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Abstract: In this study, a new state-dependent impulsive observer (SDIO) is proposed for a class of non-linear time-delay
systems. The proposed observer is based on the extended pseudo-linearisation technique that parameterises the non-linear
time-delay system to a pseudo-linear structure with time delay and state-dependent coefficients. Applying this technique, the
presented observer is utilised for non-linear systems with multiple, time-varying and distributed delays. Furthermore, the
extended pseudo-linearisation technique simplifies the procedure of impulsive observer design for non-linear time-delay
systems. The proposed SDIO is capable of continuously estimating system states using discrete samples of the system output
that are available at discrete impulse times. The stability and convergence of the proposed observer are proven via a theorem
utilising time-varying and delay-independent Lyapunov function and the comparison system theory of impulsive systems. It is
guaranteed that the estimation error asymptotically converges to zero under well-defined and less-conservative sufficient
conditions that are presented in terms of feasible linear matrix inequalities. In addition, the stability theorem specifies an upper
bound on the time intervals between consecutive impulses. Results are simulated on Congo Ebola disease model which is an
epidemic non-linear time-delay system. Simulation results confirm the effectiveness and performance of the proposed SDIO.

1 Introduction
During recent decades, the impulsive systems theory has attracted
the attention of many researchers in control theory field. Impulsive
systems are a subclass of the hybrid systems and consist of both
continuous and discontinuous parts. The continuous dynamical
behaviour of impulsive system is presented by continuous
differential equations defined between impulse intervals. The
discontinuous dynamical behaviour is described by difference
equations defined at impulse times when, the system states
suddenly change.

Recently, based on impulsive system theory and its hybrid
characteristics, the impulsive observers were developed. Classical
continuous-time observers update the system states estimation
continuously and thus they require continuous output
measurement. On the other hand, classical discrete-time observers
only update the states estimations at specific times using discrete
output measurement. Interestingly, impulsive observers update the
states estimation continuously according to system dynamics while
discrete output measurement is used. In many practical applications
of the control systems, only discrete-time measurements are
feasible [1]. For instance, in the chemical and economic processes,
biological applications such as distribution of the drug in the
human body and impulsive vaccination, chaos communication
systems, renewable resources management, biological neural
networks, population ecology, rhythmic models of pathology, the
modulated frequency signal processing systems, flying objects and
so on, output measurements are available at discrete time instants
and the time intervals between instances are not necessarily
constant, equal or even known [2]. Some advantages of impulsive
observer are as follows [3, 4],

• Unlike the continuous observers, the impulsive observers utilise
discrete output measurement for state estimation update. Thus,
these observers estimate the states of the system even if data
transmission cannot continually go on.
• Impulsive observers reduce transmitted data from the system to
the observer and therefore, the communication channel bandwidth
is reserved.

• Reduction of transmitted data between system and observer, the
cost of data transmission is decreased and channel capacity is
increased.

As it is mentioned in [5], the impulsive observers is realisable if
the observer is implemented on a microcontroller chip since in that
case the full observer state is easily set to any value at any impulse
time. The design of the impulsive functional observer for linear
systems is proposed in [3]. The stability analysis is presented by
considering a new piecewise differentiable Lyapunov function. The
sufficient conditions of exponential stability of the proposed
observer are derived in terms of linear matrix inequalities (LMIs).
Then, the authors proposed the impulsive observer deign for
uncertain linear systems in [6], and a time-varying Lyapunov
function is introduced for the stability analysis and sufficient
conditions are derived in terms of LMIs. In [7], the continuous-
discrete time interval observer is proposed for linear systems with
the exsistence of additive disturbances. The asymptotic stability of
the observer is investigated and the upper and lower bounds of
solutions are given.

In the impulsive observer design for non-linear systems, a
restrictive assumption is considered in almost all articles which is,
the considered non-linear system should have two separable and
additive linear and non-linear parts. This limits the class of under
study non-linear systems. For non-linear time-delay systems, the
assumption is more restrictive that, time-delay part should be just
in linear part or separable from the other parts. Thus, the proposed
observers are applicable to some special classes of non-linear time-
delay systems.

The observers with impulsive dynamical behaviour for linear
and Lipschitz non-linear continuous-time systems are presented in
[8]. However, it is assumed that the measured output continuously
is available at all times. A time-varying Lyapunov function is used
for analysis of the stability theorem. The impulsive observer design
for non-linear systems is investigated in [9]. The presented
observer shares the structure as same as a Luenberger observer
with a rule for updating the observer gain. The proposed observer
is simulated on a flexible joint robotic arm. In [10], the impulsive
observer with timevarying gain is presented for non-linear systems.
The stability of the proposed observer is investigated utilising
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small gain arguments. The design of continuous-discrete observer
is presented for continuous-time non-linear time-varying systems
with discrete measurements [11]. It is shown that the solution of
the proposed observer using the notion of cooperative systems
converges to the solution of the original system under sufficient
conditions on the non-linear terms and the maximum sampling
interval. In [12], the authors presented an impulsive continuous-
discrete time observer for a class of uncertain non-linear systems.
The output measurements are available in constant sampling
intervals. The performance of the proposed observer is shown by
some simulations on biochemical reactors. The impulsive observer
design is investigated in [13] for a class of non-linear Lipschitz
system. The event-triggered technique is used in order to reduce
the network usage. It is considered that the measured output is
available for every constant sampling interval but, the data is
transferred by an event-triggered mechanism. The proposed
observer is tested on a flexible joint robot.

Adaptive impulsive observer (AIO) design is proposed for
chaotic system synchronisation problem [4, 5, 14]. The proposed
AIO is able to estimate both the states and unknown parameters of
the uncertain system. The comparison system theorem is used to
analysis the stability of the AIO that leads to less-conservative
sufficient conditions [5]. The proposed observer is improved [4,
14] and the stability conditions are presented in terms of LMIs.
Also, the stochastic AIO is developed in [15]. It is shown in [16]
that the stability sufficient conditions of the proposed AIO cannot
be satisfied. In [17], AIO stability analysis is revised applying an
improved time-varying Lyapunov function, in conjunction with the
application of a generalised version of Barbalat's Lemma. Also, the
sufficient conditions are formulated in terms of LMIs. In [18], an
adaptive observer is designed for a class of uniformly observable
non-linear systems with sampled output. The proposed impulsive
observer is combined of a continuous-time observer coupled and an
intersample output predictor.

In [19], an impulsive observer with variable update interval is
proposed for Lipschitz non-linear time-delay systems. A novel
discontinuous and delay-dependent Lyapunov function and
Razumikhin-type technique are applied to analyse the stability, and
sufficient conditions are presented using LMIs. The results are
presented in two cases: (i) the delay is bounded, (ii) the delay and
its time-derivative are bounded. The proposed stability conditions
depend on both the lower and the upper bounds of the update
intervals. Thus, the proposed conditions are less-conservative than
the delay-free conditions in [6]. In [20], the observer design for
discrete-time non-linear impulsive switched systems with time-
varying delay is investigated. A delay-dependent Lyapunov-
Krasovskii function is considered to analyse the stability, and
sufficient conditions are established using the average dwell time
approach and LMIs. The preliminary model of the state-dependent
impulsive observer (SDIO) is presented in [21]. The comparison
system theory and eigenvalue approach are used for stability
analysis of the proposed SDIO.

As it is seen, in researches of the impulsive observer design for
non-linear systems, only special and confined classes of these
systems are discussed. Actually, for simplifying of routine of
stability analysis and calculation of sufficient conditions, the
equation of the system is limited to have a linear part. These
conditions for non-linear time-delay systems are more restrictive.
In this paper, this problem has been largely resolved using
extended pseudo-linearisation technique. This technique is the
factorisation procedure of non-linear time-delay system into a
pseudo-linear structure. Applying the extended pseudo-
linearisation approach, the presented observer can be extended for
several kinds of non-linear time-delay systems such as systems
with multiple discrete delays, time-varying delay and distributed
delay. So, the proposed SDIO based on extended pseudo-
linearisation can be applied for a wider class of non-linear time-
delay systems. Another advantage of the extended pseudo-
linearisation approach is that, irrespective of the delay value, the
proposed observer is asymptotically stable. Thus, in this paper,
unlike the previous methods, the delay value is not bounded. In
addition, using this technique, there is no need to employ delay-
dependent Lyapunov function thus, the routine of impulsive

observer design for non-linear time-delay systems is simplified.
Also, for multivariable systems, there are an infinite number of the
extended pseudo-linearisation factorisation. This matter causes
additional degrees of freedom in the procedure of the observer
design, which can be utilised to avoid the observability reduction
or increase the observer performance.

In the stability theory of impulsive systems, it has been shown
that it is not necessary to have a non-positive time-derivative of
Lyapunov function. This is formulated as the comparison system
theory of impulsive differential equation systems and its corollaries
[1, 22, 23]. Therefore, considering this theory, the sufficient
conditions for the stability analysis are less-conservative. In this
paper, the stability analysis of the SDIO is investigated using time-
varying delay-independent Lyapunov function and the comparison
system theory. It is shown that under some well-defined and less-
conservative sufficient conditions that are presented in terms of
feasible LMIs, the estimation error converges to zero,
exponentially.

In previous works such as [17], the minimum and maximum
impulse intervals are regarded as known parameters. However, in
SDIO, the proposed stability theorem specifies the maximum
interval between impulses. The minimum impulse interval is free,
and the maximum is calculated by the third condition of the
comparison system theory. Furthermore, in the third condition, the
maximum impulse interval is related to three design parameters
making a trade-off between increasing the maximum impulse
intervals and the conservatism of sufficient conditions. It is worth
mentioning that the stability problem of the AIO design is solved
using the proposed approach.

In [19, 20], impulsive observer design is investigated for non-
linear time-delay systems in a special class with four separated
linear without delay, linear with delay, non-linear without delay
and non-linear with delay parts. But, there are some non-linear
time-delay systems that are not formulated in this form. Thus,
neither of designed impuslive observers is not utilisable for them.
As a novelity and solution, the proposed SDIO is presented for
these systems. To prove this claim, the proposed SDIO is simulated
on the SIR epidemic non-linear time-delay model for Congo Ebola
disease.

The paper is organised as follows. In Section 2, the basic
concepts of impulsive systems are presented. Also, the stability
theorem of the comparison system and its corollary are expressed
in this section. The non-linear time-delay system equation and
extended pseudo-linearisation technique are explained in Section 3.
Moreover, the condition of existence of extended pseudo-
linearisation is reviewed. In Section 4, the SDIO and the sufficient
conditions of the stability are proposed. Furthermore, the upper
bound of the updating intervals is presented in this section. The
simulation results of Congo Ebola as a non-linear time-delay
system are shown in Section 5. At the end, in Section 6, the
conclusion of this paper is presented.

1.1 Notation

The following notations are used throughout this paper. Rn denotes
the n-dimensional real space and R+ = [0, + ∞). I is the identity
matrix and AT is the transpose of matrix A. For any ρ ∈ R+,
Sρ = x ∈ Rn ∣ ∥ x ∥ < ρ, where ∥ . ∥ denotes the Euclidean norm.
∥ x ∥P

2 = xTPx is the norm induced by a symmetric positive
definite matrix P. C denotes the set of all continuous functions. Ci

is the class of all continuous functions a(x), where they are i times
continuously differentiable with respect to x. Also, Ci, j is the class
of all continuous functions a(t, x), where they are i and j times
continuously differentiable with respect to t and x, respectively.
a(t, x) belongs to class κ if, a ∈ C[R+, R+] (a ∈ C and a: R+ → R+),
a(t, 0) = 0 and a is strictly increasing in x.

2 Basic concepts of impulsive systems
The impulsive system is described by following the impulsive
differential equation as
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ẋ(t) = f (t, x(t)), t ≠ tk
Δx = f I(x(t)), t = tk

(1)

where x ∈ Rn is the state vector, t is the time variable and
f : R+ × Rn → Rn, f I : Rn → Rn are non-linear functions with
compatible dimensions. tk, k = 1, 2, … are the impulse times that
tk > tk − 1 > 0. The state jump vector at the impulse time is
Δx(tk) = x(tk+) − x(tk). It is assumed that x(tk) = x(tk−).

In the stability theory of impulsive systems, semi-negative
definiteness of Lyapunov function time-derivative is not necessary.
Thus, sometimes the Lyapunov function may increase in some time
intervals but, the stability of system is still reserved. The following
definitions and a theorem are presented [1].

 
Definition 1: V : R+ × Rn → R+ belongs to class V0 if

1. V is continuous in (tk − 1, tk] × Rn and for each x ∈ Rn, k=1,2,…,
lim(t, y) → (tk+, x) V(t, y) = V(tk+, x) exists;

2. V is locally Lipschitz in x.

 
Definition 2: For (t, x) ∈ (tk − 1, tk] × Rn, for all k, Dini's

derivatives D+V(t, x), D−V(t, x) are defined as

D+V(t, x)

= lim
h → 0+ sup 1

h V t + h, x + h f (t, x) − V(t, x)

D−V(t, x)

= lim
h → 0− sup 1

h V t + h, x + h f (t, x) − V(t, x)

(2)

It is worth mentioning using Dini's derivatives instead of
conventional derivatives, the concept of derivative can be extended
to certain classes of discontinuous functions that exist in impulsive
systems.

 
Note 1: If V ∈ C1[R+ × Rn, R+], then

D+V(t, x) = D−V(t, x) = ∂V(t, x)
∂t + ∂V(t, x)

∂x f (t, x) (3)

 
Definition 3: The comparison system of (1) is presented as [1]

ẇ(t) = g t, w(t) , t ≠ tk
w(tk+) = ψk w(tk) , t = tk

(4)

where g: R+ × R+ → R is continuous and satisfies definition 1,
ψk: R+ → R+ is non-decreasing with considering the following
assumption for V ∈ V0:

D+V(t, x) ≤ g t, V(t, x) , t ≠ tk
V(t, x + Δx) ≤ ψk V(t, x) , t = tk

(5)

One of the advantages of comparison system theory is to reduce
study of the main system to the study of a simple scalar impulsive
system. So, it is easier to investigate the stability problem of the
comparison system (4) with one impulsive differential equation
instead of the main system [1, 22, 23].

 
Theorem 1: Suppose that f (t, 0) = 0, f I(0) = 0 and g(t, 0) = 0

for all k and t > 0 so, that we have the trivial solution of the main
system (1). Assume that the following conditions are satisfied [1]:

1. V ∈ V0, ρ > 0, V : R+ × Sρ → R+ and in (tk − 1, tk]:
D+V(t, x) ≤ g t, V(t, x) .

2. There exists a ρ0 > 0 such that x ∈ Sρ0 implies x + Δx ∈ Sρ0 for
all k and V(tk, x + Δx) ≤ ψk V(tk, x) .

3. b ∥ x ∥ ≤ V(t, x) ≤ a ∥ x ∥  on R+ × Sρ, where a, b ∈ κ.

Then, the stability properties of the trivial solution of the
comparison system (4) imply the corresponding stability properties
of the trivial solution of system (1).

 
Corollary 1: Let g t, V(t, x) = ξ̇(t)V(t, x), where ξ ∈ C1[R+, R+],

ψk V(tk, x) = dkV(tk, x). The origin of (1) is asymptotically stable
if the following conditions are satisfied [1]:

ξ̇(t) ≥ 0
dk ≥ 0, k = 1, 2, …
ξ(tk) − ξ(tk − 1) + ln(γdk) ≤ 0, γ > 1

(6)

It is worth noting, in the corollary of the comparison system
theory even if the equalities are established, the asymptotically
stability will be guaranteed [1]. Refer to [1], for proof of Theorem
1 and its corollary. The comparison system theory and its
corollaries are used for the stability analysis of the impulsive
systems in some researches. For example, in [24], the stability
analysis of the non-linear impulsive and switching systems with
time-delay is investigated based on the corollaries of the
comparison system theory. Furthermore, this theorem is employed
to design an impulsive controller for discrete non-linear time-delay
systems [25].

3 Extended pseudo-linearisation technique
The pseudo-linearisation approach factorises a non-linear system
into a linear-like structure with the state-dependent matrices [26,
27]. In [28], the optimal feedback controller is designed for general
non-linear systems based on pseudo-linearisation technique. This
approach is used to design an optimal tracking controller for super-
tankers in autopilot [29]. Moreover, in [30], The state-dependent
Riccati equation based on pseudo-linearisation factorisation is
proposed to control autonomous underwater vehicles. The pseudo-
linearisation technique is extended for non-linear time-delay
systems [31–33]. In [31], suboptimal sliding mode controller is
designed for non-linear time-delay systems based on extended
pseudo-linearisation. Also, based on this approach, suboptimal
observer [32] and controller [33] are presented for non-linear time-
delay systems. Applying the extended pseudo-linearisation
approach, the presented observer can be utilised for several kinds
of non-linear time-delay systems such as systems with multiple
discrete delays, time-varying delay and distributed delay.
Therefore, the proposed SDIO based on extended pseudo-
linearisation can be applied for a wider class of non-linear time-
delay systems. Another advantage of the extended pseudo-
linearisation approach is that, irrespective of the delay value, the
proposed observer is asymptotically stable [31–33]. Thus, in this
paper, unlike the previous methods, the upper bound of the time-
delays is not required. For multivariable systems, there are an
infinite number of extended pseudo-linearisation factorisation that
cause the flexibility in the observer design [32].

The non-linear time-delay system equation is considered as

ẋ(t) = f x(t), x(t − τ1(θ)), …, x(t − τm(θ))
y(t) = Chx(t)
x(t) = φ0(t), − max

θ, i = 1:m
τi(θ) ≤ t ≤ 0

(7)

where x ∈ Rn is a continuous state vector, y ∈ Rp is the output
vector. Ch ∈ Rp × n is the output matrix and f : Rn × … × Rn → Rn is
a differentiable continuous functions with respect to its argument.
The time-delays τ1(θ) < … < τm(θ) are positive functions with
argument θ that is t,x or both. m is the number of delays.
φ0(t): [ < dol >< dol > − maxθ, i = 1:m τi(θ) < dol >< dol > , 0]
→ Rn

is a continuous function for initial conditions of the system. It is
assumed f 0, x(t − τ1(θ)), …, x(t − τm(θ)) = 0 that is satisfied by
the states augmentation. For non-linear time-delay system (7), the
extended pseudo-linearisation form is presented as

ẋ(t) = A x(t), x(t − τ1(θ)), …, x(t − τm(θ)) x(t) (8)
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where A: Rn × … × Rn → Rn × n is the state-dependent system
matrix [32]. It should be noted that all delayed terms are factorised
in the matrix A. For example, consider the non-linear time-delay
system with one state as ẋ(t) = x(t)x(t − τ). For the mentioned
system, there are two pseudo-linearisation forms as
L1: A1 x(t − τ) x(t), that A1 = x(t − τ) and L2: A2 x(t) x(t − τ) that
A2 = x(t). But, only L1 is extended pseudo-linearisation
parameterisation. The main advantage of the extended pseudo-
linearisation technique is that unlike Jacobian method, does not use
any approximations then, the non-linear characteristics of the
system are maintained. Moreover, in this method all delayed parts
are placed in the state-dependent system matrix. Thus, it is possible
to extend the linear methods of observer design to non-linear time-
delay systems [33].

 
Theorem 2: Assumed that Ω is a bounded open subset of Rn

Euclidean space that contains the origin. Let f :Ω → Rn such that
f 0, x(t − τ1(θ)), …, x(t − τm(θ)) = 0 and
f x(t), x(t − τ1(θ)), …, x(t − τm(θ)) ∈ Cm, m ≥ 1. Then, for all
xt ∈ Ω, an extended pseudo-linearisation form (8) of f ( . ) always
exists for some A:Ω → Rn × n. Under the above conditions, one
extended pseudo-linearisation parameterisation is guaranteed to
exist as follows [27, 32]:

A x(t), x(t − τ1(θ)), …, x(t − τm(θ))

= ∫
0

1 ∂ f x(t), x(t − τ1(θ)), …, x(t − τm(θ))
∂x(t) x(t) = λx(t) dλ

(9)

where λ is a dummy variable introduced in the integration. For
simplifying, the abbreviation of (xt) is defined as
x(t), x(t − τ1(θ)), …, x(t − τm(θ)) .

As it is mentioned, if the system has more than one state, there
are infinite number of the extended pseudo-linearisation
parameterisation. This additional degree of freedom in the observer
design is presented in the following theorem.

 
Theorem 3: Assume that there are two extended pseudo-

linearisation forms for f (xt) as f (xt) = A1(xt)x(t) and
f (xt) = A2(xt)x(t). Therefore, there is an extended pseudo-
linearisation form as A(xt, α) = αA1(xt) + (1 − α)A2(xt) and for any
α ∈ R, A(xt, α) represents infinite number of the extended pseudo-
linearisation forms of f (xt) [27, 32].

 
Theorem 4: The extended pseudo-linearisation (8) is a point-

wise observable parameterisation of non-linear time-delay system
(7) in Ω (the pair {A(xt), Ch} is observable in the linear sense for all
xt ∈ Ω) if the state-dependent observability matrix that is defined
as (10) is full rank (rank(Φo(xt)) = n) for all xt ∈ Ω [27, 32]

Φo(xt) = Ch ChA(xt) … ChA(xt)n − 1 T (10)

4 State-dependent impulsive observer design
The SDIO for non-linear time-delay system (7) is proposed as

x^̇(t) = A(xt
^ )x^(t), t ≠ tk

y^(t) = Chx^(t)
Δx^(t) = F(xt

^ ) y(t) − y^(t) , t = tk
(11)

where x^, y^ are the estimated state and output vectors, respectively,
and F(xt

^ ) ∈ Rn × p is the states impulses gain matrix. For designing
of the SDIO, the following assumptions are considered.
 

Assumption 1: f (xt) satisfies the following Lipschitz condition:

f (xt) − f (xt
^ ) ≤ K f x(t) − x^(t) (12)

where K f ∈ R+ is Lipschitz constant.

 
Assumption 2: The matrix-valued function A(xt) is continuous

with respect to x.
 

Assumption 3: The pair {A(xt), Ch} is observable in the linear
sense for all xt ∈ Ω.

The following lemmas have been used during the proof of the
proposed SDIO stability theorem.

 
Lemma 1: For any matrix P, D ∈ Rn × n and n-dimensional

vectors x,w, the following inequality is satisfied for any positive
constant ε > 0 [34]:

xTPTDw + wTDTPx ≤ εwTw + 1
ε xTPTDDTPx (13)

 
Theorem 5: Suppose that the Assumptions 1 to 3 are

established. The state estimation error e = x − x^ of the presented
SDIO by (11) asymptotically converges to zero if the following
conditions are satisfied:

Σi Pi

Pi −εI
≤ 0, i = 1, 2 (14)

−σP1 P2 − F(xt
^ )Ch

T

P2 − F(xt
^ )Ch −P2

≤ 0 (15)

αΔk + ln(γσ) ≤ 0 (16)

where ε > 0, α ≥ 0, γ > 1 and σ ≥ 0 are constants that satisfy
γσ ≤ 1. The matrix P(t) > 0 is presented as (22) and ρ(t) is defined
as [8]

ρ(t) = tk − t
Δk

, t ∈ (tk − 1, tk] (17)

where Δk = tk − tk − 1 is the kth impulse interval. P1, P2 are
symmetric positive definite matrices and Σi is defined as

Σi = AT(xt
^ )Pi + PiA(xt

^ ) + (P1 − P2)/Δk

+2εK f
2 I + 2εAT(xt

^ )A(xt
^ ) − αPi

(18)

 
Proof: Using (8) and (11), the dynamic and jump of the state

estimation error are

ė(t) = A(xt
^ )e(t) + A(xt) − A(xt

^ ) x(t), t ≠ tk
Δe(t) = − F(xt

^ ) y(t) − y^(t) = − F(xt
^ )Che(t), t = tk

(19)

For simplifying, the abbreviation A
~
 is defined as A(xt) − A(xt

^ ). The
dynamic of the discrete part at impulse times is calculated as

Δe(tk) = e(tk+) − e(tk) = − F(xt
^ )Che(tk)

→ e(tk+) = I − F(xt
^ )Ch e(tk)

(20)

The time-varying Lyapunov function candidate is considered as

V(t, e) = e(t) P
2 = eT(t)P(t)e(t) (21)

where P(t) is a time-varying periodic and symmetric positive
definite matrix as [6]

P(t) = P(t + Δk), t ∈ (tk − 1, tk], k = 1, 2, …
P(t) = 1 − ρ(t) P1 + ρ(t)P2

(22)

Considering this definition at t = tk

ρ(tk) = 0 → P(tk) = P1 (23)

4 IET Control Theory Appl.
© The Institution of Engineering and Technology 2019



Moreover, at t = tk+

P(tk+) = P(tk − 1
+ + Δk) = P(tk − 1

+ )
ρ(tk − 1

+ ) = 1 → P(tk+) = P2
(24)

Thus, the time-derivative of Lyapunov function at t ∈ (tk − 1, tk] is

D+V(t, e) = eT AT(xt
^ )P(t) + P(t)A(xt

^ ) e
+eT (P1 − P2)/Δk e

+xTA
~TP(t)e + eTP(t)A

~
x

(25)

Utilising Lemma 1, it is concluded

xTA
~TP(t)e + eTP(t)A

~
x ≤ εxTA

~TA
~
x + 1

ε eTP(t)2e (26)

With considering Assumption 1, the following result is obtained:

xTA
~TA

~
x = A

~
x 2 = A(xt) − A(xt

^ ) x ± A(xt
^ )x^ 2

≤ 2 f (xt) − f (xt
^ ) 2 + 2 A(xt

^ )(x − x^) 2

≤ 2K f
2eTe + 2eTAT(xt

^ )A(xt
^ )e

(27)

Thus, (25) is rewritten as

D+V(t, e) ≤ eT AT(xt
^ )P(t) + P(t)A(xt

^ ) e
+eT (P1 − P2)/Δk e

+eT 2εK f
2 I + 2εAT(xt

^ )A(xt
^ ) + 1

ε P(t)2 e
(28)

Now the right side of (28) is added to ±αV(t, e)

D+V(t, e) ≤ eTΣe + αV(t, e) (29)

where

Σ = AT(xt
^ )P(t) + P(t)A(xt

^ ) + (P1 − P2)/Δk

+2εK f
2 I + 2εAT(xt

^ )A(xt
^ ) + 1

ε P(t)2 − αP(t)
(30)

With regard to the definition of Matrices P as (22), Σ is written as

Σ = Σ1 + ρΣ2 + ρ2Σ3 (31)

where

Σ1 = AT(x^t)P1 + P1A(x^t) + P1 − P2

Δk
+ 2εK f

2 I

+2εAT(xt
^ )A(xt

^ ) + 1
ε1

P1
2 − αP1

Σ2 = AT(x^t)(P2 − P1) + (P2 − P1)A(x^t)

+ 2
ε P1(P2 − P1) − α(P2 − P1)

Σ3 = 1
ε (P2 − P1)2

With regard to Σ1 ≤ 0, Σ3 ≥ 0 and 0 ≤ ρ ≤ 1, thus, if
Σ1 + Σ2 + Σ3 ≤ 0, then, Σ ≤ 0. These inequalities are driven to
LMIs (14) based on Schur complement lemma [4]. Satisfying of
two LMIs of (14), eTΣe ≤ 0 is obtained, thus

D+V(t, e) ≤ αV(t, e) (32)

where it is considered ξ̇(t) = α ≥ 0 and thus, the first condition of
corollary 1 (6) is satisfied. Due to (24), the Lyapunov function at
t = tk+ is

V(tk+, e) = eT(tk) I − F(xt
^ )Ch

TP2 I − F(xt
^ )Ch e(tk) (33)

With considering the following condition:

I − F(xt
^ )Ch

TP2 I − F(xt
^ )Ch ≤ σP1 (34)

Utilising Schur complement lemma [4], (34) is rewritten as LMI as
(15) where F(xt

^ )Ch = P2
−1F(xt

^ )Ch. The Lyapunov function is

V(tk+, e) ≤ eT(tk)σP1e(tk) = σV(tk, e) (35)

where dk = σ ≥ 0 and the second condition of corollary 1 (6) is
satisfied. In the end, according to the third condition of corollary 1
(6)

αtk − αtk − 1 + ln(γdk) ≤ 0 → ln(γdk) ≤ − αΔk (36)

With regards to αΔk ≥ 0 and γ > 1, the argument of ln function
should be less than or equal to ;1 hence, it is concluded γdk ≤ 1,
which is satisfied by σγ ≤ 1 → σ ≤ 1. □

 
Remark 1: The maximum distance of the impulses is presented

as

Δk
max = max

k = 1, 2, …
(tk − tk − 1) = ln(γσ)

α (37)

Three steps of Algorithm 1 (see Fig. 1) should be implemented
every sample time. The YALMIP as a MATLAB toolbox is very
efficient in calculating the LMIs.

It is worth noting considering the time-varying Lyapunov
function as (21) and time-varying periodic matrix P(t) as (22) the
problem of the stability theorem for the AIO design [4] is solved.
The asymptotic and exponential stability of the SDIO is presented
as Remarks 2 and 3, respectively, without the comparison system
theory and with the classical approach.

 
Remark 2: The state estimation error of the proposed SDIO by

(11) asymptotically converges to zero if the following conditions
and LMI (15) are satisfied:

Σi′ Pi

Pi −εI
≤ 0, i = 1, 2 (38)

where Σi′ is defined as

Fig. 1  Algorithm 1: The following procedure is presented to design the
proposed SDIO
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Σi′ = AT(xt
^ )Pi + PiA(xt

^ ) + (P1 − P2)/Δk

+2εK f
2 I + 2εAT(xt

^ )A(xt
^ )

(39)

 
Proof: Equation (28) can be rewritten as

D+V(t, e) ≤ eTΣ′e (40)

where

Σ′ = AT(xt
^ )P(t) + P(t)A(xt

^ ) + (P1 − P2)/Δk

+2εK f
2 I + 2εAT(xt

^ )A(xt
^ ) + 1

ε P(t)2 (41)

Satisfying two LMIs of (38), eTΣ′e is obtained, thus D+V(t, e) ≤ 0.
It is worth noting, with the existence of α in Σ, the LMI condition
of (14) is satisfied easier than (38) and the Theorem 5 presents
less-conservative sufficient conditions than the classical approach
in [8]. Besides, (16) presents the upper bound of the time interval
of impulses. This condition shows that the maximum distance of
the impulses has the inverse relation with α. Thus, there must be a
tradeoff between a bigger upper bound of the time interval of
impulses and solving the LMIs (14). □

 
Remark 3: The state estimation error of the proposed SDIO by

(11) exponentially converges to zero if the following conditions
and LMI (15) are satisfied:

Σi″ Pi

Pi −εI
≤ 0, i = 1, 2 (42)

where δ > 0 and Σi″ are defined as

Σi″ = AT(xt
^ )Pi + PiA(xt

^ ) + (P1 − P2)/Δk

+2εK f
2 I + 2εAT(xt

^ )A(xt
^ ) + δPi

(43)

 
Proof: The right side of (28) is added to ±δV(t, e), so

D+V(t, e) ≤ eTΣ″e − δV(t, e) (44)

where

Σ″ = AT(xt
^ )P(t) + P(t)A(xt

^ ) + (P1 − P2)/Δk

+2εK f
2 I + 2εAT(xt

^ )A(xt
^ ) + 1

ε P2 + δP(t)
(45)

Satisfying two LMIs of (42), eTΣ″e ≤ 0 is obtained and
D+V(t, e) ≤ − δV(t, e). As a result, the Lyapunov function is
calculated as

V(t, e) ≤ V(tk − 1, e)exp − δ(t − tk − 1) ; tk − 1 < t ≤ tk (46)

which monotonically decreases between impulses. □

5 Simulation results
In this section, the effectiveness of the proposed SDIO is illustrated
by numerical simulations. The susceptible-infected-recovered
(SIR) epidemic non-linear time-delay model is considered as [35,
36]

Ṡ(t) = b − μrN(t)
K N(t) − βS(t)I(t − τ)

N(t − τ)

− d + (1 − μ)rN(t)
K S(t)

İ(t) = − d + (1 − μ)rN(t)
K + λ I(t)

+ βS(t)I(t − τ)
N(t − τ)

Ṙ(t) = λI(t) − d + (1 − μ)rN(t)
K R(t)

(47)

where S,I,R are susceptible, infected and recovered individuals,
respectively. N(t) = S(t) + I(t) + R(t) is the number of total
population. b > 0, d > 0, λ > 0, β > 0 are the birth, death, recovery
and contact rate, respectively. r = b − d is the intrinsic growth rate,
μ is convex combination constant, K is the carrying capacity of the
population and τ is a non-negative constant represents a time delay
on infected individuals I and total individuals N during the spread
of disease. The state R is considered as the measured output, so
Ch = [0, 0, 1]. The value of the parameters in a particular disease
Congo Ebola is presented in Table 1 [36]. The following form is
one of the an infinite number of extended pseudo-linearisation
parameterisation of (47)

A(xt) =

A11 b − μrN(t)
K b − μrN(t)

K

A21 A22 −(1 − μ)rI(t)
K

0 λ A33

(48)

where
A11 = b − μ rN(t)

K − βI(t − τ)
N(t − τ) − d + (1 − μ) rN(t)

K

A21 = βI(t − τ)
N(t − τ) − (1 − μ) rI(t)

K

A22 = − d + (1 − μ) rI(t)
K + λ

A33 = − d + (1 − μ) rN(t)
K

The benefit of the presented extended pseudo-linearisation form
(48) is that the state-dependent observability matrix is full rank.
The state-dependent observability matrix is calculated as

Φo(xt
^ ) = Ch ChA(xt

^ ) ChA(xt
^ )2 T

=
0 0 λ βI^(t − τ)

N^ (t − τ)
− (1 − μ)rI^(t)

K

0 λ *
1 * *

T

(49)

where * specifies uncalculated elements. The determinant of Φo(xt
^ )

is obtained as (50). Due to the parameters values in Table 1, this
determinant is always non-zero

Φo(xt
^ ) = − λ2 βI^(t − τ)

N^ (t − τ)
− (1 − μ)rI^(t)

K (50)

As it is mentioned, the maximum impulse interval is related to
three design parameters making a trade-off between increasing the
maximum impulse intervals and the conservatism of sufficient
conditions. The design parameters are considered as α = 0.068,
σ = 0.98, γ = 1.01 and ε = 1. Due to the Remark 1, the maximum
impulse interval is calculated as Δk

max = 10. In the present
simulation results, Δ = 5 is considered and the effect of bigger and
smaller impulse intervals are shown in Table 2. It is obvious that
increasing the impulse interval and decreasing the number of
measurement output, the impulsive observer has less efficiency in
the state estimation. Furthermore, due to Algorithm 1 (see Fig. 1),
the matrices P1, P2 and F are calculated every sample time. The

Table 1 SIR model parameters
Parameter Value Parameter Value
μ 0.014 day−1 b 0.07 day−1

d 0.0123 day−1 β 0.21 day−1

λ 0.0476 day−1 τ 10 day
K 10,900
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initial state is considered as x(0) = [9126, 315, 59]T and
x^(0) = [8500, 500, 200]T.

In Fig. 2, the real and estimated susceptible individuals using
the SDIO are shown. It is obvious that estimated state follows real
state even the output is available only in the fifth samples once.
Also, the jump values of the estimated susceptible individual are
shown in Fig. 3. In impulse times, the output is available and the
SDIO updates the states. So, over time, the amplitude of the
impulses decreases and the estimated state converges to the real
one. Figs. 4 and 5 show the convergence of the estimated infected
individual to the real one and its jumps in impulse times. The
estimated and real recovered individual are shown in Fig. 6 and its
jumps in impulse times are presented in Fig. 7. Fig. 8 shows the
real and estimation of the total population and Fig. 9 presents the
estimated total population jumps in impulse times. 

 

Remark 4: As it is mentioned in introduction section, one of the
advantages of the proposed method is that the SDIO could be used
for a wider class of non-linear time-delay systems with different
kinds of delays using the extended pseudo-linearisation technique.
Previous researches in the field of impulsive observer design
investigated a specific class of non-linear time-delay systems.
Mostly, the considered system has four separate parts: linear, linear
with delay, non-linear and non-linear with delay [19, 20]. But,
there are some systems that they could not be formulated in this
form. The proposed SDIO is simulated on the SIR epidemic non-
linear time-delay model for Congo Ebola disease. In [19, 20],
impulsive observer design is investigated for non-linear time-delay
systems. But, Congo Ebola disease cannot be presented in the
special class with two separated linear without delay and non-linear
with delay parts. In [19], the non-linear time-delay system is
considered as follows:

ẋ(t) = A0x(t) + A1x(t − τ(t)) + G0 f 0 H0x(t)
+G1 f 1 H1x(t − τ(t)) (51)

where A0, A1, G0, H0, G1, H1 are constant matrices with compatible
dimensions, f 0, f 1 are non-linear functions and τ is time-delay. The
delay is departed in two linear and non-linear sections. But, Congo
Ebola disease model that is presented in (47) cannot be formulated
as (51). Because, the sentence (S(t)I(t − τ))/(N(t − τ)) cannot be
separated into linear without delay and non-linear with delay or
vice versa. The non-linear time-delay system is considered in the
same form as in [20]. Therefore, the proposed SDIO can be used
for a wider class of non-linear time-delay systems.

In order to illustrate the efficiency of the proposed observer,
numerical simulation results of the SDIO and a non-impulsive
state-dependent observer are compared. The conventional state-
dependent observer is considered as

x^̇(t) = A(xt
^ )x^(t) + F(xt

^ ) y(t) − y^(t)
y^(t) = Chx^(t) (52)

where A(xt
^ ) − F(xt

^ )Ch is point-wise Hurwitz for all xt ∈ Ω. The
output of system is sampled by constant sampling interval Δ and
utilised in both observers. The normalised mean square error
(NMSE) and correlation coefficient (CC) are employed to illustrate
the performance of estimation of the observers

NMSE = 1
N ∑

k = 1

N

∑
i = 1

3 ei(k)
maxk ei(k)

2

(53)

CCi =
∑k = 1

N xi(k)x^i(k)
∑k = 1

N xi
2(k) ∑k = 1

N x^i
2(k)

(54)

where ei = xi − x^i, i = 1, 2, 3. NMSE and CCi represent the power
of the estimation error and the similarity of the real and estimated
states. Two signals are completely similar if CCi = 1 and
completely different if CCi = − 1. As it is shown in Table 2, the
state estimated by SDIO is more similar to real state and in
Δ = 10 s the conventional observer loses the performance.
Increasing the sampling interval, estimation error of both observers

Table 2 SDIO compared to conventional observer
Δ (Second) 1 2 5 10

SDIO NMSE 0.1115 0.1329 0.1906 0.2765
CC1 0.9999 0.9999 0.9998 0.9997
CC2 0.9982 0.9993 0.9997 0.9996
CC3 0.9998 0.9997 0.9996 0.9993

Conventional Ob. NMSE 0.4722 0.5748 0.7266 0.5261
CC1 0.9943 0.9922 0.9814 0.1469
CC2 0.9952 0.9910 0.9802 0.5027
CC3 0.9981 0.9932 0.9826 −0.0952

 Fig. 2  Real and estimated susceptible individual by SDIO
 

Fig. 3  Jump of estimated susceptible individual in impulse times
 

Fig. 4  Real and estimated infected individual by SDIO
 

Fig. 5  Jump of estimated infected individual in impulse times
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will increase, however, estimation error of SDIO is smaller than the
conventional observer especially when the sampling interval has
larger values.

6 Conclusion
In this paper, a new SDIO is presented for non-linear time-delay
systems based on extended pseudo-linearisation technique. The
proposed observer estimated the system states, continuously using
system output that was available at discrete and variable impulse
instants. The stability analysis of the proposed observer
investigated using time-varying and delay-independent Lyapunov
function and the comparison system theory of impulsive systems.
Two design features of the proposed impulsive observer are worth
to be emphasised: first, applicability of the SDIO for a wider class
of non-linear time-delay systems with different kinds of delays
utilising the extended pseudo-linearisation technique. Thus, there

was no requirement to exist a separated linear or delay structure in
the original non-linear model. Second, the guaranty of asymptotic
convergence of the estimation error to zero under well-defined and
less-conservative sufficient conditions that derived in terms of
feasible LMIs based on the comparison system theory. The
comparison results between the proposed observer and classical
one confirmed this matter. In addition, the maximum time interval
of impulses is presented. The simulation results of SIR epidemic
non-linear time-delay model for Congo Ebola verified the
effectiveness of the proposed impulsive observer.
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