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Abstract—In this paper a nonlinear model predictive control 

strategy based on enhanced nonlinear disturbance observer is 

proposed to control the dynamic walking of biped robots on the 

smooth surface considering double support phase, single support 

phase, and impact. Optimal tracking of reference trajectories via 

optimal joint torque is established via a nonlinear predictive 

controller with well-defined cost functions and associated 

constraints. The implementation of a conventional disturbance 

observer encounters numerous challenges due to the joint 

acceleration requirements. The proposed nonlinear disturbance 

observer here, which only requires the position and angular 

velocity, helps to estimate the disturbances introduced on the 

robot and reduce the complications. The simulation results 

performed on the dynamic walking of a 5-DOF biped robot on 

flat surface shows the merits of the proposed method in tracking 

arbitrary trajectories despite the disturbances. 

Index Terms--Biped robot, dynamic walking, improved nonlinear 

disturbance observer, nonlinear model predictive control, single 

and double support phases. 

I. INTRODUCTION  

The control of biped robots has attracted much attention in 
the last two decades. The biped robots should have an adaptive 
and robust performance to be utilized in different environments 
without being too sensitive to potential uncertainties and 
disturbances. Imitation of human behavior is one of the best 
ways to solve the issues related to the robot movement. For this 
purpose, it is helpful to have a prediction of a few moments 
later, which makes predictive control approach an optimal 
solution for them [1-3]. To this aim, in [4-5], the nonlinear 
model-based predictive control (NMPC) strategy is proposed to 
control a biped robot for crossing obstacles without a pre-
determined trajectory. Also linear MPC is used in [6], to obtain 
the online position of legs in the dynamic walking scenario 
despite the external disturbances. This method has been 
implemented on a 29-DOF humanoid robot and showed 
acceptable performance. In [7], the linear MPC is employed to 
generate an online motion trajectory accompanied by optimal 
velocity and energy consumption.  

Disturbances are inevitable in the concept of bipeds and can 
be addressed via disturbance observers (DOs.) DOs can be 
designed and analyzed in linear/nonlinear forms. The linear 
version is designed to eliminate the disturbance in a particular 
frequency range by considering the inverse of the system 
nominal model plus a low-pass filter. In linear observer, not 
only it is necessary to design an appropriate filter [8], but also, 
it’s important to have a minimum phase-type model. However, 
solutions are proposed in the literature to solve the problem of 
obtaining the inverse of the non-minimum phase system using 
the minimum phase system assumptions [9]. Despite all the 
research studies in the field of linear DOs, the synthesis of these 
observers is generally based on linear dynamics of the system. 
Therefore, different DOs are proposed to consider the nonlinear 
dynamics of the system. In [10-11], a DO is applied on an 
unmanned aerial vehicle and spacecraft formation flying. An 
observer with a similar structure is proposed for a manipulator 
in [12], for a multi-teleoperation system with multi 
manipulators in [13], a 2-DOF robotic knee exoskeleton in [14], 
and a knee exoskeleton with time delay in [15]. In the later 
research, there is only one dynamic in both the manipulator and 
robotic knee exoskeleton, and the DO is only designed for that 
dynamic. The truth is that the biped robot has a switching 
structure with two main dynamics as well an impact phase and 
a leg change mapping that should be performed constantly. 
Therefore, a nonlinear disturbance observer (NDO) is necessary 
to be designed considering both dynamics. In [16], the NDO-
based zero dynamic control method is proposed to control a 5-
DOF under-actuated biped robot for static walking considering 
the disturbance dynamics. The MPC based on NDO for free 
trajectory of biped static walking is presented in [17]. The 
proposed method for the dynamic walking of the biped robot on 
the smooth surface considering both dynamics is not yet 
presented in the literature.  

Motivated by the abovementioned review, in this paper, a 
NDO-based NMPC method is proposed to control the dynamic 
walking of the biped robot on a smooth surface. By defining a 
suitable cost function as well as linear and nonlinear 
constraints, NMPC in here is able to detect efficient reference 
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trajectories as well as provide optimal torque. This method 
depends on robot model subjected to uncertainties of the 
parameters (here called the internal disturbances) and the 
external disturbances such as overload, sudden impact and etc. 
Therefore, the method is enhanced with a NDO. Due to the fact 
that the biped robot has two main dynamics of single support 
phase (SSP) and double support phase (DSP), the observer is 
designed separately for both dynamics, and the controller 
guaranteed to provide a smooth movement of the robot by 
switching between those and considering the impact and leg 
switching maps. The NDO-based NMPC, which is presented 
for the first time in this paper, can trace the reference 
trajectories in both dynamics in the presence of model 
uncertainties, friction, and external disturbances. The proposed 
NDO only required the position and angular velocity for 
estimating the disturbance in the absence of angular 
acceleration.  

The remainder of the paper is organized as follows. in 
Section 2, dynamics of biped robot are presented. The NMPC 
and cost function with its constraints is introduced in Section 3. 
Then, the NDO is designed for SSP and DSP dynamics in 
Section 4. The results of simulation are presented and analyzed 
in Section 5. Finally, concluding remarks are given in Section 
6. 

II. DYNAMICS OF BIPED ROBOT 

In this paper, a sagittal biped robot with 5-DOF is 
investigated that involves two thigh links, two shank links, and 
a trunk link (Fig. 1). The biped robot has two main dynamics of 
SSP and DSP. 

 
Figure 1.  Example Planar 5-DOF biped robot 

A. SSP Dynamic 

The SSP is when one leg is placed on the ground as support, 
and the other is moving from the back to the front of the 
stationary leg. This phase begins when the tip of the swinging 
leg is removed from the ground and will continue until the 
swinging leg contacts the ground again. The fixed leg contact 
point with the ground is considered immobile. Using the 
Lagrange's method, the dynamics of the robot in SSP dynamic 
will be represented as follows: 

( ) ( ) ( ),D H G Tθ θ θ θ θ+ + =&& &  (1) 

where ( )D θ  is the given 5 5×  positive symmetric matrix of 

inertia, ( ),H θ θ&  is a 5 1×  vector contains terms related to the 

Coriolis and Centrifugal forces of the robot, ( )G θ  is a 5 1×  

vector containing terms related to the gravity force applied to 

the robot. , ,θ θ θ& && ,T is a four 5 1×  vector showing the extended 

coordinates of position, velocity, acceleration, and torque for 
the robot. Matrices D, H, and G are considered similar to those 
applied in [2]. 

B. DSP Dynamic 

In the DSP, both legs are on the ground, and the trunk can 
move forward slowly. This mode is initiated when the moving 
leg placed on the ground and ends when the back leg is 
separated from the ground. Since both legs are fixed on the 
ground in this phase, some constraints are added to the 
dynamics of the robot, which can be written as Holonomic 
constraints. Using the Lagrange equation, the DSP dynamic of 
the robot can be expressed as follows: 

( ) ( ) ( ) ( ), TD H G J Tθ θ θ θ θ θ λ+ + = +&& &  (2) 

where D, H, G, and T are the same vectors applied to (1), λ  is 

a 2 1×  vector that includes the Lagrange coefficients, and J

is the Jacobian matrix of dimension 2 5×  determined 
according to [2]. 

C. Impact 

The impact phase occurs instantly when the robot leg contacts 
the ground. The impact phenomenon changes the velocity of 
the joints. It’s effect is examined by Newton's impact theory 
and the principle of linear and angular momentum 
conservation. By assuming that the velocity of the contact 
points is zero immediately after the impact, and these two 
points are not raised or slip, we can then write the double 
impact map for the biped robot as follows: 

1 1 1( ) ( ) ( ( ) ( ) ( ) ) ( )T T
eD J J D Jθ θ θ θ θ θ θ ν+ − − − − −= + −& &

 

(3
) 

where θ −& is the velocity vector before the impact and θ +&  is 

the velocity vector after the impact. Also, ( )e Jν θ θ− −= &  is the 

tip velocity of the moving leg at the moment before the impact. 
It is assumed that the position vector is not altered by the 
impact [2]. 

D. Mapping Transformation 

After ending the SSP and impact, the robot begins the DSP 
and this period is repeated for each step. In this case, the leg 
that was fixed at the previous stage becomes a moving leg and 
the moving leg of the previous step becomes the fixed leg in 
the current step. The dynamic equation of the robot will not 
alter in the new step, but what happens is that the role change 
occurs between joints and links. For this reason, a 
transformation function is required that expressed the variables 
of the new step based on those of the previous step. The 
required mapping can be stated as [4]: 
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(4) 

where 
T

initial initialθ θ  
&  represents the vector of the initial 

variables for the new step, and it transforms to Im

T

pactθ θ− +  
&

, which contains the variables related to the end of the previous 
step after applying the impact map, using the mapping 
transformation. 

E. Motion Trajectory Design 

The trajectory design is an important step in the movement 
of biped robots. Most of the research studies have focused on 
trajectory design during SSP, and DSP has been less 
concerned. The motion over DSP has an important role in high-
speed movement and maintaining stability, and this shows the 
importance of the DSP. Therefore, the motion patterns should 
consist of both the DSP and SSP. The smooth trajectory design 
eliminated variation in the velocity because of the impact 
effect and helps the robot trajectory design parameters to be 
selected such that the robot stability is always maintained. The 
trajectory design for biped robots is conducted by polynomial 
functions which are obtained for the tip position of the moving 
leg and the waist, and then converted to joint angles by inverse 
kinematic equations [2]. 

III. PREDICTIVE CONTROL 

Predictive control is a problem-solving method with an 
optimal vision on a limited horizon. In this method, a cost 
function is defined which captures the requirements of the 
control objective. Unlike other methods, the predictive control 
method dose not employ the error history to generate the rules 
of control, and rather predicts the future behavior of the system. 
This method helps it making optimal decisions and designing 
online controller [18-19]. In this paper, the fmincon function in 
MATLAB software is applied for constrained nonlinear 
optimization. The SSP and DSP models, which have been 
discussed in the previous section, are used as the prediction 

model. First, θ&& is calculated using the equations, and then, the 

state vector is obtained by calculating the integral ofθ&&. Finally, 
the state equations are discretized with appropriate sampling 
rates. 

A. Objective Function 

The cost function for tracking the reference trajectories of 
joint angles, dθ , and the optimization of torque vector, T,  is 

considered as: 

1

1

2

1

( ) ( )

( ( ) ) ( ( ) )

c

p

N
T

i

N

T
d d

j

J T t i t w T t i t

t j t w t j tθ θ θ θ

=

=

= + ∆ + ∆

+ + ∆ − + ∆ −




 

(5) 

where 1w  and 2w are the weights associated with the cost of 

consumed torque and joints tracking, respectively. pN and 

cN are the prediction and control horizons so that p cN N≥ . 

B. Constraints 

The appropriate constraints for joint angles are considered 
as follows: 

,min ,maxi i iq q q≤ ≤  (6) 

where, 0 1q θ= , 1 1 2q θ θ= − , 2 2 3q θ θ= − , 3 3 4q θ θ= + , 

3 3 4q θ θ= + , and 4 4 5q θ θ= −  according to Fig. 1. minq  and 

maxq  are minimum and maximum allowable relative angle, 

respectively. Because the singularity does not occur in the 
Jacobian matrix, 2q  and 5q  should not be equal to 180 

degrees. The constraint related to joint torque is also 
considered as: 

min maxiT T T≤ ≤  (7) 

where minT and maxT are minimum and maximum allowable 

joint torques. 

IV. NONLINEAR DISTURBANCE OBSERVER 

The internal disturbance in this paper is a group of 
uncertainties in parameters and non-modeled dynamics, which 
can be input-additive. Also, the external disturbances can be 
represented by adding to the control input. The variation of 
mass and inertia of the object causes the distinction of mass 
and inertia of the links between the model applied to 
controllers and real values. On the other hand, because of the 
various devices being installed and the complex structure of 
links, it is impossible to calculate the accurate values of the 
mass and inertia for the links. The factors such as joint friction 
and external force applied to the robot can be the causes of 
external disturbances. Moreover, the external force may be 
caused by the collision of the robot with objects in the 
environment or vice versa. These disturbances will have 
negative effects on the controller performance and may even 
cause robot instability. Therefore, it is required to apply 
suitable control strategies for removing the internal 
disturbances described above [20]. 

The proposed controller here is a NMPC that is employed 
because of its numerous advantages. As the name suggests, it 
is based on the robot model that can be encountered with some 
problems due to internal disturbances. Although the NMPC 
method can deal with external disturbances to a certain extent 
due to its online performance and optimal behavior, it is 
extremely susceptible to internal disturbances. The variation in 
system parameters results in some issues in the predictive 
performance of the controller, which is the base of its decision-
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making feature, and this increases the probability of instability. 
This paper presents an NDO to address this problem. 

A. Disturbance Observer in SSP 

The dynamics of the biped robot in SSP and presence of 
disturbances is expressed as follows: 

( ) ( ) ( ), dD H Gθ θ θ θ θ+ + = Τ + Τ&& &  (8) 

where , , ,D H G T  are the nominal values of vectors and 

matrices introduced in (1) and dT  is the disturbance vector. 

The disturbance vector is assumed as ex in

d d dT T T= + , where 

,ex in

d dT T  are the external and internal disturbance signals. The 

internal disturbance signal can be calculated by the following 
equation assuming the additive internal disturbances: 

in

d
T J C Gδ θ δ θ δ= − − −&& &  (9) 

If both following conditions are met, the dynamics of 
disturbance observer can be obtained and its stability can be 

proved [12, 17]: 1) ( )J θ  should be a positive definite matrix 

bounded  ( )n n
I J Iβ θ α≤ ≤ ,where 0α β≥ ≥  and 

n
I  is an 

identical matrix. 2) Torque, should be limited, and as a result, 

the θ&  is placed in a certain range: max .θ θ≤& &  By defining the 

disturbance estimation error as ˆ
d d

e T T= − , where ˆ
d

T  is the 

estimated disturbance. Since there is no information about the 
disturbance derivative with respect to time, it is assumed that

0dT =& . Considering this assumption, the error estimation 

dynamic is formulated as: 

( )1
0e L eD θ−

+ =&  (10) 

where L is the gain of the disturbance observer. Here ( )R θ&  

is defined as follows: 

( ) 1 2 5

T

R Lθ θ θ θ =  
& & & &L  (11) 

Therefore, the dynamics of observer can be rewritten as 
follows: 

( ) ( ) ( ) ( )( )1 ˆˆ ,d dL D J H G Tθ θ θ θ θ θ−Τ = + + − Τ −
& && &  (12) 

However, the main problem of the above equation is 
associated with the term of the angular acceleration vector 
which requires to employ acceleration sensors for its 
measurements which leads to great expenses and difficulties in 
practice. The acceleration vector can be eliminated from the 
observer dynamic by introducing the following variable: 

( )ˆ
dT Rφ θ= − &  (13) 

ˆ
d

T
&

 is substituted from (13) into (12) so the dynamics of the 

disturbance observer is then converted to the following form: 

( ) ( ) ( ) ( )( )1 ,L D C G Rφ θ θ θ θ θ θ φ−= + − Τ − −& & & &  (14) 

Considering the symmetry of the inertia matrix for the 
biped robot, and as well as the bounded control signal of the 
predictive controller, conditions of [12, 17] are similar to what 
defined in the previous section. This DO, can now be applied 
to the system. 

B. Disturbance Observer in DSP 

The DSP dynamic of the biped robot is different from the 
SSP dynamic because of external forces exerted when the 
moving leg is placed on the ground; For this reason, some 
changes should be applied to the disturbance observer design. 
If the disturbance observer in SSP is applied to the DSP 
dynamic without any change in support mode, the external 
force exerted by the friction between moving leg and the 
ground and vertical reaction force of the ground will be 
recognized as disturbances by the observer and the disturbance 
observer will try to eliminate them. The elimination of these 
forces means that the moving leg is removed from the ground 
and the SSP dynamic occurs for the robot. This generates a 
deviation in the DSP dynamic. By considering the applied 
disturbances, the DSP dynamic of the robot is represented the 
dynamic of the robot in two-leg support state can be expressed 
as follows: 

( ) ( ) ( ), T

dD H G Jθ θ θ θ θ θ λ+ + = Τ + Τ +&& & &  (15) 

where 
TJ λ  is the external torque applied to the joints with the 

nominal dynamics of moving leg on the ground. For given 
TJ λ , T%  can be defined as: 

TT T J λ= +%  (16) 

The above equation is similar to the dynamics of the robot 
during the SSP. Therefore, the disturbance observer can be 
applied as follows: 

( ) ( ) ( ) ( )( )1 ,L D H G Rφ θ θ θ θ θ θ φ−= + − Τ − −& & & &%  (17) 

To determine 
TJ λ , λ  should be calculated from: 

( )( )1

2 21 2 -
c a b d

S S S Nλ ω−= − + Τ + Τ&  (18) 

in which, 
2cS , 

21aS , 
2bS  and N  are expressed as [2]. T  is 

equal to: 

ˆ
NMPC d

T T T= −  (19) 

where is calculated by controller, so we will have: 

( )( )1

2 21 2 -
c a b NMPC

S S S e Nλ ω−= − + Τ +&  (20) 

in which, the dynamic error of the disturbance observer is 
calculated by (10). 

V. SIMULATION RESULTS 

The parameters of the 5-DOF biped robot are considered as 
[2]. The initial conditions of joints are defined as follows: 
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( )
1 2 3 4 5

1 2 3 4 5

1.18 , 31.29 , 0 , 10.19 , 28.14

1.03, 0.16, 0, 1.09, 0.1 rad/s

θ θ θ θ θ

θ θ θ θ θ

= = − = = − = −

= = − = = − =

o o o o o

& & & & &

The robot velocity and its step length are assumed to be 1m/s 
and 0.7m, respectively. For the external disturbance, the forces 
applied by coulomb and viscous friction to the joints is 
considered as follows: 

( )5 0.6i

f i iT sign θ θ= +& &  (21) 

In Figs. 2 and 3, the results are indicated for the case without 
disturbance observer. It is observed that without the 
disturbance observer, the controller cannot track the reference 
trajectories with an appropriate performance and this disrupts 
the robot movement, which is accompanied by a lot of 
oscillations. The simulation results are presented for the case 
with the disturbance observer designed in this study. In Fig. 4, 
curves of joint angles are plotted and their tracking error are 
presented in Fig. 5. 

 

 
Figure 2.  Joint angles without NDO 

 
Figure 3.  Hip and tip of swinging leg without NDO 

 

The tracking process is conducted with good accuracy and 
high speed and the tracking error is negligible. In Figs. 6 the 
position of the tip of the moving leg and waist is presented, 
which indicates the smooth movement of the robot. In Fig. 7, 
the torque value is presented for different joints, and it is 

observed that all of them are in the allowable range. Also, the 
disturbance torque is accurately estimated in the lowest 
possible time, as shown in Fig. 8. By increasing the coefficient 
c, the estimation time can be reduced, but more oscillations are 
created in the estimation process. 

 

 
Figure 4.  Joint angles with NDO 

 
Figure 5.  Tracking errors of joint angles with NDO 

 
Figure 6.  Hip and tip of swinging leg with NDO 
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Figure 7.  Joint torques 

 
Figure 8.  Estimation of disturbance torques 

 

VI. CONCLUSION 

In this paper, a NDO-based predictive control strategy has 
been designed to control the intended biped. In the robot 
model, all three dynamics of SSP, DSP, and impact have been 
considered for scenario of walking on the smooth surface. By 
defining the appropriate cost function as well as linear and 
nonlinear constraints for the predictive controller, an 
improvement has been witnessed in the robot performance 
when tracing the reference trajectories. To deal with external 
disturbances and friction in the robot, an enhanced nonlinear 
disturbance observer has been designed that estimate the 
disturbance value by using the position of the joints and their 
angular velocity, and provided them to the controller. The 
simulation results indicate the good performance and high 
efficiency of the controller and its proposed observer in the 
scenario of the stable dynamic walking in the presence of 
applied external disturbances and friction. Future works will 
be designing a NMPC based NDO for stepping over or 
avoiding obstacles. 
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