency shift for maximum gain is ��R = 13 THz, and therefore the re-
quired pump frequency is

�p = �s + ��R = 193.5 + 13 = 206.5 THz

This corresponds to a pump wavelength

�p = = 1.452 × 10–6 m = 1452 nm

(b) A gain of 30 dB corresponds to G = 103, so

103 = egRIpL = egRPpL/Ap

where Pp is the pump power and Ap is the effective area of the pump, taken to be Ap =
� (5 × 10–6)2 = 7.85 × 10–11 m2. Solving this for pump power gives

Pp =

The peak value of gR for the 1452 nm pump wavelength is

gR,max = = 6.89 × 10–14 m/W
10–13

�
1.452

Ap ln(103)
��

gRL

3 × 108

��
2.065 × 1014

3 × 108

��
1550 × 10–9

c
�
�s

Psig(out)
�
Psig(in)

m
�
W

10–13

�
�p
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and the pump power is then evaluated to be

Pp =�
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The large value of pump power calculated in this example illustrates the primary dis-
advantage of the fiber Raman amplifier. The gain efficiency is 30/7900 = 0.0038 dB/mW,
three orders of magnitude lower than the efficiency of an EDFA. The required pump pow-
er can be decreased by using specially developed fiber with small mode field diameter,
but it is preferable to utilize existing fiber. A longer fiber length will also decrease the re-
quired power, but this is ultimately limited by fiber attenuation. In practice, pump powers
of ~ 1 W are required. This is not quite the obstacle that it once was, due to recent devel-
opments in high-power diode and fiber laser sources.

24-5. FREE-SPACE OPTICS

In this book, we have considered optical communications to be practically synonymous
with optical fiber communications. However, an optical signal can be transmitted through
free space as well as through a fiber, and, in fact, Alexander Graham Bell’s original pro-
posal for the “photophone” envisioned just such a system. Optical technology was not
sufficiently advanced in Bell’s day, however, and his system never became practical. To-
day, the same photonic devices that are used for optical fiber communications can be
adapted for use in what has come to be called free-space optics (FSO) or optical wireless.
FSO has long been of interest to the military, because the directional nature of a collimat-
ed optical beam makes it practically invulnerable to interception. Radio waves, in con-
trast, spread out rapidly by diffraction, and are easier to intercept.

More recently, there has been growing interest in civilian applications as well, but pri-
marily for another reason. The motivation comes from a very practical issue: how to con-
nect a local LAN in a dense urban environment with the high-speed MAN or WAN sys-
tems that pass close by (but not into) the building containing the LAN. Typically the
“high-speed” connection to a building’s LAN is a T1 line operating at � 1.5 Mb/s, and
this does not allow the LAN to fully exploit the much higher capacity of metro and wide-
area networks. The connection could be made with fiber, of course, but digging up side-
walks or city streets to lay new fiber is expensive.

One solution to this so-called “last mile” bottleneck problem is the use of FSO, which
does not require the laying of any new fiber. Installation is easy, and the main require-
ment is that there be a direct line of sight between the optical transmitter and receiver. In
an urban environment, the ideal location for these would be on upper floors or the roof of
a high-rise building. There are added benefits of FSO, as well. In contrast to conventional
wireless, the connection is quite secure, as noted above. Data rates can be as high as for
fiber, in the Gb/s range. Furthermore, there is no licensing requirement since the FCC
does not regulate the optical spectrum.

In spite of these advantages, there are some drawbacks to FSO. One obvious issue is
reduced atmospheric transmission in bad weather. Rain and snow are not as much of a
factor as might be expected, but fog can be a real problem. The optical signal can also be
temporarily lost due to obstructions, such as a bird flying through the beam. Even in good
weather with no obstructions, there are fluctuations in the beam direction (beam “wan-
der”) due to random variations in the atmosphere’s refractive index. The same phenome-
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non is responsible for the twinkling of stars in the nighttime sky. In FSO this is referred to
as scintillation, and it adds noise to the detected signal. A further problem is that the
transmitter and receiver are not really precisely fixed in location, because the top of a tall
building moves slightly under wind loading, a phenomenon termed building sway. The
lateral motion of the top of a building is typically in the range H/200 to H/800, where H is
the building height. Taking H = 100 m for a 25 story building, we can estimate the lateral
motion to be � H/400 = 100/400 = 0.25 m, or 25 cm.

Problems such as building sway, scintillation, and beam obstruction can be made less
severe by expanding the optical beam diameter. This is accomplished using a lens to col-
limate the beam, as shown in Fig. 24-23. Typical initial beam diameters are in the ~ 20 cm
range. If the beam were diffraction limited, we could use Eqs. (17-4) and (17-5) to esti-
mate the Rayleigh range and beam divergence. Taking a beam waist of w0 = 10 cm, we
find

z0 = � 20 km

and

� = � 5 × 10–6

This suggests that the FSO beam could propagate some 20 km before spreading out sig-
nificantly. However, maximum transmission distances in FSO systems are more on the
order of ~ 2 km, and such a highly coherent beam is generally not necessary. Typical
beam divergence in practice is � 10–4 rad, with the beam diameter expanding to ~ 1 m at
a distance of 2 km. Figure 24-24 shows a rooftop FSO system in operation in the skies
over Vancouver, BC, Canada.

1.55 × 10–6

��
�(0.1)

�(0.1)2

��
1.55 × 10–6
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Figure 24-23 In free-space optics, light from a laser diode transmitter is collected by a lens and
collimated into a beam of initial diameter DT. The beam diverges with half-angle �, and after propa-
gating a distance L has diameter DR. A portion of the broadened beam is collected by the receiver
lens and focused onto a photodetector.
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Beam attenuation due to fog is still present even with an expanded beam. However, if
the system is designed with a sufficiently high margin, there will still be adequate power
at the receiver for reliable detection, even with dense fog. Redundant transmission path-
ways in the system can also be used, so that if one pathway becomes blocked, there are
other alternative pathways that can be used.

FSO is also possible in space-based applications, where it has some advantages over
radio frequency (RF) communications. Because optical frequencies are much higher than
radio frequencies, data can be sent much more rapidly. Also, the antenna size needed for
good collimation is much smaller for optical frequencies, an important issue for space-
craft, for which reducing the size and weight of components is a high priority. The nar-
rower and more directional nature of an optical beam does mean, however, that sophisti-
cated pointing-control systems are needed. FSO in space has real potential, but it is not
yet clear how practical it will be.

PROBLEMS

24.1 An analog signal can be more faithfully reproduced if the sampled voltage is
placed into one of 4096 “bins,” rather than one of 256. (a) How many bits are re-
quired for each sample in this case? (b) What would be the corresponding bit rate
required to transmit a voice signal of bandwidth 4 kHz?

24.2 In a conventional television tube, the image is formed by an electron beam that
makes a series of 525 horizontal sweeps across the tube face. During each sweep,
the beam intensity is modulated in time to create a pattern of dots with varying in-
tensity. The spacing between these dots corresponds to the horizontal resolution of
the image. The traditional analog-broadcast TV image contains 330 resolvable dots
per horizontal line, and the entire pattern of 525 lines (one frame) is repeated at a
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Figure 24-24 A rooftop, free-space optics system operates in the skies over Vancouver, BC, Cana-
da. (Source: fSONA Systems.) 
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rate of 30 frames per second. (a) Estimate the bandwidth required for an analog TV
signal, by taking the reciprical of the time between adjacent dots in a horizontal
scan. (b) If this analog waveform is sampled at the NyQuist rate, at 8-bit (256 bin)
resolution, what bit rate is required to send one video signal? (c) Using the bit rate
calculated in part b, determine the number of separate video signals that can be
multiplexed into one wavelength channel operating at the OC-48 rate. (d) Repeat
parts a–c for an HDTV picture with 720 lines and 1280 resolvable dots per line.
Note: the actual bit rate needed in practice is considerably less than you have cal-
culated here, because there is much redundancy in adjacent frames, and this allows
the data to be compressed.

24.3 The channel spacing in a DWDM system is 100 GHz. Calculate the corresponding
wavelength spacing at each end of the C band (1530 and 1565 nm).

24.4 (a) If the channel spacing in a DWDM system is 50 GHz, and each channel oper-
ates at the OC-192 standard rate, determine the spectral efficiency. (b) Another
communications system has a channel spacing of 10 GHz and maximum spectral
efficiency of 0.4 (bits/s)/Hz. Which European/International standard rate should be
used if the highest data rate is desired?

24.5 The L band extends from 1565 to 1625 nm. Assuming that the channels within this
band transmit data with a spectral efficiency of 0.3 (bits/s)/Hz, determine the max-
imum total data rate that is possible.

24.6 (a) If the maximum tolerable bit error rate is 10–12, determine the minimum aver-
age number of photons per bit for a quantum-limited receiver. (b) How much does
this increase the required signal power compared with the usual bit error rate crite-
rion of 10–9? Express your answer as a ratio and also in terms of dB.

24.7 A receiver has sensitivity –60 dBm at a bit rate of 100 Mb/s. Determine the sensi-
tivity of this same receiver at a bit rate of 400 Mb/s.

24.8 A LAN fiber optic link uses an LED source with wavelength 670 nm, modulated at
20 Mb/s. The multimode fiber has a loss of 6 dB/km at this wavelength, and an av-
erage power of 0.05 mW is coupled into the fiber. The receiver is a PIN photodiode
requiring 5000 photons/bit on average for an adequate BER. The length of the fiber
is 3.5 km, and the total loss from all splices and connectors is 5 dB. (a) Determine
the system margin. Is this likely to be adequate? (b) Repeat this analysis if the LED
is modulated at 100 Mb/s.

24.9 A long-haul fiber optic link uses a diode laser source operating at 1550 nm, which
couples 0.8 mW into the core of a single-mode fiber. The receiver is an APD re-
quiring 500 photons/bit. The fiber has an attenuation of 0.25 dB/km at this wave-
length, and splice and connector losses in the system add up to 4 dB. The fiber
length is 188 km, and the system operates at 2.5 Gb/s. If the system margin is to be
8 dB, determine the required gain of an optical amplifier that is inserted in the link.
Express your answer in dB and as an amplification ratio.

24.10 For the fiber link of the previous problem, assume that the chromatic dispersion is
15 ps/(nm · km). Determine the spectral width of the laser source required so that
the pulse spreading by dispersion is tolerable.

24.11 Eq. (24-17) gives the relation between the maximum fiber length and bit rate when
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limited by chromatic dispersion in single-mode fiber. The lower limit on the wave-
length spread �� is determined by the Fourier transform of the modulated wave-
form, which is termed the modulation bandwidth. (a) Show that at a bit rate BR, the
maximum fiber length in this case is given by

Lmax �

(b) Use this to calculate the maximum fiber length for a system operating at a
wavelength of 1550 nm and bit rate of 10 Gb/s, when the dispersion is 15 ps/(nm ·
km). (c) Repeat the calculation when the bit rate is 40 Gb/s.

24.12 Consider the three lowest levels of Er3+ shown in Fig. 24-14. Assume that level 3
decays primarily to level 2 by rapid nonradiative relaxation. (a) Write the rate
equations for levels 2 and 3 in the case of 980 nm pumping, and show that the pop-
ulation of level 2 is approximately given by

N2 � N

where N is the total number of Er ions per unit volume, and

Wp =

(b) Using this result, show that nearly complete population inversion can be ob-
tained on the 2 � 1 transition for sufficiently large pump power.

24.13 Consider the Er doped fiber amplifier that is modeled in Fig. 24-15, but now as-
sume it is pumped at 980 nm where the absorption cross section is 3 × 10–21 cm2.
(a) Determine the pump power for signal transparency in this case. (b) Develop an
expression for the gain coefficient as a function of pump power, and plot this on a
graph in the manner of Fig. 24-15. (c) Explain the differences between the two
graphs qualitatively.

24.14 An Er-doped fiber has length 20 cm, core radius 2.5 
m, and doping concentration
2 × 1019 cm–3. The fiber is pumped at 980 nm, where the absorption cross section is
3 × 10–21 cm2. (a) For weak pumping (N2 � N), determine the fraction of pump
light that is absorbed in the fiber. (b) Using the results of Problem 24.12, determine
the incident pump power that will result in an excited state population N2 = 0.95 N
at the beginning of the fiber. (c) For the pumping rate of part b, determine the frac-
tion of pump light absorbed in the fiber. (d) At the pumping rate of part b, what
fiber length would be required to absorb most of the pump light?

24.15 An EDFA has length 1.2 m, doping level 1.5 × 1019 cm–3, and core radius 2.5 
m.
It is pumped at 980 nm with a power such that most of the ions in the fiber are
highly excited, and also most of the pump light is absorbed in the fiber. Determine
the small-signal gain in this fiber for signal light of wavelength 1550 nm, where
the stimulated emission cross section is 3.2 × 10–21 cm2. Give the gain in dB.

24.16 One potential problem with using fiber Raman amplifiers is that the strong pump

Pp
p
�
Ach�p

Wp�2
�
1 + Wp�2

c
��
2Dc�

2BR2
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light at �p required for amplification at one signal wavelength �s may interfere with
a signal at another wavelength �s� = �p. (a) Assuming silica fiber with the gain
spectrum shown in Fig. 24-22, is there a range of pump wavelengths that can be
used to amplify the entire C and L bands without any such interference? (b) What
if the entire S band is to be amplified as well?

24.17 A 2.5 km length of silica fiber carries signal light at a wavelength of 1310 nm, with
mode field diameter 6 
m. The light is amplified by stimulated Raman scattering,
pumping with 500 mW at the appropriate wavelength. (a) Determine the pump
wavelength that will most efficiently amplify the 1310 nm light. (b) Calculate the
gain of this fiber amplifier in dB.

24.18 A free-space optics system is designed for interplanetary communications. It uses a
10 W beam of 1 
m light with 50 cm initial beam radius (Gaussian beam waist).
The signal is modulated at a rate 1 Mb/s, and after propagating as a Gaussian beam
through space it is detected by an APD receiver that requires 500 photons per bit
on average for reliable detection. The mirror that collects the light and focuses it on
the detector has an area of 1 m2. Calculate the maximum allowed distance between
transmitter and receiver, and compare this to the earth–sun distance (1.5 × 1011 m).
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SOLID ANGLE

The solid angle � is the 2-D analog of the conventional 1-D angle �, as illustrated in Fig.
A-1. Just as the angle � is defined as the distance along a circle divided by the radius of
that circle, so the solid angle � is analogously defined as the area on the surface of a
sphere divided by the radius squared of that sphere. The units for � and � are radians (r)
and steradians (sr), respectively, although it should be noted that both of these measures
of angle have no actual dimensions. Since the total surface area of a sphere is 4�R2, the
total solid angle in one sphere is 4� sr.

For situations with symmetry about an axis (such as an optical fiber or the normal to a
plane surface), the two types of angles can be easily related. Figure A-2 shows a differen-
tial area dA on the surface of a sphere, in the form of a thin ring centered about the sym-
metry axis. This ring can be thought of as the intersection of the spherical surface with
two cones, one of half-angle �, and other of half-angle � + d�. The width of this ring is R
d�, and the radius of the ring is R sin �. The differential solid angle is then

d� = �
d
R
A
2
�

=

= 2� sin � d� (A-1)

The solid angle inside a cone of half-angle � can be determined by integrating

� = �d� = ��

0
2� sin � d�

= –2� cos � |�0

= 2� (1 – cos �) (A-2)

(2�R sin �)(R d�)
��

R2
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It is often of interest to consider the small-angle approximation, where � � 1. In this
limit, cos � � 1 – �2/2, so

� � ��2 (cone with small half-angle �) (A-3)

BRIGHTNESS THEOREM

The solid angle is a useful concept in describing the degree of directionality for light
emitted by an object. The brightness of a source of light quantifies this directionality, and
is defined as the optical power emitted per unit solid angle, per unit area of the emitting

496 Appendix A Solid Angle and the Brightness Theorem

Figure A-1 The solid angle � is defined analogously to the conventional angle �, using the fraction
of a sphere’s area rather than the fraction of a circle’s circumference.

Figure A-2 Geometry for relating differential solid angle d� to the differential change in cone angle
d� around an axis of symmetry.
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surface. The SI units are W/(m2 sr). Although the proper SI term for this quantity is actu-
ally radiance (denoted by L), the term brightness is still commonly used in photonics and
laser work. Since the word “brightness” conveys a more intuitive understanding of its
meaning than the technical term radiance, we will use it throughout this book. 

A source has a high brightness when it emits light in a narrow range of angles (small
solid angle) from a small surface area. Lasers have a much higher brightness than conven-
tional light sources, because they are (or can be made to be) highly directional. One might
think that the brightness of a conventional source could be improved by simply focusing
with a lens, to create an image source with smaller surface area. However, a lens also
changes the angular distribution of the light according to geometrical optics, and this
tends to counteract the apparent increase in brightness.

To see how this works, consider a square light source of side h1 being transformed by a
lens into an image of side h2, as shown in Fig. A-3. This image can be thought of as a new
source of light, with a different surface area and solid angle for emission. The brightness
B1 and B2 of the original source and its image are given by

B1 = = 

B2 = = (A-4)

where � is the maximum angle from the optical axis for which light is collected by the
lens, and we have made the usual paraxial approximation of small angle, � � 1. From
Chapter 2, we have

=

and from the geometry of Fig. A-3 we have

= �1s1 = �2s2
D
�
2

h2
�
s2

h1
�
s1

P
�
h2

2��2
2

P
�
A2�2

P
�
h1

2��1
2

P
�
A1�1
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Figure A-3 A lens forms a light source image of size h2 from a light source object of size h1.
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Combining the above two equations yields

h1�1 = h2�2

which when substituted into Eq. (A-4) gives

B1 = B2 (brightness theorem) (A-5)

The brightness of the image is seen to be identical with that of the original object, inde-
pendent of the degree of focusing by the lens. This is an example of a general principle
known as the brightness theorem, which states that the brightness of a light source cannot
be increased with passive optical components such as lenses, mirrors, or waveguides. A
laser or optical amplifier is considered an “active” optical component, and the brightness
theorem does not apply while light is being modified by the amplifying medium. It does
apply again, however, once laser light has been generated and is freely propagating
through a passive optical system. 
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At several points in this book, we encounter the so-called uncertainty relation, which re-
lates the minimum uncertainties in time and frequency, or in position and wavelength. A
complete description of this involves the Fourier transform, the mathematical treatment
of which is beyond the scope of this book. However, we can obtain an intuitive under-
standing of this concept by considering qualitatively what happens when we add together
sinusoidal waves of different frequencies. We take this approach here, and also obtain an
exact expression relating the two uncertainties for one important special case. 

FOURIER SYNTHESIS

The fundamental idea of Fourier synthesis is that any arbitrary waveform can be con-
structed by adding together an infinite number of pure sinusoidal waves. This concept can
be applied to either the time dependence or the position dependence of the wave, but to be
concrete we will emphasize here the time dependence. When the waveform is periodic in
time, it can be written as a Fourier series,

y(t) = �
n

An sin(n2��0t) (Fourier series) (B-1)

where �0 = 1/T, T is the repetition time of the waveform, and n is an integer ranging from
0 to �. In general, there are also cos(n2��0t) terms, but for this discussion we can neglect
them. The sum is over a set of discrete frequencies, including the fundamental at �0 and
higher harmonics at n�0. For example, a square wave can be constructed by choosing co-
efficients An = 1/n for all odd values of n, and An = 0 for all even values. Figure B-1 shows
the calculated y(t) using the four lowest-frequency terms, along with the component
waves that are added.

Even with this small number of terms, the basic square wave shape is evident in the
constructed waveform. A higher number of terms would more faithfully reproduce the
square wave, with the sharpness of the edges (the rise time) depending on the highest-
frequency component.

When the waveform is not repetitive, a series of discrete frequencies cannot be used to
construct it. This can be understood by considering a nonrepetitive waveform to be a
repetitive waveform with T � �, so that �0 � 0. Since �0 is the spacing between frequen-
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cy components, this means that a continuous distribution of frequencies is needed. The
synthesis is then described by the Fourier transform,

y(t) = �A�(�) sin(2��t) d� (Fourier transform) (B-2)

where A�(�)is an amplitude per unit frequency (a distribution function). The product A�(�)
d� plays the same role here that the coefficients An do in the Fourier series. 

UNCERTAINTY RELATION

To see how the uncertainty relation follows from the Fourier transform, consider the form
for A�(�) shown in Fig. B-2. This “flat-top” frequency distribution has a constant value
A�(�) = A0 over the range �0 – ��/2 < � < �0 + ��/2, and A�(�) = 0 elsewhere. The spectral
width �� might correspond to the bandwidth in a communications system, for example.
The waveform y(t) that results from this frequency distribution is also shown in Fig. B-2,
calculated according to Eq. (B-2). The time dependence consists of a main pulse, sur-
rounded by a series of smaller subsidiary pulses. If the pulse width �t is defined as the full
width at half maximum (FWHM) of the main peak, we find that �t � 1.3/��. This result
contains the essential feature of the uncertainty relation: To create a pulse of shorter du-
ration, a greater bandwidth is required. 

The exact relationship between �� and �t depends on the shape of the frequency dis-
tribution function A�(�), and also on the way that the pulse width is defined. If the edges
of A�(�) vary more smoothly than the abrupt steps shown in Fig. B-2, the side peaks are
suppressed. A Gaussian function for A�(�) has the special property that its Fourier trans-
form is also a Gaussian function in time. The pulse width can be defined by the FWHM,
the half width at half maximum (HWHM), or by the 1/e or 1/e2 points. We will not gener-
ally be concerned with these details in this book, and will write the uncertainty relation as

���t ~ 1 (uncertainty relation) (B-3)
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Figure B-1 Fourier synthesis of square wave from the four lowest-frequency terms of frequency
n�0. The top four waveforms are added together to give the bottom waveform.
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We have developed the uncertainty relation by simply considering the mathematics of
adding waves. The results then apply to any situation that is described by a wave. This in-
cludes quantum mechanics, in which material objects with energy E have an associated
wave, of frequency � = E/h. Multiplying Eq. (B-3) by Planck’s constant h, we obtain the
Heisenberg uncertainty principle for energy and time,

�E�t ~ h (Heisenberg uncertainty principle) (B-4)

This states that if measurements are made during a time interval �t, the energy of a sys-
tem will be uncertain by the amount �E ~ h/�t. For example, we can derive the minimum
uncertainty in energy for photons emitted in a radiative transition. The lifetime � of the
transition gives a measure of the uncertainty in emission time, and the corresponding un-
certainty in energy is �E ~ h/�. 

A wave can be localized in space as well as in time, and there is another form of the
uncertainty relation that relates the uncertainties in wavenumber k = 2�/� and position x.
This is usually written as

�k�x ~ 1 (B-5)

and implies that for a wave packet to be highly localized in space, it must consist of a
wide spread of k values. In quantum mechanics, a particle with momentum p has an asso-
ciated deBroglie wavelength � = h/p = ®k, where ® = h/2�. The corresponding uncertain-
ty principle in quantum mechanics is then

�p�x ~ ® (B-6)

Uncertainty Relation 501

Figure B-2 Waveform synthesis using frequency components spread continuously in a range ��
around �0. The width �t of the main pulse depends only on ��, and not on �0.
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EXPONENTIAL TIME RESPONSE

In many situations, the time response of a system is nearly exponential, and it is useful to
know the exact constant to use in the uncertainty relation for this case. We will determine
this by considering a specific example, that of the LCR electrical circuit shown in Fig.
B-3. The approach will be to solve first for the transient response, and then for the steady-
state response. Relating the two solutions will then yield the appropriate uncertainty rela-
tion. The resulting expression has a broader application than this particular example, be-
cause the same mathematics applies to other resonances as well, such as in mechanical
and atomic systems. 

(1) Transient Response

To analyze the circuit of Fig. B-3, we add up voltages around the loop, obtaining

iR + + L = Vs(t) (B-7)

where Q is the charge on the capacitor, and i = dQ/dt is the current. Taking the derivative

di
�
dt

Q
�
C
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Figure B-3 (a) LCR circuit with an exponential time response. (b) Stored energy versus time when
Vs = 0. (c) Stored energy versus driving frequency. Relating the two viewpoints gives the uncertainty
relation ��1/2 = 	 = 1/�.
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of this equation with respect to time, and using the dot notation for time derivatives (dot =
first derivative; two dots = second derivative), it can be written

Q
..

+ Q
.
+ Q = Vs(t) (B-8)

To simplify notation, we define 	 � R/L and �0 � 1/�L�C�, so this becomes

Q
..

+ 	Q
.
+ �0

2Q = Vs(t) (B-9)

To obtain the transient response, we set Vs = 0, and look for solutions of the form

Q(t) = Q0ept (B-10)

In general Q(t) will be complex, and it is assumed that the real part is to be taken. Substi-
tuting this into Eq. (B-9) with Vs = 0 results in

Q0[p2 + 	p + �0
2]ept = 0

p2 + 	p + �0
2 = 0 (B-11)

Solving for p gives

p = – ± 1–2�	�2�–� 4���0
2 (B-12)

We will assume a weak damping, so that 	 
 �0. In that case,

p � – ± j�0 (B-13)

where we use j = �–�1� rather than the usual i, to avoid confusion with the current. The so-
lution for Q(t) is then

Q(t) = Q0e–	t/2e j�0t (B-14)

which is the form of a weaky damped harmonic oscillator. The energy stored in the circuit
is U � |Q|2, which decays in time as

U(t) = U0e–	t (B-15)

Defining the lifetime � for energy decay by U(t) = U0e–t/�, we identify

	 = (B-16)

In the context of the photon lifetime discussed in Sec. 16-2, we associate � with �c.

1
�
�

	
�
2

	
�
2

1
�
L

1
�
L

1
�
LC

R
�
L
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(2) Steady-State Response

For the steady-state solution, we assume the circuit is driven harmonically with a voltage
Vs(t) = A exp( j�t), where � = �/2� is the driving frequency. Now we assume that Q(t) os-
cillates at the driving frequency, with

Q(t) = Q
~

e j�t (B-17)

where Q
~

is a complex amplitude that contains amplitude and phase information about the
oscillation. Substituting this and the driving term Vs(t) into Eq. (B-9) gives

Q
~

= (B-18)

The energy stored in the oscillator is then

U � |Q
~

|2 = (B-19)

According to this result, the stored energy is a maximum at resonance, � � �0, where
the demoninator takes on its minimum value of �0

2	2. The frequency at which the stored
energy decreases by a factor of two is a measure of the resonance width, and can be deter-
mined by setting

(�0
2 – �2)2 + �2	2 =2 �0

2	2

and solving for �. Using the approximation � � �0 near resonance, we find

� – �0 = ± (B-20)

The stored energy is therefore at least one-half the maximum value over the frequency
range �0 – 	 /2 < � < �0 + 	 /2, which corresponds to a FWHM of ��1/2 = 	. Combining
this with Eq. (B-16) gives an uncertainty relation of the form

��1/2� = 1 (uncertainty relation) (B-21)

for a system with an exponential time response. This result is used in Eq.(16-16) in con-
nection with the photon lifetime.

	
�
2

A2/L2

��
(�0

2 – �2)2 + �2	2

A/L
��
�0

2 – �2 + j�	
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a fiber core radius
a spacing between atoms in solid
A area of junction, detector, laser rod, or optical beam
Ac area of fiber core
A amplitude of electric field in light wave (Eq. 9-4)
A21 Einstein A coefficient
b electrooptic coefficient (Chapter 9)
B brightness
B bandwidth of detector (Eq. 14-28)
Br coefficient for electron–hole radiative recombination
B21 Einstein B coefficient
BR bit rate (pulses per second in digital communications)
BRphone bits per second required to send one phone conversation (Eq. 24-1)
BER bit error rate (probability that bit will be read incorrectly)
c speed of light (= 3 × 108 m/s)
C capacitance
CB conduction band
d thickness of planar waveguide
d grating spacing
d width of depletion region (Eq. 10-20)
d quantum well width
D beam diameter
Dm material dispersion coefficient (Eq. 6-10)
Dc chromatic dispersion coefficient (Eq. 6-11)
DC transverse coherence length (Eq. 15-3)
Dw waveguide dispersion coefficient (Eq. 6-13)
D* “dee star” figure of merit for detectors (Eq. 14-44)
e magnitude of electron charge (= 1.6 × 10–19 C)
E electric field
Eg energy gap
f focal length of lens
f oscillator strength of transition (Eq. 18-44)
fe 3 dB electrical bandwidth (Eq. 11-13)
fa frequency of acoustic wave
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fv vibrational frequency (Raman scattering)
F# F number for lens (= f/D)
F finesse of cavity (Eq. 16-20)
g(�) atomic lineshape function (Eq. 18-3)
g1, g2 stability parameters for laser cavity (Eq. 17-16)
gR Raman gain function (Eq. 24-26)
G thermal conductance (Eq. 13-1)
G detector gain (Eqs. 13-14, 13-19)
G amplifier gain (Eq. 19-15)
Gth single-pass gain at lasing threshold (Eq. 23-10)
GdB amplifier gain expressed in dB
h Planck’s constant (= 6.63 × 10–34 Js)
h height of object or image when imaging with lens
i current
iN rms noise current
i� photocurrent (Eq. 14-2)
ith threshold current for diode laser
i0 reverse-saturation current (“dark” current in photodetector)
I light intensity (power per unit area)
I1, I2 input and output intensities in optical amplifier (Fig. 19-5)
Is signal saturation intensity (Eq. 19-9)
Ips pump saturation intensity (Eq. 23-22)
I� light intensity that gives a phase shift of � radians
j integer
Jth threshold current density for diode laser
k wave number
K dB loss due to fiber connections and splicing (Eq. 24-7)
kB Boltzmann’s constant (1.38 × 10–23 J/K)
� integer
L length of fiber, Bragg grating or optical cavity
Lc coherence length (Eq. 15-1)
m integer (labels mode)
m mass of sensor element in thermal detector (Eq. 13-2)
m mass of electron (= 9.1 × 10–31 kg)
m* effective mass of electron or hole
M multiplication factor (gain) in APD
M system margin in dB (Eq. 24-7)
M2 “m squared” figure of merit for optical beam (Eqs. 15-4, 17-22)
n integer (labels quantum state)
n refractive index
n0 refractive index outside fiber
n number of electrons per unit volume (Eq. 10-11)
n number of photons in cavity mode (Eq. 18-12)
n1 number of photons in a digital “one” pulse (Fig. 24-10)
nj number of photons in the jth cavity mode
nth theshold electron density for lasing
neff effective refractive index for waveguide  (Eq. 3-13)
n2 nonlinear refractive index (Eq. 9-26)
N number of  refractive index undulations in Bragg grating
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N number of lasing modes in mode locking (Eq. 22-9)
N atoms per unit volume
Ni number of atoms per unit volume in energy state i
N2,th value of N2 at lasing threshold (Eq. 20-14)
ND number of donor atoms per unit volume in n-type semiconductor
N total number of electrons in recombination region
NA numerical aperture (Eq. 4-3)
NEP noise equivalent power (Eq. 14-40)
p momentum
p number of cavity modes within laser transition bandwidth
p holes per unit volume
P optical power
Pp pump power
Pp0 pump power incident on fiber
Pth threshold pump power
P polarization density (dipole moment per unit volume)
P(n) Poisson distribution (Eq. 13-23)
PT transmitter power in dBm
PR receiver sensitivity (required signal power) in dBm
PR receiver sensitivity (signal power required for adequate BER) (Eq. 24-12)
q principle mode number for Hermite–Gaussian beam (Eq. 17-20)
Q total charge detected during current pulse
Q quality factor of resonance (Eq. 16-18)
r1, r2 radii of curvature of laser mirrors 1 and 2 in laser cavity
R reflection coefficient (fraction of light reflected from boundary)
R radius of curvature of wavefront for Gaussian beam (Eq. 17-3)
R resistance
RL load resistance
Rsh shunt resistance (Eq. 14-10)
R detector responsivity (Eqs. 13-8 and 14-18)
R total number of atoms pumped to excited state per unit time (Eq. 19-4)
Rth threshold excitation rate (Eq. 20-18)
s distance of object or image from lens
SNR signal-to-noise power ratio (Eq. 14-39)
ttr transit time for electron (Eqs. 13-20, 14-33)
tr rise time (Eqs. 14-27 and 14-29)
T fraction of light transmitted through boundary
T period of wave (= 1/�)
T repetition time for pulses in digital communications
T time between pulses in mode-locked pulse train (Eq. 22-17)
T absolute temperature (in Kelvin)
Tc coherence time (Fig. 15-4)
U energy stored in resonator
vp phase velocity of wave
vg group velocity of wave
vs sound velocity
V Vee parameter for fiber (Eq. 4-9)
V volume of laser cavity
VB bias voltage in photodetector circuit
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Vd voltage across photodiode
Vp normalized film thickness (for planar waveguide) (Eq. 3-8)
VT voltage equivalent of temperature (Eq. 14-8)
V� voltage across Pockels cell that gives phase shift of � radians
V0 built-in junction potential
VB valence band
w beam radius for Gaussian beam (Eq. 17-2)
w0 beam waist (minimum beam radius) for Gaussian beam
w0,eff beam waist (minimum beam radius) for multimode beam
W spont spontaneous transition rate (probability per unit time that a transition 

occurs)
W ind induced transition rate (probability per unit time for stimulated emission or 

absorption)
Wp pump rate (probability per unit time that atom absorbs photon) (Eq. 23-16)
Wpe pump emission rate (Eq. 23-17)
W work function
z0 Rayleigh range (Eq. 17-4)
� angle that incident ray outside fiber makes with fiber axis (Fig. 4-1)
� attenuation coefficient
�p absorption coefficient for pump light
�R attenuation coefficient due to Rayleigh scattering
� propagation constant (z component of wave vector k)
� diode ideality factor (in Eq. 10-21)
�� number of cavity modes per unit frequency interval per unit volume 

(Eq. 16-9)
�s slope of output power vs. current graph for diode laser
� dielectric susceptibility (Eq. 9-2)
� electron affinity (energy to remove electron from bottom of conduction 

band)
�2 second order nonlinear susceptibility
�3 third order nonlinear susceptibility
� penetration distance of evanescent wave (Eq. 2-21)
� fraction of light lost in one round-trip (Eq. 20-28)
� index difference neff – n2 , in optical fiber (Eq. 6-12)
�� angular frequency spacing between lasing modes
�� frequency spacing between lasing modes
	 fractional index difference (n1-n2)/n1

	 energy separation between thermally occupied levels (Fig. 23-8)
	N population inversion N2 – N1

	t time spreading of optical pulse
	tp duration of mode-locked pulse (Eq. 22-16)
	Nth threshold population inversion (Eq. 20-6)
	� frequency width of optical source
	�1/2 frequency width of optical mode (FWHM) (Eq. 16-17)
	�R Raman frequency shift
	� spread in wavelengths for optical source

 effective energy in McCumber relation (Eq. 18-38)

 permitivity of medium

0 permitivity of free space (= 8.85 × 10–12 F/m)
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r relative dielectric permitivity (= 
/
0)
� phase of wave
� temperature increase in thermal detector
� quantum yield (or quantum efficiency) for transition (Eq. 18-46)
�r phase shift upon reflection  (Eq. 2-22)
� gain coefficient (Eq. 18-33)
�th theshold gain coefficient (Eq. 20-2)
�0 unsaturated gain coefficient (Eq. 19-11)

 coupling efficiency  (Fig. 7-2)

 efficiency of converting incident photons into charge carriers  (Eq. 13-7)

 efficiency of converting absorbed pump power into signal power 

(Eq. 19-23) 

abs fraction of incident light absorbed in photodetector material (Eq. 13-15)

c efficiency for coupling light source into fiber (Eqs. 12-3, 12-11, 12-17)

i radiative efficiency (Eq. 10-13)

s slope efficiency of laser (Eq. 20-26)

sp spectral efficiency (Eq. 24-6)
� attenuation constant for Bragg reflection in sinusoidal grating (Eq. 8-16)
� wavelength
�0 wavelength in free space
�c cutoff wavelength (Eq. 4-14)
�B Bragg wavelength (for strong reflection)  (Eq. 8-7)
� refractive index periodicity in Bragg grating or photonic crystal
�e electron mobility (Eq. 13-16) 
�h hole mobility 
� frequency of optical wave
�0 center frequency of atomic transition
�m mode frequencies
� angle that beam makes with normal to surface
� divergence angle of beam (half-angle) (Eq. 17-5)
�B Brewster’s angle  (Eq. 2-17)
�c critical angle (Eq. 2-18)
� energy density (energy per unit volume)  (Eq. 2-8)
�� spectral density (energy per frequency interval per unit volume) (Eq. 18-2)
� cross section (Eqs. 18-35, 18-36)
�p absorption cross section for pump light
�se stimulated emission cross section
�i excited state lifetime of level i
�21 lifetime for spontaneous emission on 2 � 1 transition (Eq. 18-42)
�c cavity lifetime (also called photon lifetime) (Eq. 16-13)
� angular frequency (= 2��)
� solid angle (sr)
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for shot noise, 244
optical, 191
relation to rise time and RC time constant,

261
transimpedance amplifier, 277

Beam expander, 323
Beat period, 403
Beer’s law, 55, 237
Bell, Alexander Graham, 2, 487
Bending loss, 62
Birefringence, 128
Bit error rate (BER), 466
Bit rate, 41

for phone conversation, 456
maximum for fiber link, 468–471, 490
spectral efficiency, 461

Blackbody emitter, 291
Blackbody spectrum, 329
Boltzmann factor, 176, 328
Bosons, 332
Bragg condition, 22
Bragg diffraction, 400
Bragg grating, 23
Bragg reflection, 95

distributed feedback laser, 207
Bragg scattering, of electron in solid, 164
Bragg wavelength, 95
Bragg, Lawrence, 22
Brewster’s angle, 14
Brightness theorem, 288, 435, 496–498
Brightness

of Lambertian source, 216
of laser light, 288

Brillouin scattering, 59
Building sway, 488

Absorption , 161, 281
Absorption coefficient, 55

wavelength dependence, 237
Absorption cross section, 341, 343
Acceptance angle, 45
Acceptor, 171
Acoustooptic shutter, 399
Al (dopant), 171
Alignment losses, 83–85
Allowed transition, 345
Analog to digital conversion, 456
Angular distribution of laser and LED light,

196
Anode, 231
Anomalous dispersion, 73
Anti-Stokes scattering, 61
Apodization, 307
Argon ion laser, 444–446
Arrayed-waveguide grating (AWG), 462–463
Attenuation coefficient, 55

converting units, 56
Attenuation constant, sinusoidal grating, 99
Auger recombination, 168
Avalanche breakdown, 271
Avalanche multiplication, 268
Avalanche photodiode, 267–271
Axial wave vector, 34

Band filling, 204
Bandgap energy, 160

for AlxGa1-xAs, 167
table, 161

Bandwidth
CRT (TV tube), 490
electrical, 190
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Built-in potential, 174, 180
Buried heterostructure, 204
Burrus geometry, 194

Carbon disulfide (CS2), 142
Cathode, 231
Cavity lifetime, see Photon lifetime 
Centrosymmetric materials, 127
Charge carriers, 162
Chemical lasers, 448
Chirped pulse, 144
Circularly polarized light, 154
Cladding, 44
Cladding mode, 66
Cladding pumped laser, 435
CO2 laser, 448–450
Coarse wavelength division multiplexing

(CWDM), 462
Coherence and spectral purity, 198
Coherence length, 284
Coherence time, 284, 286
Coherent light, definition, 282
Concentric cavity, 312
Conduction band, 160
Confocal cavity and confocal parameter, 313
Connector, 79
Coupled-mode theory, 100
Coupling length, 82
Critical angle, 16
Cross talk in WDM, 463, 483
Cross-gain modulation, 483
Cross-phase modulation, 158
Cutback method, 85
Cutoff wavelength, 50

D*, see Detectivity
Dangling bonds, 168
Dark current, 252

typical values, 259
Data rate standards, 458
De Broglie wavelength, 163
Decibel, 2
Decision level, 456
Degenerate modes in cavity, 316
Density of states, quantum well laser, 205
Depletion region, 171

width of, 174
Detectivity (D* or dee star), 275
Detector, see also Photodiode

circuits, 276
noise, 241
photoconductive, 236
photomultiplier, 234
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pyroelectric, 226
thermal, 223
vacuum photodiode, 230

Diamond-type structure, 118
Dielectric constant

relation to refractive index, 126
table, 161

Diffraction, 19
Diffraction grating, 21

for tuning laser wavelength, 390
Diffraction limited beam, 288
Diffusion, 171

of charge carriers, 264
Dimer, 118
Diode equation, 176, 251
Diode ideality factor, 176
Dipole radiation pattern, 15
Direct gap transition, 166
Dispersion

anomalous, 73
chromatic, 70
for tuning laser wavelength, 389
in phase matching, 134
intensity-dependent, 146
intermodal, 40, 66
intramodal, 69
material, 70, 72
waveguide, 74

Dispersion coefficient, 72, 74
Dispersion compensation, 473
Dispersion-flattened fiber, 75
Dispersion-shifted fiber, 75
Donor, 171
Doppler shift, 59
Double heterostructure (DH) laser, 200
Double-clad fiber, 435
Downconversion, 138
Drift of charge carriers, 264
Drift velocity, 238
DWDM (dense wavelength division

multiplexing), 460
Dye laser, 437–440
Dynodes, 234

EDFA, see Erbium-doped fiber amplifier
Effective index of refraction, 33
Effective mass, 178
Effective spot size, 317
Efficiency

absorption in semiconductor, 237
diode pumping, 420
energy conversion in optical amplifier, 361
extended source coupled into fiber, 216

bindex.qxd  2/22/2006  4:03 PM  Page 512



laser output, 372–377
laser source coupled into fiber, 219
LED external, 191–193
point source coupled into fiber, 215
quantum efficiency, 346
slope, 373

Einstein A coefficient, 328
Einstein B coefficient, 330, 331
Electric field in depletion region, 172
Electric potential across depletion region, 174
Electric susceptibility, 126
Electrically pumped lasers

argon ion, 444–446
CO2, 448–450
excimer, 446–447
He–Ne, 442–444
table of parameters, 444

Electron affinity, 180, 229
Electron–hole pair, 161
Electron-impact excitation, 442
Electrooptic effect, 149
Electrooptic shutter, 398
Electrostriction, 129
Elliptically polarized light, 154
Emission cross section, 341
Endlessly single-mode fiber, 113
Energy bands, 159
Energy density of light wave, 10
Energy levels, degenerate, 159
Energy transfer, 345, 449
Erbium-doped fiber amplifier (EDFA),

473–480
Etalon, 385–387
Ethylene glycol, 437
Evanescent field, 18, 64
Excimer laser, 446
Excitation rate (R ), 353
Excited state, 351
Excited-state absorption (ESA), 482
Extrinsic semiconductor, 171

F number of lens, 320
Fabry–Perot interferometer, 302–304
Faraday rotation, 387
Fermi level, 179
Fermions, 332
Ferroelectrics, 136, 226
Fiber

absorption loss, 56
acceptance angle, 45
bending loss, 62–67
cladding modes, 66
connector and coupler, 79–80

Index 513

cutoff wavelength, 50
dispersion, see Dispersion
graded index, 69
hollow-core, 116
loss measurements, 85–91
mode chart, 52
mode field diameter, 52
numerical aperture, 45
scattering loss, 57–59
splice, 79
step-index, 69
V-parameter, 48

Fiber amplifier
EDFA, 473–480
gain flattening, 479
gain saturation, 479
gain spectrum, 475
net gain, 476–478
Raman, 484
transparency condition, 474–475

Fiber Bragg grating, 425
applications, 101–102
holographic fabrication, 98

Fiber connector, 79
Fiber coupler, 80
Fiber grating, long period, 480
Fiber laser, 425–436. see also Fiber amplifier 

high power, 435
slope efficiency in four-level, 429–430
slope efficiency in three-level, 435
threshold in four-level, 427–429
threshold in three-level, 431–435
transparency wavelength, 433
Yb3+ gain spectrum, 434

Fiber optic communications overview, 2–5,
454

Fiber Raman amplifier, 484
Finesse, 301, 305
Finger plot, 116
Flashlamp pumping, 417
Fluorescence, 371
Fluorescence lifetime, 343
Fluoride glass, 59
Folded cavity, 439
Forward biased junction, 174
Fourier series and Fourier Transform, 499
Four-level system, 351
Four-wave mixing, 141
Free spectral range, 303
Free-space optics, 487–489
Frequency chirping, 145, 200
Frequency conversion, 123, 483
Frequency doubling, 133
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Frequency response, LED, 188
Frequency stabilization, 388
Fresnel equations, 13
Fresnel number, 313
Fresnel reflection loss, 83
Fused biconical taper coupler, 82, 425

Gain, see also Optical amplifier
avalanche photodiode, 270 
photoconductive, 239
photomultiplier, 235

Gain coefficient, 339
above lasing threshold, 368
threshold, 365
unsaturated, 355, 375

Gain cross section, 340
Gain flattening, 479
Gain guiding, 201
Gain medium, 281
Gain saturation, 354–356, 479
Gain switching, 200
Gain transparency, 474–475
Galilean telescope, 325
Gas phase lasers

argon ion, 444
carbon dioxide, 448
excimer, 446
He–Ne, 442

Gaussian beam
collimation, 322–323
divergence, 20, 309
field distribution, 308
focusing, 319–21
in laser cavity, 311–317
peak intensity, 310
spot size, 308–309
waist, 309
wave front modified by lens, 319
wave front radius, 309

Geiger mode regime, 271
Germanium (Ge), dopant for index change, 99
Goos–Haenchen shift, 18
Graded index fiber, 69
Ground state, 342
Group velocity, 10, 34

of electron in solid, 163
Guided mode, 43

Header, 456
Heisenberg uncertainty principle, 501
He–Ne laser, 442–444
Hermite polynomials, 315
Hermite–Gaussian modes, 315
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Heterojunction, 177, 201
High order modes, 63, 314
Hole, 161
Hologram, volume, 22
Holography, 285
Holy fiber, 112
Homogeneous broadening, 347
Homojunction laser, 200
Huygen’s wavelets, 20
Huygens, Christiaan, 7

Imaging, 23
Impact ionization, 267
Impurities in fiber, 56
Index grating, 59. see also Fiber Bragg grating
Index of refraction, 9

effective, 33, 51
table, 9
variation with wavelength, 72, 389

Indirect gap transition, 166
Induced transition, 330
Inhomogeneous broadening, 348
Inside vapor deposition, 4
Intensity of light wave, 10
Interference, 20–21
Internal loss in laser cavity, 374
International Telecommunications Union

(ITU), 481
Intersystem crossing, 439
Intrinsic semiconductor, 171
Inverse opal structure, 119

John, S., 117
Johnson noise, 244–246

Kerr cell, 156
Kerr electrooptic coefficients, table, 156
Kerr electrooptic effect, 155
Kerr lens mode locking, 412
Kerr lens shutter, 149
KrF excimer, 447
Krypton ion laser, 444

Lamb dip, 388
Lambertian source, 216
Lamp pumping, 421
Laser diode, 195

Fabry–Perot (FP) type, 453
Laser

angular spread of light, 197
beam size in cavity, 312
brightness, 288
cavity lifetime, 299
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coherence properties, 282
continuous-wave (CW), 381
fiber, see Fiber lasers 
gain coefficient, 339
gain saturation, 354
gas phase, see Gas phase lasers
Hermite–Gaussian modes, 315
lineshape function, 347
mode frequencies, 294
mode-locked, 402–410
pulsed operation, 393
Q-switched, 395–401
single-mode, 385–388
slope efficiency, 373
spectral distribution, 199, 381–385
solid state, see Solid state lasers, 
steady state output, 370–372
threshold condition, 365
tunable wavelength, 388–390

LCR circuit, 245, 502
LED

angular spread of light, 197
biasing, 186
Burrus geometry, 194
edge emitter, 194
emission wavelength, 162
output power, 185
spectral distribution, 199
surface emitter, 194

Lens equation, 23
Lifetime broadening, 347
Lifetime

electron radiative, 189
fluorescence, 343

Lincoln log structure, 121
Linearly polarized modes, 52
Lineshape function, 329, 347–349
Lineshape function

homogeneous broadening, 347
inhomogeneous broadening, 348

Linewidth
homogeneous, 347
inhomogeneous, 348
phonon broadening, 348
Voight profile, 348

Lithium niobate
ferroelectric effect, 227
nonlinear susceptibility, 133
Pockels coefficients, 151

Load line, 186, 249
Local area network (LAN), 453
Localized modes, 105
Loss coefficient, early fiber, 3
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Loose buffering, 65
Losses in optical fiber, 55
Low-order mode, 63

M2 factor (figure of merit for beam), 288, 317,
436

Mach–Zehnder interferometer, 142
Macrobending loss, 65
Material dispersion, graph, 72
McCumber relation, 341
Meridonial rays, 49
Metastable state, 416
Metro network, see Metropolitan area network, 
Metropolitan area network (MAN), 454
Microbending loss, 65
Minority carrier injection, 174
Mirrors, for imaging, 23
Mobility

definition, 238
of holes in Ge, 278
of holes in Si, 263

Mode(s)
degenerate in cavity, 316
field distribution, 39, 49
finesse, 301, 305
frequency spacing in 1-D cavity, 294
frequency stabilization, 388
frequency width, 298–301
Gaussian approximation, 52
Hermite–Gaussian, 315
high order in cavity, 314
optical fiber, 46
Q (quality factor), 300, 305
spectral density in cavity, 297
spectral width (FWHM), 300, 305
stability condition in cavity, 313
waist size, 52
waveguide, 29
weakly guided, 53

Mode chart, 36, 38
for optical fiber, 51

Mode coupling, 65
Mode field diameter, 52
Mode locking, 200
Mode locking

theory of, 402–409
methods of, 409–412

Mode matching, 321
Mode mixer, 66
Mode stripper, 67
Mode sweeping, 388
Modulation, LED, 188
Molecular liquid, 128
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Monochromatic light, 286
Multimode fiber, 45
Multimode lasing, 381
Multiphoton absorption, 131
Multiple quantum well (MQW), 206
Multiplexing, 455

time division, 458
wavelength division, 459–464

Natural linewidth, 347
Nd:YAG laser, 418
Negative electron affinity (NEA), 230
Neodymium laser, 418–422
Newton, Isaac, 7
Nodal lines, 39
Nodes, in optical cavity, 295
Noise equivalent power (NEP), 274–275
Noise

in photon detectors, 241
Johnson (thermal), 244–246
shot, 242–244

Nonlinear mixing in WDM, 463
Nonlinear refractive index, 141

table, 143
Nonlinear susceptibility, table, 133
Nonradiative decay

effect on quantum efficiency, 346
in semiconductor, 168

Normalized film thickness, 32
NRZ (non-return-to-zero) format, 456
N-type semiconductor, 171
Numerical aperture (NA), 45
Nyquist criterion, 456

OH ion absorption, 57, 482
Ohmic contacts, 183, 240, 272
Opal structure, 118
Operating point, photodiode detector, 251
Optical amplifier

fiber, see Fiber amplifier 
gain for large or small signal, 360–361
gain saturation, 354–356
large signal gain, 358–359
small signal gain, 357
total gain, 356

Optical bleaching, 129
Optical cavity, 281

1-D mode frequencies, 294
3-D mode frequencies, 296

Optical confinement layer, 206
Optical detectors, 223
Optical diode, 387
Optical feedback, 281
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Optical fiber, see Fiber
Optical Kerr effect, 142
Optical limiter, 131
Optical parametric oscillator (OPO), 139
Optical path difference, 21
Optical rectification, 133
Optical resonator, 293–302
Optical switching, 142
Optical time-domain reflectometer (OTDR), 86
Optical trapping, 117
Optical wireless, see Free-space optics 
Optimum output coupling for laser, 375
Oscillator strength, 345

P (dopant), 171
Packet switching, 456
Parametric fluorescence, 140
Paraxial approximation, 23, 308
Partial coherence, 287
Passive mode locking, 411
Passive Q-switching, 401
PDFA (praseodymium-doped fiber amplifier),

482
Periodically poled lithium niobate (PPLN), 136
Permittivity of free space, 10
Phase boundary, 113
Phase matching, 136, 157
Phase of wave, 7
Phase shift upon reflection, 18
Phase velocity, 8, 34
Phonon broadening, 348
Phonons, 348
Photocathode, 231

commercial types, 235–236
Photocell, 236
Photoconductive detectors, 236
Photoconductive gain, 239
Photoconductive mode, 250
Photoconductivity, 236
Photocurrent

definition, 162
photoconductive detector, 240
photodiode, 250
time dependence, 232–234

Photodiode
avalanche, 267–271
biasing, 249
current–voltage relation, 251
dark current, 251–252
PIN, 264–267
response time, 259–264
responsivity of, 231
saturation, 253
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Schottky, 272
sensitivity, 273–276
vacuum, 230

Photoelectric effect, 228
Photoemission, 229
Photomultiplier, 234
Photon

definition, 7
momentum, 163

Photon counting, 271
Photon lifetime, 298, 305, 369, 378
Photon occupation number, 332
Photonic band gap, defined, 103
Photonic crystals

2-D, 106
fiber geometry, 111
planar geometry, 107
sinusoidal grating, 97
step-index grating, 93

Photonics, definition, 1
Photophone, 2, 487
Photosensitivity, 99
Photovoltaic mode, 250
Piezoelectric transducer, 303
PIN photodiode, 265
Planck distribution, 330
Plane of incidence, 12
Plane wave, 7
P–n junction, 171

equation, 176
I–V curve, 176

Pockels cell, 153, 398
Pockels coefficient, 151
Pockels effect, 149
Poisson distribution, 242, 465
Polarization

definition, 8
p (TM), 12
s (TE), 13

Polarization-mode dispersion, 75
Poling, 136
Population inversion, 339
Power budget, 464
Power meters, 225
Pressure broadening, 348
Profile dispersion, 74
Propagation constant, 30
p-type semiconductor, 171
Pulse compression, 146
Pulse width

in mode locking, 407, 414
Ti:sapphire laser, 440

Pump mechanism
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diode pumped, 421
flashlamp, 417
lamp, 421

Pump rate (Wp), 353
Pump saturation intensity, 432
Pumping mechanism, 281
Pyroelectric detector, 226–228

Q-switching
methods of, 397–402
theory of, 395–397

Quality factor (Q), 300
Quantum cascade laser, 210
Quantum defect, 359, 421
Quantum efficiency, 346
Quantum limit for detection, 466
Quantum well, 177
Quantum well laser, 205
Quantum yield, 345–346
Quantum-confined Stark effect (QCSE), 178
Quasi-four-level system, 424
Quasi-phase matching, 136

Radiation mode, 65
Radiative decay

efficiency, 167
numerical values in semiconductor, 170
relation between rate and lifetime, 346
semiconductor, 169

Raman gain function, 484–486
Raman scattering, 60, 484
Rare earth ion energy levels, 423
Rate equation, 330
Rayleigh scattering, 57
Receiver sensitivity, 465–469
Reduced zone scheme, 164
Reflection coefficient, 13
Reflection from dielectric boundary, 11
Refraction, 11
Refractive index, see Index of refraction, 
Relaxation oscillations, 394
Repetitive Q-switching, 397
Resonance response, 502
Response time (see Time response), 
Responsivity

avalanche photodiode, 270
definition, 231
photodiode, 257
photomultiplier, 236

Reststrahlen band, 102
Reverse biased junction, 174
Reverse saturation current, 176
Ring laser, 387
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Ring-down technique, 299
Rise time, see also Time response 

relation to RC time constant, 261
Rotating mirror (for Q-switching), 398
Routers, 456
Ruby laser, 415–417

s polarization, 13
Sampling theorem, 456
Saturable absorber, 401, 411
Saturation drift velocity, 263
Saturation intensity

pump [Ips], 432
signal [Is], 355

Saturation, photodiode output, 254–259
Schottky diode, 182
Schottky photodiode, 272
Scintillation, 488
Second harmonic generation, 132–136
Seed light, 369
Self-action, 123
Self-focusing, 147
Self-phase modulation, 142
Semiconductor laser

characteristic temperature, 205
distributed Bragg reflector, 208
distributed feedback, 207
double heterostructure, 200
frequency chirping, 200
quantum cascade, 210
response time, 199
stripe geometry, 204
transparency density, 204
VCSEL, 208

Semiconductor optical amplifier, 483
Separate confinement heterostructure laser, 206
Shot noise, 242–244
Shunt resistance, 254
Sidebands, 410
Signal-to-noise ratio, 273–274
Single quantum well (SQW), 206
Single-frequency laser, 381–387

semiconductor, 207
Single-mode fiber, 45

condition for, 49
Single-mode laser, 381
Single-mode planar waveguide, 37
Singlet states, 437
Skewed rays, 49
Slope efficiency, 373
Snell’s law, 11
Sodium doublet, 306
Solar cell, 252
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Solid angle, 495
Solid-state lasers, 415

alexandrite, 440
Co:MgF2, 440
Cr:LiSAF, 440
Er3+, 424
Ho3+, 422
Nd:glass, 420
Nd:YAG, 418
ruby, 415–417
table of parameters, 422
Ti:sapphire, 440
Tm3+, 422
vibronic, 436
Yb3+, 424

Soliton
spatial, 148
temporal, 144

Solvent (for dye laser), 437
Space-based communications, 489
Spatial coherence, 286
Spatial hole burning, 384
Spectral density, 329
Spectral efficiency, 461
Spectral filter

Fabry–Perot, 302–304
long-period fiber grating, 480

Spectral hole burning, 355, 382
Spectral width (relation to coherence time),

286
Spiking of laser output, 394
Spin of photon, 332
Splice, 79
Spontaneous emission, 195, 369

definition, 282
lifetime, 344

Spot size of Gaussian beam, 308–309
Stability criterion for cavity modes, 313
Standing waves in optical cavity, 295
Stark effect, 178, 384
Stefan’s law, 291
Stimulated emission

definition, 282
in laser diode, 195
in OPO, 140

Stimulated emission rate
atomic transition, 335
blackbody radiation, 330

Stimulated Raman scattering, 484
Stimulated scattering, 484
Stokes scattering, 61
Stokes shift, 439
Stop band, 102
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Strain sensor, 101
Synchronous Digital Hierarchy (SDH), 459
Synchronous Optical Network (SONET), 459
System margin, 464

TDFA (thulium-doped fiber amplifier), 482
TE polarization, 108
TEA laser, 450
Telecommunications bands (ITU), 481–482
Telecommunications windows, 58, 481–482
Television tube operation, 489
Temperature, voltage equivalent of, 254
Thermal detectors, 223
Thermal lensing, 132
Thermocouple, 225
Thermoelectric effect, 225
Thermopile , 226
Thick grating, 22, 400
Third harmonic generation, 140
Three-level system, 351
Three-wave mixing, 136
Threshold

for lasing, 365
current density in semiconductor laser, 203
in laser diode, 195
population inversion, 366–367, 369

Tight buffering, 65
Ti:sapphire laser, 440
Time constant, RC circuit, 187, 260
Time division multiplexing, 458
Time response

junction capacitance, 259
system total, 472
thermal detector, 223–224
transit time, 239
vacuum photodiode, 233

TM polarization, 108
Total internal reflection, 17
Transform limited pulse, 406
Transimpedance amplifier, 276
Transit time, 239

in pn junction, 262–263
Transmission coefficient, 13
Transparency

condition in fiber laser, 431, 433
density, 204
in EDFA, 474–475

Index 519

wavelength, 433
Transverse electric polarization, 13
Transverse magnetic polarization, 12
Triplet quenching, 439
Triplet states, 437
Trunk line, 458
Tunable laser, 388–390, 439–440
Tunneling, in quantum cascade laser, 211

Uncertainty relation, 406, 500–504
Unsaturated gain coefficient, 355, 375
Unstable resonator, 312
Upconversion, 138

V-parameter
fiber, 48
planar waveguide, 31

Vacuum level, 179, 230
Valence band, 160
Vibrational modes

CO2 molecule, 448
N2 molecule, 449

Vibrational transition, 447
Vibronic transition, 436
Voight profile, 348
Voltage equivalent of temperature, 254

Waist, see Gaussian beam, 
Water absorption, 482
Wave function, 163, 347
Wavefront modified by lens, 319
Waveguide

dispersion, 74
modulator, 152
planar, 29

Wavelength division multiplexing (WDM), 75,
286, 459–464

Wavenumber, 7
WDM , see Wavelength division multiplexing, 
Wide area network (WAN), 455
Work function, 180, 228

Yablonovitch, E., 117
Yablonovite, 121
Yb3+:glass, graph of cross section spectra, 431
Young, Thomas, 7
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