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SYNCHRONIZATION CRITERIA FOR COMPLEX DYNAMICAL
NETWORKS WITH STATE AND COUPLING TIME-DELAYS

Ali Kazemy

ABSTRACT

This paper is concerned with the problem of synchronization of complex dynamical networks with state and coupling
time-delays. Therefore, larger class and more complicated complex dynamical networks could be considered for the synchronization
problem. Based on the Lyapunov-Krasovskii functional, some delay-independent and delay-dependent criteria are obtained and
formulated in the form of linear matrix inequalities (LMIs) to ascertain the synchronization between each node of the complex
dynamical network. The effectiveness of the proposed method is illustrated using some numerical simulations.
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I. INTRODUCTION

Many systems in the real-world can be modeled by
networks, such as the neural networks, social network, electrical
power grids, communication networks, the Internet, and the
World Wide Web [1-3]. Complex networks are made up of inter-
connected nodes interacting with others via a topology defined on
the network edges [4—7]. These nodes represent the individuals in
the network with different meanings in different situations [8].
Each node of the network can be a nonlinear dynamical system
and create a complex dynamical network (CDN), which has been
widely applied to model many complex systems. In the past few
decades, the study of CDNs has received increasing attention
from researchers in various disciplines, such as physics, mathe-
matics, engineering, biology and sociology [9-13].

Synchronization among all network’s dynamical nodes is
one of the most typical collective behaviors and basic motions
in nature and is one of the most interesting and significant
phenomena in CDNs [14-20]. In general, time delays occur
commonly in networks because of the network traffic conges-
tion as well as the finite speed of signal transmission over the
links. Hence, the synchronization study of CDNs with coupling
time delays is quite important [21-25]. Exponential synchroni-
zation in CDNs with time-varying delay and hybrid coupling is
investigated in [23]. Guaranteed cost synchronization of CDNs
is introduced in [26-28]. Complex dynamical networks with
time-delay in the states of dynamical nodes have been rarely stud-
ied. In [29] and [30], synchronization criterion for Lur’e type
complex dynamical networks is considered with time-delay in
the states of the nodes and the coupling delay, respectively. To
the best of the author’s knowledge, almost all of the published
papers have only considered the coupling delay for the network,
but the state delay could exist in the nodes of the network. This is
an area that has not yet been studied [28,31,32].
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In this paper, synchronization criteria for CDNs with
state and coupling time-delays are presented. Therefore,
larger class and more complicated CDNs could be considered
for the synchronization problem. Based on the Lyapunov-
Krasovskii functional approach, some delay-independent
and delay-dependent criteria are obtained and formulated in
the form of LMIs. The effectiveness of the proposed method
is illustrated using some numerical simulations.

The organization of this paper is as follows. In Section 2,
the problem formulation for the complex dynamical network
structure with state and coupling time-delays is presented. In
Section 3, based on the Lyapunov—Krasovskii functional and
LMI, some criteria are given to ascertain the synchronization
between the nodes of CDNs. Section 4 provides simulation re-
sults. Finally, section 5 concludes the paper.

Notations. Throughout this paper, R" denotes the
n-dimensional Euclidean space and R" "™ is the set of real
nxm matrices. P >0 means that P is a real positive definite
and symmetric matrix. I is the identity matrix with appropriate
dimensions and diag{Wj, ..., W,,} refers to a real matrix with
diagonal elements Wy, ..., W, AT denotes the transpose of the
real matrix A. Symmetric terms in a symmetric matrix are
denoted by * and the sign ® stands for the Kronecker product.

II. PROBLEM STATEMENT AND
PRELIMINARIES

Consider a complex dynamical network with N delayed
identical nodes and coupling delay:

Xl(t) = AX[(I) + Adxi(t — Z') ;/'— Bf(MXl(f)) (1)
+CIDx(r — 1) + Gy ixi(0)

N
+3 GITx (1~ 1), i = 1,2, N
Jj=1

where x;(¢) = [x;1() xp(¢) xin(t)]"€R" denotes the
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state vector of node i, f: R" — R" is a nonlinear vector-valued
function, A,Aq, B,M,C,DER""" are constant matrices,
7> 0 denotes the state delay and z. > 0 is the coupling delay.

G — (G@)
4 NXN’
and '}, T, € R" ™" represents the inner coupling matrices.

(¢ = 1,2)denotes the coupling connections

Remark 1. In this research field, almost all of the related
published papers only consider the coupling delay for the
network, but the state delay could exist in the nodes of the
network, and this has not yet been studied [28,31,32]. In
this model, the state delay (z) is considered for each node
of the network, which is different from coupling delay
(7). In this way, more general complex dynamical networks
could be modeled. To the best of the author’s knowledge, a
model with this configuration has not yet been studied

Assumption 1. The coupling connection matrices should

satisfy:
Gy’ = G0, i, q = 1.2,
@ S )
Giiq = Z Gquz()? i?jzla"'7N7q:172'
=

Throughout this paper, I make the following assump-
tion on f(.).

Assumption 2. For any x1,x, € R there are some constants,
o.,0", which the nonlinear function satisfies:

r r
_ fra) = f(x2)
<f L r=12,....n.
X — X2

For notation simplicity, let

x(0) = [x{() @) - ] .
F(x() = [fT(xi(1)) £ (x2(1)) £ (xv (1) ] -
With the help of the matrix Kronecker product, the
network 1 can be written as the following form:
x(t) = (Iy®@A)X(?) + (Iy®Aq)x(t — 7) (2)
+(Iv@B)F((Iy@M)x(1))
+ (Iy®C)F((Iy@D)x(f — 7)) + (G(')®F1)x(t)
+(6Per )x(t - 7).

The following definition and lemmas will be needed in
the derivations of our main results.

Definition 1. The system 1 is said to be globally synchro-
nized for any initial conditions: IT,(s),(i=1,2,...,N), if
the following holds:

lim [|xi(2) = x;(2)|| = 0, Vij=1,2,...,N,

where||. || denotes the Euclidean norm.

Lemma 1 ([10]). Let a =R and A, B, C, D be matrices with
appropriate dimensions. The following properties can be proved:

1. (¢A)®B = A®(aB)

2. (A®B)" = A"@B”

3, (A®B)(C®D) = (AC)®(BD)

4. A®B®C = (A®B)®C = A®(BRC)

Lemma 2. ((Jensen Inequality), [21]). Assume that the
vector function ®:[0,7]—>R" is well defined for the
following integrations. For any symmetric matrix RE R" ™"
and scalar » > 0, one has:

rj;c)r(s)Rm(s)dsz <J;c)(s)ds> TR (j;m(s)ds) .

Lemma 3. According to [33] and Assumption 2, for any
diagonal matrices J,L >0, and constant matrix M with
appropriate dimensions, it follows that:

—M7JAM MT7JA
o7()| MMM MU o,
T T
0[N LTy
3)

Ay = diag[o{o7,...,0}0, ],
+ + -
+o0o o +o
A, = diag |- Lo L
2 lag|: D) ) ) 2 :|

Lemma 4. ([31]). Let e=[1,1,...,1], Ey=ee’, and
U=NIy—Ey, PER"", x= [xlT,...,xﬂT, and y=

vl ...,y]{,]r with x;, y, ER", (k=1,2,...,N), then
- T
x (URP)y = Z (xi — x;) P(y,- - yj) .
1IN

Lemma 5. ([31]). Let H and S be nxn any real matrix,
e=[1,1,...,1], Ey=ee’, U=NIy—Ey, x = [x], ...,x](,]T,
and y = [y], ...,y]{,]T with X,y ER", (k=1,2,...,N), and
f(.),F(.) are functions and defined in 2. Then, for any vectors

x and y with appropriate dimensions, the following matrix
inequality holds:

N

> (u—x) H(f(sy) —£(sy))).

I<i<jsN

X" (USH)F((Iy®S)y) =

III. MAIN RESULTS

In this chapter, some sufficient conditions based on the
Lyapunov-Krasovskii functional method will be presented for
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the synchronization between the nodes of complex dynamical
network 2.

Theorem 1. The system 2 is globally synchronized if
there exist positive definite matrices PRER"*">0 ,
QER¥*3 >0, and positive diagonal matrices J;,J>, Ly,
L, ER"*" >0, such that the following LMIs hold for all
I<i<j<N:

Iy PA; I3 IIiy O IIis PC
* Iy O 0 Is 0 I,
+# 0+ RO 0 0 0
= |* ¢ % Iy 0 Qu 0 <0,
* * * * IIss 0 —Qx
“4)
Qi Qi Qi
Q= z Q*zz Qx| >0, 5
33

where

M; =PA+A"P+Q;; + R—M'JJA\M —D"J,A, D
~NG{'PI' — NG'TTP,Il;; = NG} PI,

s =PB+ le + M JlAz,Hlé =Q;3+D JzAz,

Iy, = —Q;; — ML ;A\M — D"L,A,D,

Ihs = —Qp; + M'LiA, ITy7 = —Q3 + D LA,

Iy = Q — J1,1ss = —Qyp — Ly, e = Q33 — I,

II77 = —Q33 — Ls.

Proof. Consider the following Lyapunov-Krasovskii func-
tional:
V(1) = V(1) + Va(0) + Va(0), (6)

where

Vi(t) = x" () (USP)x(1),

Va(r) =1, [l;((%%@ U®Q' 8®315 83812

U®Qs;3

5l o

Vi(t) = jii x7 (5) (USR)X(s)ds,

where U is defined in Lemma 4.
Taking the derivative of V/;(f) with respect to ¢ yields:

Vi(t) = 2x" (1) (UP)x(¢) = 2x7 (£)(URP)[(Iy®A)x(7) (7)
+(Iy®Ad)X(r — 7) + (Iy@B)F((Iy@M)x(1))
+H(Iy®C)F((Iy@D)x(f — 7)) + (G(1)®F1>x(t)
(G< >®Fz)x(z‘ )]

According to Lemma 4, 7 can be written as the
following:

Vi) = ZZ (1)) [PA(xi(1) — x,(1))

—|—PAd (xl-(t —1) —x,(t—1))
+PB(f(Mx;(¢)) — f(Mx;(¢))) ®)
+PC(f(Dx;(t — 7)) — f(Dx;(t — 7)))
~NGPT (x(1) — x,(1))
~NGYPL (xi(r — 70) — x;( — 7.))]].

The second term of 6 becomes

"Tu U U
Va() = F((R‘ﬁz(r;; B UB0E Use: Fgﬁ(%tg; ©)
F(Dx(z * U®Qs;3 | | F(Dx(z
T
x(t — U® U® U®
B ot I BT
F(Dx(t — * * U®Qs;3

X(t—1)
F(Mx(t -
Foa )
According to Lemma 4 and 5, 9 can be written as the
following:

N—-1 ]

N
Valt) = 33 [(xute) = %,0) " Qui (x(0) = %1(0))

(1) = £(Dx;(1)))

(1)) Qaa (F(Mx; (1)) — £(Mx;(1)))
+2(E(Mx; (1)) — F(Mx;(1))) " Qo3 (E(Dxi(£)) — £(Dx;(1)))
+ ) Qs (f(Dxi(1)) — £(Dx;(1)))

f(Mx;(t — 7)) — £ (Mx;(t — 7)))

f(Dx;(1 — 7)) — f(Dx;(1 — 7))

)) "Qu (F(Mx;(t — 7)) — f(Mx; (1 — 7))
Dx; (1 — 7)) — f( Dx, t—1t ))

..,
2
=
<
[
o
o
[
-
=
o
=
=
N
o
AN
=
%
=S
g
=N
=
=

( 0)
The third term of 6 becomes

Vi(t) = x" (1) (UBR)x(¢) — xT(t —7.)(URR)X(r — 7.) 11
=33 1) — 5(0) R (x(0) ~ x,0)
*(xi(t =) =Xt — TA)) ( — 1) = x;(t — TC))]

i=1j=i+1
According to Lemma 3 and Assumption 2, for any
positive diagonal matrices J;,J,, L, L, €ER" " > 0, one has

0 ()[ MTJlAlM M_.‘I]11A2:|0(Z)

T
+9T(tfr)[ -MLAM M_IEIAZ}G(zfz)zo,

(12)

—J

+ BT<t o ‘L') |: D LzA]D D_I;jzAZ } B(t 1)207

13)

B ()[ DTJzAlD D JzAz}ﬁ(t)

where
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0(r) = [f(Mx,u())) éw)x](t))]
B(t)—{ ij((g I(DX/ )]

Considering 7—13, it is straightforward to show that

V=Y 3 [g0m0] (14)

j=i+1

where E;; is defined in 4 and

&0 =[x =x0)" (e 1) =x(-1)"
(xi(t — 7o) = x;(t — 7)) (F(Mxi(1)) — £(Mx; (1))
(F(Mx,(1 — 7)) — f(Mx;(1 — 7)))" )
(£(Dx;(1)) — £(Dx;(1))) " (F(Dxi(r — 7)) — £(Dx;(c = 7)) "] -

If ;<0 for V1<i<j<N, then V(¢)<O0. From
Definition 1, this implies that the system 2 has a global syn-
chronization. This completes the proof. []

Remark 2. Theorem 1 provides delay-independent crite-
rion. If Theorem 1 were satisfied for a system, then the sys-
tem would have global synchronization for any state delay
(7) and coupling delay (z..). Obviously this criterion is a very
conservative condition.

The next theorem provides a delay-dependent criterion
by considering a new Lyapunov-Krasovskii functional. This
theorem is less conservative in comparison with Theorem 1.

Theorem 2. The system 2 is globally synchronized if there
exist positive definite matrices LR, Z,0ER"*">0 , Q,
W E R 37> 0, and positive diagonal matrices J;,J,, L,
L, ER"*" >0, such that the following LMIs hold for all
I1<i<j<N:

My O Mz My 0 Ihe Iy g My ]
* 1865 0 0 Il,s 0 1,7 oy JIE
* *# —R 0 0 0 0 I3 JUEN
* % Ty 0 Qy 0 B'W;, B'Wy
* * * Iss 0 —Qy 0 0
\IIU: * * * * * Tles 0 0 0 <0,
* * * oo Il CTWp C'Wyg
* * * * * * * 7 0
T
* * * * * * * * 10
Te i
(15)
Q*n Qi Qi
Q= Qx Qx ) (16)
* £
Qi3
Wi Wy Wi
W = * Wy Wy | >0
where

M, =PA+A’P —N(;(”(Pr +T{P)+Q; +R
+Wi A + ATW, — NG )(WUF] +TTW)))
+Wip, + W|2 + W3+ ng +1Z + 7.0
-M’ JIAM — DTJZA D, 1, = PA; + W 1Ay — Wiy,
*NG( (P+ Wll)rz — W3, 111y =PB+Qp,
+WnB + M7 J1Ay, i = Q3 + DT JrA,,
My = PC+ Wi C, Ty = ATWy, — NG'TTW,,
+Was + WL Ty = ATW 5 — NG/ W,
+Wos + W3, Ty = —Q; — M7 L1A1M
—DTL,A D, Tls = —Q, + MTLjA,,
m7 = —Qu3 + D'LoAy, Tlog = ATW 2 — Way,
Ty = ATW3 — Wa3, Tlzs = fNG§,-2)F2TW12 - Wi,
mo = —NG§,-2>F2TW13 = Wi3, [y = Qyp — Jy,
Iss = —Qap — Ly, Iee = Q33 — J2, [l77 = —Q33 —
Proof. Consider the following Lyapunov-Krasovskii
functional:

V(l) = Vl(t) + Vz(l‘) + V3(t) + V4(t) + Vs(l), 17)
where V(f), V»(t), and V3(¢) are defined in 6 and

x0 7" x(1)
d N UW;; UW; URWi;
V(1) = jtirx(s)ds : UeW2, U®W23 .[ X(s
! t
Iir(x(v)ds L x(s)ds

Vs(t) = [ [x'(5)(UZ)x(s)dsd0 + [ [ x(5)(UGO)x(s)dsde.

where U is defined in Lemma 4.

The derivatives of Vi(¢), V,(¢), and V() are presented
in 8-11. Taking the derivative of V,(f) with respect to ¢
yields:

- T
X(7
) I’ X((s))ds UW,; UW;, URW);
V4(l) =2 t—1 * U®W22 U®W23 (18)
* *
in x(s)ds UeWs;

According to Lemma 4, 18 can be written as the
following:

7

N-1 N
Va(t) = Z Z {z(xr(t) - x/(f))r(wu (%) = %(1)) + (W2 + Wi3) (xi(1) — x,(1)))

i j=it

_ 2(x,(t) - x, )T(W|'7(X, t— . 7) — x,(t r)) +Wn(x,(t 7o) — X;(t — z)))

+2(Iﬁ 5= [ s()ds) (W50 = %(0) + (Was + Was) (50 — (1)

N

=

. 2 (xi(t— 1) = x;(1 — 7))

X;(s)ds — J.Z {x,(rd?)
T

ot
x, s)ds — J X;(s ds) Wz‘; xi(t — 1) — x;(t — n))
t—1

N
—
=

+
]
—

=
&
by

'_—-_

‘V) Wn Xi(r) — "/(t)) (W23+W33)("1(t)”‘/(t)))
(5)ds) Wh(x(1=0) =x(e =)

v) Wiz (x;(t — 1) — x;(t — ZL‘))]

N
o
:ﬁ
l—-\

:—4
Q‘
>
:—-_
3

b
P

19)
Taking the derivative of V5(f) with respect to ¢ yields:
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Vs(t) = ox’ () (URZ)x(t) (20) If ¥;<0 for V1<i<j<N, then V(f) <0. From
‘7 Definition 1, this implies that the system 2 has a global
_L,,X (5)(U®Z)x(s)ds synchronization. This completes the proof. []
+z.x" (1) (U®O)x(?)

[ x"(s)(UQO)x(s)ds.
. IV. ILLUSTRATIVE EXAMPLES

Example 1. Consider the system 2 with the following

According to Lemma 2, 20 can be written as the parameters [31]:
following:
. 1/ T ; A:|:_Ol 701i|,Ad:|:8 8:| :aB:C:[(l) (1)i|a
Vs (£)<ex” (£) (URZ)x(f) — —(j x(s)ds) (URZ) (j x(s)ds)
. iV r o M_o[38 27p_[=35 1 ]p_[30
+2x! (0(UBO)x(1) = ([ x(s)ds) (UBO)([_ x(s)ds). =01 18)P= 01 -1s5)1=]0 3]
o e[y =B Ga-[% &)
According to Lemma 4, 21 can be written as the fol-
lowing: D @ -
and G'"’=G"=ee’ — 6l where e=[1,1,1,1,1, 1] By ap-
N-1 N
B o plying Theorem 1 into this example and solving the LMIs 4
ZZ [ xi(0) = x(t <TZ+ %0) (xi(1) = x(1)) and 5, a feasible solution is as follows:

t

i=1j=i-

+( ' x;(s)ds — [ X s)ds) <1Z> (r x;(s)ds — r xj(s)ds)
o I A o523 01125) g, — [ 55008 Qde7s],
(I xoas [ xos)" (L0 (I xioas [ xic)as)|. 1125 03831 )°Qu = | 04678 36381

P[0
(22) [ -0.4329 0. 0138} [ .0251 —0.0598}
= |

-0.1662 -0.3086 0.1676  0.1461

Considering 8—13 and 18-22, it is straightforward to 0.1281 -0. 0254} Qs — [0,0753 0,0148}

show that -0.0254  0.2060 -0.0127 0.0219 J»
Q {0 2510 00185} R = [5.4450 0.4907}
. et gL r 337 10.0185 0.2845 — 10.4907 3.0325 >
OSSO FH0] (23)
] = diag{0.1326,0.1326}, L, = diag{0.2017,0.2017},
where W¥;; is defined in 15 and J; = diag{0.3911,0.3911}, J, = diag{0.4887,0.4887}.

T

w) —x(t—7)) (F(Mxi(r)) — £(Mx;(0)))" -

&) = | (w0 —x(0) (-1 —x(—)" (xle-
£ ()" ({Dxi(s ) ~ 1D~ )"

- (ft(Mxi(t — 7)) — f(ijat— Nt (Dx,( ) —
szf (xi(s) — xj(s))Tds J‘tfr( (xi(s) — x;(s ds}

1.2 0.6
i 04t
0.2
0.8
0 —
8 3
S o8 S 02
5 g
£ 04 g 04
< <
0.6
02
0.8
ob — p
02 : : : : : : : 42 : : : : : : :
0.5 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Time(sec) Time(sec)
(a) (b)

Fig. 1. Synchronization errors for networks: [e(?)] (a) j=1, (b) j=2.
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Example 2. Consider the system 2 where A, B, C, M, D,
Iy, Iy, A, G, and G? are introduced in Example 1,

e

By applying Theorem 2 into this example and solving

and

—-1.6 0.8

Ag = {—1:2 )

Asian Journal of Control, Vol. 19,

|

It is shown that this system can achieve global synchroni-
zation with any admissible time delay. For Ax)=0.25(jx+ 1| — |
x—1J), 7=0.3, and z.=0.5, the synchronization errors are

shown in Fig. 1, where e{f)= (x;(?) — x1()), =2, ...,6;7=1,2.

the LMIs 15 and 16, a feasible solution is as follows:

Amplitude

Fig. 2. State trajectories: x,(7); [i=

Amplitude

0.8

0.6

0.4

0.2

-0.2
0

Time(sec)

1,2...,6]

0.5

1
Time(sec)

(@)

Amplitude

No. 2, pp. 1-8, March 2017

p_ [00706 -0.1022 6.9030 -1.1660
= 1201022 0.3904 11660 7.1221
0 ,[-0 1994 00792} { 2112 -00308]
12=1.00655 -0.5470 0.0687 0.0385
Q,, — [00275 00277 0.0041  0.0030
2= |.0.0277 0.1590 0.0149 0.0119 |
0 _{0.1548 00014} [1 1802 00736}
3= 100014 0.1627 0.0736 0.4458
Wy, — [09760 02792 -1.2323  -0.3990
02139 -0.1595 20,1055 01642 |’
_ [3.0274 0.0608 109359 0.0562
Wa = [0.0608 2.0825]7“’2** {0.3442 -0.8670}’
W 32938 055801 g _ [ 5.5789 -0.6518
3= 105580 21613 |'R= 206518 5.7221
7 {70642 1.5795} O_{8.5843 2.3035}
15795 25261 ]°Q = 23035 2.8893 ]

L, = diag{0.0257,0.0257}, L, = diag{0.1092,0.1092},
J; = diag{0.2927,0.2927},J, = diag{0.2425,0.2425}.

It is shown that this system can achieve global synchro-
nization with r=7.=0.21. For fix)=0.5(x+ 1| —|x—1|) and
7=1.=0.21 the state’s trajectories and the synchronization
errors are shown in Figs. 2 and 3, respectively.

V. CONCLUSION

This paper considered the problem of synchronization
of complex dynamical networks with state and coupling
time-delays. Based on the Lyapunov-Krasovskii functional
some delay-independent and delay-dependent criteria were
obtained and formulated in the form of LMIs to ascertain
the synchronization between each node of the CDN. The ef-
fectiveness of the proposed method was illustrated using
some numerical simulations.

0.6
0.4

0.2

-0.2
-0.4
-0.6
-0.8

2 ; ; ;
0 0.5 1 15 2
Time(sec)

(b)

Fig. 3. Synchronization errors for networks: [e(?)] (a) j=1, (b) j=2.
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