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SYNCHRONIZATION CRITERIA FOR COMPLEX DYNAMICAL
NETWORKS WITH STATE AND COUPLING TIME-DELAYS

Ali Kazemy

ABSTRACT

This paper is concerned with the problem of synchronization of complex dynamical networks with state and coupling
time-delays. Therefore, larger class and more complicated complex dynamical networks could be considered for the synchronization
problem. Based on the Lyapunov-Krasovskii functional, some delay-independent and delay-dependent criteria are obtained and
formulated in the form of linear matrix inequalities (LMIs) to ascertain the synchronization between each node of the complex
dynamical network. The effectiveness of the proposed method is illustrated using some numerical simulations.
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I. INTRODUCTION

Many systems in the real-world can be modeled by
networks, such as the neural networks, social network, electrical
power grids, communication networks, the Internet, and the
WorldWideWeb [1–3]. Complex networks are made up of inter-
connected nodes interactingwith others via a topology defined on
the network edges [4–7]. These nodes represent the individuals in
the network with different meanings in different situations [8].
Each node of the network can be a nonlinear dynamical system
and create a complex dynamical network (CDN), which has been
widely applied to model many complex systems. In the past few
decades, the study of CDNs has received increasing attention
from researchers in various disciplines, such as physics, mathe-
matics, engineering, biology and sociology [9–13].

Synchronization among all network’s dynamical nodes is
one of the most typical collective behaviors and basic motions
in nature and is one of the most interesting and significant
phenomena in CDNs [14–20]. In general, time delays occur
commonly in networks because of the network traffic conges-
tion as well as the finite speed of signal transmission over the
links. Hence, the synchronization study of CDNswith coupling
time delays is quite important [21–25]. Exponential synchroni-
zation in CDNs with time-varying delay and hybrid coupling is
investigated in [23]. Guaranteed cost synchronization of CDNs
is introduced in [26–28]. Complex dynamical networks with
time-delay in the states of dynamical nodes have been rarely stud-
ied. In [29] and [30], synchronization criterion for Lur’e type
complex dynamical networks is considered with time-delay in
the states of the nodes and the coupling delay, respectively. To
the best of the author’s knowledge, almost all of the published
papers have only considered the coupling delay for the network,
but the state delay could exist in the nodes of the network. This is
an area that has not yet been studied [28,31,32].
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In this paper, synchronization criteria for CDNs with
state and coupling time-delays are presented. Therefore,
larger class and more complicated CDNs could be considered
for the synchronization problem. Based on the Lyapunov-
Krasovskii functional approach, some delay-independent
and delay-dependent criteria are obtained and formulated in
the form of LMIs. The effectiveness of the proposed method
is illustrated using some numerical simulations.

The organization of this paper is as follows. In Section 2,
the problem formulation for the complex dynamical network
structure with state and coupling time-delays is presented. In
Section 3, based on the Lyapunov–Krasovskii functional and
LMI, some criteria are given to ascertain the synchronization
between the nodes of CDNs. Section 4 provides simulation re-
sults. Finally, section 5 concludes the paper.

Notations. Throughout this paper, Rn denotes the
n-dimensional Euclidean space and Rn ×m is the set of real
n×m matrices. P> 0 means that P is a real positive definite
and symmetric matrix. I is the identity matrix with appropriate
dimensions and diag{W1, …, Wm} refers to a real matrix with
diagonal elementsW1,…,Wm.A

T denotes the transpose of the
real matrix A. Symmetric terms in a symmetric matrix are
denoted by * and the sign ⊗ stands for the Kronecker product.
II. PROBLEM STATEMENT AND
PRELIMINARIES

Consider a complex dynamical network with N delayed
identical nodes and coupling delay:

_xi tð Þ ¼ Axi tð Þ þ Adxi t � τð Þ þ Bf Mxi tð Þð Þ
þ Cf Dxi t � τð Þð Þ þ

XN
j¼1

G 1ð Þ
ij Γ1xj tð Þ

þ
XN
j¼1

G 2ð Þ
ij Γ2xj t � τcð Þ; i ¼ 1; 2;…;N

(1)

where xi tð Þ ¼ xi1 tð Þ xi2 tð Þ ⋯ xin tð Þ½ �T∈Rn denotes the
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state vector of node i, f :Rn→Rn is a nonlinear vector-valued
function, A,Ad,B,M,C,D∈Rn × n are constant matrices,
τ> 0 denotes the state delay and τc> 0 is the coupling delay.

G qð Þ ¼ G qð Þ
ij

� �
N�N

; q ¼ 1; 2ð Þdenotes the coupling connections
and Γ1,Γ2∈Rn × n represents the inner coupling matrices.

Remark 1. In this research field, almost all of the related
published papers only consider the coupling delay for the
network, but the state delay could exist in the nodes of the
network, and this has not yet been studied [28,31,32]. In
this model, the state delay (τ) is considered for each node
of the network, which is different from coupling delay
(τc). In this way, more general complex dynamical networks
could be modeled. To the best of the author’s knowledge, a
model with this configuration has not yet been studied
Assumption 1. The coupling connection matrices should
satisfy:

G qð Þ
ij ¼ G qð Þ

ji ≥0; i≠j; q ¼ 1; 2;

G qð Þ
ii ¼ � ∑

N

j¼1;j≠i
G qð Þ

ij ≥0; i; j ¼ 1;…;N ; q ¼ 1; 2:

8><
>:
Throughout this paper, I make the following assump-

tion on f( . ).

Assumption 2. For any x1, x2∈R there are some constants,
σ�r ; σ

þ
r , which the nonlinear function satisfies:

σ�r ≤
f r x1ð Þ � f r x2ð Þ

x1 � x2
≤σþr ; r ¼ 1; 2;…; n:

For notation simplicity, let

x tð Þ ¼ xT1 tð Þ xT2 tð Þ ⋯ xTN tð Þ� �T
F x tð Þð Þ ¼ fT x1 tð Þð Þ fT x2 tð Þð Þ ⋯ fT xN tð Þð Þ

� �T
:

With the help of the matrix Kronecker product, the
network 1 can be written as the following form:

_x tð Þ ¼ IN⊗Að Þx tð Þ þ IN⊗Adð Þx t � τð Þ
þ IN⊗Bð ÞF IN⊗Mð Þx tð Þð Þ
þ IN⊗Cð ÞF IN⊗Dð Þx t � τð Þð Þ þ G 1ð Þ⊗Γ1

� �
x tð Þ

þ G 2ð Þ⊗Γ2

� �
x t � τcð Þ:

(2)

The following definition and lemmas will be needed in
the derivations of our main results.

Definition 1. The system 1 is said to be globally synchro-
nized for any initial conditions: Πi0(s), (i=1, 2,…,N), if
the following holds:

lim
t→∞

xi tð Þ � xj tð Þ
�� �� ¼ 0; ∀i; j ¼ 1; 2;…;N ;

where‖ . ‖ denotes the Euclidean norm.

Lemma 1 ([10]). Let α∈R and A,B,C,D be matrices with
appropriate dimensions. The following properties can be proved:
© 2016 Chinese
1. αAð Þ⊗B ¼ A⊗ αBð Þ
2. A⊗Bð ÞT ¼ AT⊗BT

3. A⊗Bð Þ C⊗Dð Þ ¼ ACð Þ⊗ BDð Þ
4. A⊗B⊗C ¼ A⊗Bð Þ⊗C ¼ A⊗ B⊗Cð Þ

Lemma 2. ((Jensen Inequality), [21]). Assume that the
vector function ω : [0, r]→Rn is well defined for the
following integrations. For any symmetric matrix R∈Rn × n

and scalar r>0, one has:

r∫
r

0
ωT sð ÞRω sð Þds≥ ∫

r

0
ω sð ÞdsÞT

R ∫
r

0
ω sð Þds

� �
:

�

Lemma 3. According to [33] and Assumption 2, for any
diagonal matrices J,L> 0, and constant matrix M with
appropriate dimensions, it follows that:

θT tð Þ �MTJΔ1M MTJΔ2
* �J

� 	
θ tð Þ

þ θT t � τð Þ �MTLΔ1M MTLΔ2
* �L

� 	
θ t � τð Þ≥0;

(3)

where

θ tð Þ ¼ xi tð Þ � xj tð Þ
f Mxi tð Þð Þ � f Mxj tð Þ


 �� 	
;

Δ1 ¼ diag σþ1σ
�
1 ;…; σþnσ

�
n

� �
;

Δ2 ¼ diag
σþ1 þ σ�1

2
;…;

σþn þ σ�n
2

� 	
:

Lemma 4. ([31]). Let e= [1, 1,…, 1]T, EN= ee
T, and

U=NIN�EN, P∈Rn × n, x ¼ xT1 ;…; xTN
� �T

, and y ¼
yT1 ;…; yTN
� �T

with xk, yk∈Rn, (k=1, 2,…,N), then

xT U⊗Pð Þy ¼
XN

1≤i<j≤N
xi � xj

 �T

P yi � yj
� �

:

Lemma 5. ([31]). Let H and S be n× n any real matrix,

e= [1, 1,…, 1]T, EN= ee
T, U=NIN�EN, x ¼ xT1 ;…; xTN

� �T
,

and y ¼ yT1 ;…; yTN
� �T

with xk,yk∈Rn, (k=1, 2,…,N), and
f( . ),F( . ) are functions and defined in 2. Then, for any vectors
x and y with appropriate dimensions, the following matrix
inequality holds:

xT U⊗Hð ÞF IN⊗Sð Þyð Þ ¼
XN

1≤i<j≤N
xi � xj

 �T

H f Syið Þ � f Syj
� �� �

:

III. MAIN RESULTS

In this chapter, some sufficient conditions based on the
Lyapunov-Krasovskii functional method will be presented for
Automatic Control Society and John Wiley & Sons Australia, Ltd
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the synchronization between the nodes of complex dynamical
network 2.

Theorem 1. The system 2 is globally synchronized if
there exist positive definite matrices P,R∈Rn × n>0 ,
Q∈R3n × 3n>0, and positive diagonal matrices J1,J2,L1,
L2∈Rn × n> 0, such that the following LMIs hold for all
1≤ i< j≤N:

Ξij ¼

Π11 PAd Π13 Π14 0 Π16 PC
* Π22 0 0 Π25 0 Π27
* * �R 0 0 0 0
* * * Π44 0 Q23 0
* * * * Π55 0 �Q23
* * * * * Π66 0
* * * * * * Π77

2
6666664

3
7777775
< 0;

(4)

Q ¼
Q11 Q12 Q13
* Q22 Q23
* * Q33

" #
> 0; (5)

where

Π11 ¼ PAþ ATPþQ11 þ R �MTJ1Δ1M� DTJ2Δ1D

�NG 1ð Þ
ij PΓ1 � NG 1ð Þ

ij ΓT
1P;Π13 ¼ �NG 2ð Þ

ij PΓ2;
Π14 ¼ PBþQ12 þMTJ1Δ2;Π16 ¼ Q13 þ DTJ2Δ2;
Π22 ¼ �Q11 �MTL1Δ1M� DTL2Δ1D;
Π25 ¼ �Q12 þMTL1Δ2;Π27 ¼ �Q13 þ DTL2Δ2;
Π44 ¼ Q22 � J1;Π55 ¼ �Q22 � L1;Π66 ¼ Q33 � J2;
Π77 ¼ �Q33 � L2:

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

V tð Þ ¼ V1 tð Þ þ V2 tð Þ þ V3 tð Þ; (6)

where

V1 tð Þ ¼ xT tð Þ U⊗Pð Þx tð Þ;
V2 tð Þ ¼ ∫

t

t�τ

x sð Þ
F Mx sð Þð Þ
F Dx sð Þð Þ

" #T
U⊗Q11 U⊗Q12 U⊗Q13

* U⊗Q22 U⊗Q23
* * U⊗Q33

" #
x sð Þ

F Mx sð Þð Þ
F Dx sð Þð Þ

" #
ds;

V3 tð Þ ¼ ∫
t

t�τc
xT sð Þ U⊗Rð Þx sð Þds;

where U is defined in Lemma 4.
Taking the derivative of V1(t) with respect to t yields:

_V1 tð Þ ¼ 2xT tð Þ U⊗Pð Þ _x tð Þ ¼ 2xT tð Þ U⊗Pð Þ½ IN⊗Að Þx tð Þ
þ IN⊗Adð Þx t � τð Þ þ IN⊗Bð ÞF IN⊗Mð Þx tð Þð Þ
þ IN⊗Cð ÞF IN⊗Dð Þx t � τð Þð Þ þ G 1ð Þ⊗Γ1

� �
x tð Þ

þ G 2ð Þ⊗Γ2

� �
x t � τcð Þ�

(7)

According to Lemma 4, 7 can be written as the
following:
© 2016 Chinese Automatic Control Society and John Wiley & Sons Au
_V1 tð Þ ¼
XN�1

i¼1

XN
j¼iþ1

½2 xi tð Þ � xj tð Þ

 �T ½PA xi tð Þ � xj tð Þ


 �
þPAd xi t � τð Þ � xj t � τð Þ
 �
þPB f Mxi tð Þð Þ � f Mxj tð Þ


 �
 �
þPC f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 �
�NG 1ð Þ

ij PΓ1 xi tð Þ � xj tð Þ

 �

�NG 2ð Þ
ij PΓ2 xi t � τcð Þ � xj t � τcð Þ
 ���:

(8)

The second term of 6 becomes

_V2 tð Þ ¼
x tð Þ

F Mx tð Þð Þ
F Dx tð Þð Þ

" #T
U⊗Q11 U⊗Q12 U⊗Q13

* U⊗Q22 U⊗Q23
* * U⊗Q33

" #
x tð Þ

F Mx tð Þð Þ
F Dx tð Þð Þ

" #

�
x t � τð Þ

F Mx t � τð Þð Þ
F Dx t � τð Þð Þ

" #T
U⊗Q11 U⊗Q12 U⊗Q13

* U⊗Q22 U⊗Q23
* * U⊗Q33

" #

x t � τð Þ
F Mx t � τð Þð Þ
F Dx t � τð Þð Þ

" #

(9)

According to Lemma 4 and 5, 9 can be written as the
following:

_V2 tð Þ ¼
XN�1

i¼1

XN
j¼iþ1

xi tð Þ � xj tð Þ

 �T

Q11 xi tð Þ � xj tð Þ

 �h

þ 2 xi tð Þ � xj tð Þ

 �T

Q12 f Mxi tð Þð Þ � f Mxj tð Þ

 �
 �

þ2 xi tð Þ � xj tð Þ

 �T

Q13 f Dxi tð Þð Þ � f Dxj tð Þ

 �
 �

þ f Mxi tð Þð Þ � f Mxj tð Þ

 �
 �T

Q22 f Mxi tð Þð Þ � f Mxj tð Þ

 �
 �

þ2 f Mxi tð Þð Þ � f Mxj tð Þ

 �
 �T

Q23 f Dxi tð Þð Þ � f Dxj tð Þ

 �
 �

þ f Dxi tð Þð Þ � f Dxj tð Þ

 �
 �T

Q33 f Dxi tð Þð Þ � f Dxj tð Þ

 �
 �

� xi t � τð Þ � xj t � τð Þ
 �T
Q11 xi t � τð Þ � xj t � τð Þ
 �

�2 xi t � τð Þ � xj t � τð Þ
 �T
Q12 f Mxi t � τð Þð Þ � f Mxj t � τð Þ
 �
 �

�2 xi t � τð Þ � xj t � τð Þ
 �T
Q13 f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 �

� f Mxi t � τð Þð Þ � f Mxj t � τð Þ
 �
 �T
Q22 f Mxi t � τð Þð Þ � f Mxj t � τð Þ
 �
 �

�2 f Mxi t � τð Þð Þ � f Mxj t � τð Þ
 �
 �T
Q23 f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 �

� f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 �T
Q33 f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 ��

(10)
The third term of 6 becomes

_V3 tð Þ ¼ xT tð Þ U⊗Rð Þx tð Þ � xT t � τcð Þ U⊗Rð Þx t � τcð Þ

¼
XN�1

i¼1

XN
j¼iþ1

½ xi tð Þ � xj tð Þ

 �T

R xi tð Þ � xj tð Þ

 �

� xi t � τcð Þ � xj t � τcð Þ
 �T
R xi t � τcð Þ � xj t � τcð Þ
 ��

(11)

According to Lemma 3 and Assumption 2, for any
positive diagonal matrices J1, J2,L1,L2∈Rn × n> 0, one has

θT tð Þ �MTJ1Δ1M MTJ1Δ2
* �J1

� 	
θ tð Þ

þθT t � τð Þ �MTL1Δ1M MTL1Δ2
* �L1

� 	
θ t � τð Þ≥0;

(12)

βT tð Þ �DTJ2Δ1D DTJ2Δ2
* �J2

� 	
β tð Þ

þ βT t � τð Þ �DTL2Δ1D DTL2Δ2
* �L2

� 	
β t � τð Þ≥0;

(13)

where
stralia, Ltd
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θ tð Þ ¼ xi tð Þ � xj tð Þ
f Mxi tð Þð Þ � f Mxj tð Þ


 �� 	
;

β tð Þ ¼ xi tð Þ � xj tð Þ
f Dxi tð Þð Þ � f Dxj tð Þ


 �� 	
:

Considering 7–13, it is straightforward to show that

_V tð Þ≤
XN�1

i¼1

XN
j¼iþ1

ξTij tð ÞΞijξij tð Þ
h i

(14)

where Ξij is defined in 4 and

ξij tð Þ ¼ ½ xi tð Þ � xj tð Þ

 �T

xi t � τð Þ � xj t � τð Þ
 �T
xi t � τcð Þ � xj t � τcð Þ
 �T ðf Mxi tð Þð Þ � f Mxj tð Þ


 �ÞT⋯
⋯ f Mxi t � τð Þð Þ � f Mxj t � τð Þ
 �
 �T
f Dxi tð Þð Þ � f Dxj tð Þ


 �
 �T
f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 �T �T :

If Ξij< 0 for ∀ 1≤ i< j≤N, then _V tð Þ < 0 . From
Definition 1, this implies that the system 2 has a global syn-
chronization. This completes the proof. □

Remark 2. Theorem 1 provides delay-independent crite-
rion. If Theorem 1 were satisfied for a system, then the sys-
tem would have global synchronization for any state delay
(τ) and coupling delay (τc). Obviously this criterion is a very
conservative condition.

The next theorem provides a delay-dependent criterion
by considering a new Lyapunov-Krasovskii functional. This
theorem is less conservative in comparison with Theorem 1.

Theorem 2. The system 2 is globally synchronized if there
exist positive definite matrices P,R,Z,O∈Rn × n> 0 , Q,
W∈R3n × 3n> 0, and positive diagonal matrices J1,J2,L1,
L2∈Rn × n> 0, such that the following LMIs hold for all
1≤ i< j≤N:

Ψij ¼

Π11 Π12 Π13 Π14 0 Π16 Π17 Π18 Π19
* Π22 0 0 Π25 0 Π27 Π28 Π29
* * �R 0 0 0 0 Π38 Π39
* * * Π44 0 Q23 0 BTW12 BTW13
* * * * Π55 0 �Q23 0 0
* * * * * Π66 0 0 0
* * * * * * Π77 CTW12 CTW13

* * * * * * *
1
τ
Z 0

* * * * * * * *
1
τc
O

2
66666666666664

3
77777777777775
< 0;

(15)

Q ¼
Q11 Q12 Q13
* Q22 Q23
* * Q33

" #
> 0;

W ¼
W11 W12 W13
* W22 W23
* * W33

" #
> 0

(16)

where
© 2016 Chinese
Π11 ¼ PAþ ATP� NG 1ð Þ
ij PΓ1 þ ΓT

1P

 �þQ11 þ R

þW11Aþ ATW11 � NG 1ð Þ
ij W11Γ1 þ ΓT

1W11

 �

þW12 þWT
12 þW13 þWT

13 þ τZþ τcO
�MTJ1Δ1M� DTJ2Δ1D;Π12 ¼ PAd þW11Ad �W12;

Π13 ¼ �NG 2ð Þ
ij PþW11ð ÞΓ2 �W13;Π14 ¼ PBþQ12

þW11BþMTJ1Δ2;Π16 ¼ Q13 þ DTJ2Δ2;

Π17 ¼ PCþW11C;Π18 ¼ ATW12 � NG 1ð Þ
ij ΓT

1W12

þW22 þWT
23;Π19 ¼ ATW13 � NG 1ð Þ

ij ΓT
1W13

þW23 þW33;Π22 ¼ �Q11 �MTL1Δ1M
�DTL2Δ1D;Π25 ¼ �Q12 þMTL1Δ2;

Π27 ¼ �Q13 þ DTL2Δ2;Π28 ¼ AT
dW12 �W22;

Π29 ¼ AT
dW13 �W23;Π38 ¼ �NG 2ð Þ

ij ΓT
2W12 �WT

23;

Π39 ¼ �NG 2ð Þ
ij ΓT

2W13 �W33;Π44 ¼ Q22 � J1;
Π55 ¼ �Q22 � L1;Π66 ¼ Q33 � J2;Π77 ¼ �Q33 � L2:

Proof. Consider the following Lyapunov-Krasovskii
functional:

V tð Þ ¼ V1 tð Þ þ V2 tð Þ þ V3 tð Þ þ V4 tð Þ þ V5 tð Þ; (17)

where V1(t), V2(t), and V3(t) are defined in 6 and

V4 tð Þ ¼

x tð Þ

∫
t

t�τ
x sð Þds

∫
t

t�τc
x sð Þds

2
6664

3
7775
T

U⊗W11 U⊗W12 U⊗W13
* U⊗W22 U⊗W23
* * U⊗W33

" # x tð Þ

∫
t

t�τ
x sð Þds

∫
t

t�τc
x sð Þds

2
66664

3
77775;

V5 tð Þ ¼ ∫
t

t�τ∫
t

θ
xT sð Þ U⊗Zð Þx sð Þdsdθ þ ∫

t

t�τc ∫
t

θ
xT sð Þ U⊗Oð Þx sð Þdsdθ:

where U is defined in Lemma 4.
The derivatives of V1(t), V2(t), and V3(t) are presented

in 8–11. Taking the derivative of V4(t) with respect to t
yields:

_V4 tð Þ ¼ 2

x tð Þ
∫
t

t�τ
x sð Þds

∫
t

t�τc
x sð Þds

2
664

3
775
T

U⊗W11 U⊗W12 U⊗W13
* U⊗W22 U⊗W23
* * U⊗W33

" #

_x tð Þ
x tð Þ � x t � τð Þ
x tð Þ � x t � τcð Þ

" #
(18)

According to Lemma 4, 18 can be written as the
following:

_V4 tð Þ ¼
XN�1

i¼1

XN
j¼iþ1

2 xi tð Þ � xj tð Þ

 �T

W11 _xi tð Þ � _xj tð Þ

 �þ W12 þW13ð Þ xi tð Þ � xj tð Þ


 �
 �h
� 2 xi tð Þ � xj tð Þ


 �T
W12 xi t � τð Þ � xj t � τð Þ
 �þW13 xi t � τcð Þ � xj t � τcð Þ
 �
 �

þ2 ∫
t

t�τ
xi sð Þds� ∫

t

t�τ
xj sð Þds

� �T
WT

12 _xi tð Þ � _xj tð Þ

 �þ W22 þW23ð Þ xi tð Þ � xj tð Þ


 �
 �
�2 ∫

t

t�τ
xi sð Þds� ∫

t

t�τ
xj sð Þds

� �T
W22 xi t � τð Þ � xj t � τð Þ
 �

�2 ∫
t

t�τ
xi sð Þds� ∫

t

t�τ
xj sð Þds

� �T
W23 xi t � τcð Þ � xj t � τcð Þ
 �

þ2 ∫
t

t�τc
xi sð Þds� ∫

t

t�τc
xj sð Þds

� �T
WT

13 _xi tð Þ � _xj tð Þ

 �þ WT

23 þW33


 �
xi tð Þ � xj tð Þ

 �
 �

�2 ∫
t

t�τc
xi sð Þds� ∫

t

t�τc
xj sð Þds

� �T
WT

23 xi t � τð Þ � xj t � τð Þ
 �
�2 ∫

t

t�τcxi sð Þds� ∫
t

t�τcxj sð Þds
� �T

W33 xi t � τcð Þ � xj t � τcð Þ
 �i
:

(19)

Taking the derivative of V5(t) with respect to t yields:
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_V5 tð Þ ¼ τxT tð Þ U⊗Zð Þx tð Þ
�∫

t

t�τ
xT sð Þ U⊗Zð Þx sð Þds

þτcxT tð Þ U⊗Oð Þx tð Þ
�∫

t

t�τc
xT sð Þ U⊗Oð Þx sð Þds:

(20)

According to Lemma 2, 20 can be written as the
following:

_V5 tð Þ≤τxT tð Þ U⊗Zð Þx tð Þ � 1
τ ∫

t

t�τ
x sð Þds

� �T
U⊗Zð Þ ∫

t

t�τ
x sð Þds

� �
þ τcxT tð Þ U⊗Oð Þx tð Þ � 1

τc ∫
t

t�τc
x sð Þds

� �T
U⊗Oð Þ ∫

t

t�τc
x sð Þds

� �
:

(21)
According to Lemma 4, 21 can be written as the fol-

lowing:

_V5 tð Þ ¼
XN�1

i¼1

XN
j¼iþ1

xi tð Þ � xj tð Þ

 �T τZþ τcOð Þ xi tð Þ � xj tð Þ


 �h

þ ∫
t

t�τ
xi sð Þds� ∫

t

t�τ
xj sð Þds

� �T 1
τ
Z

� �
∫
t

t�τ
xi sð Þds� ∫

t

t�τ
xj sð Þds

� �
þ ∫

t

t�τc
xi sð Þds� ∫

t

t�τc
xj sð Þds

� �T 1
τc
O

� �
∫
t

t�τc
xi sð Þds� ∫

t

t�τc
xj sð Þds

� �	
:

(22)

Considering 8–13 and 18–22, it is straightforward to
show that

_V tð Þ≤
XN�1

i¼1

XN
j¼iþ1

ξTij tð ÞΨijξij tð Þ
h i

(23)

where Ψij is defined in 15 and
ξij tð Þ ¼ xi tð Þ � xj tð Þ

 �T

xi t � τð Þ � xj t � τð Þ
 �T
xi tð

h

⋯ f Mxi t � τð Þð Þ � f Mxj t � τð Þ
 �
 �T
f Dxi tð Þð Þ � f




⋯ ∫

t

t�τ
xi sð Þ � xj sð Þ
 �Tds ∫

t

t�τc
xi sð Þ � xj sð Þ
 �Tds iT :
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Fig. 1. Synchronization errors for net

© 2016 Chinese Automatic Control Society and John Wiley & Sons Au
If Ψij< 0 for ∀ 1≤ i< j≤N, then _V tð Þ < 0 . From
Definition 1, this implies that the system 2 has a global
synchronization. This completes the proof. □
IV. ILLUSTRATIVE EXAMPLES
Example 1. Consider the system 2 with the following
parameters [31]:

A ¼ �1 0
0 �1

h i
;Ad ¼ 0 0

0 0

h i
¼;B ¼ C ¼ 1 0

0 1

h i
;

M ¼ 3:8 2
0:1 1:8

h i
;D ¼ �3:5 1

0:1 �1:5

h i
;Γ1 ¼ 3 0

0 3

h i
;

Γ2 ¼ 1 0
0 1

h i
;Δ1 ¼ 0 0

0 0

h i
;Δ2 ¼ 0:5 0

0 0:5

h i
;

and G(1) =G(2) = eeT� 6I6 where e= [1, 1, 1, 1, 1, 1]T. By ap-
plying Theorem 1 into this example and solving the LMIs 4
and 5, a feasible solution is as follows:

P ¼ 0:9523 0:1125
0:1125 0:3831

h i
;Q11 ¼ 5:8919 0:4678

0:4678 3:6381

h i
;

Q12 ¼ -0:4329 -0:0138
-0:1662 -0:3086

h i
;Q13 ¼ -0:0251 -0:0598

-0:1676 0:1461

h i
;

Q22 ¼ 0:1281 -0:0254
-0:0254 0:2060

h i
;Q23 ¼ 0:0753 0:0148

-0:0127 0:0219

h i
;

Q33 ¼ 0:2510 0:0185
0:0185 0:2845

h i
;R ¼ 5:4450 0:4907

0:4907 3:0325

h i
;

L1 ¼ diag 0:1326;0:1326f g;L2 ¼ diag 0:2017;0:2017f g;
J1 ¼ diag 0:3911;0:3911f g; J2 ¼ diag 0:4887;0:4887f g:
� τcÞ � xj t � τcð Þ�T f Mxi tð Þð Þ � f Mxj tð Þ

 �
 �T⋯

Dxj tð Þ
��T

f Dxi t � τð Þð Þ � f Dxj t � τð Þ
 �
 �T ⋯

(b)
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It is shown that this system can achieve global synchroni-
zation with any admissible time delay. For f(x) = 0.25(|x+1|� |
x� 1|), τ =0.3, and τc=0.5, the synchronization errors are
shown in Fig. 1, where ej(t) = (xij(t)� x1j(t)), i=2,…, 6; j=1, 2.
Example 2. Consider the system 2 where A, B, C, M, D,
Γ1, Γ2, Δ1, G

(1), and G(2) are introduced in Example 1,
and

Ad ¼ �1:6 0:8
�1:2 �2

� 	
;Δ2 ¼ 1 0

0 1

� 	
;

By applying Theorem 2 into this example and solving
the LMIs 15 and 16, a feasible solution is as follows:
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P ¼ 0:0706 -0:1022
-0:1022 0:3904

h i
;Q11 ¼ 6:9030 -1:1660

-1:1660 7:1221

h i
;

Q12 ¼ -0:1994 0:0792
-0:0655 -0:5470

h i
;Q13 ¼ 0:2112 -0:0308

0:0687 0:0385

h i
;

Q22 ¼ 0:0275 -0:0277
-0:0277 0:1590

h i
;Q23 ¼ 0:0041 0:0030

-0:0149 0:0119

h i
;

Q33 ¼ 0:1548 0:0014
0:0014 0:1627

h i
;W11 ¼ 1:1802 0:0736

0:0736 0:4458

h i
;

W12 ¼ -0:9760 -0:2792
-0:2139 -0:1595

h i
;W13 ¼ -1:2323 -0:3990

-0:1055 -0:1642

h i
;

W22 ¼ 3:0274 0:0608
0:0608 2:0825

h i
;W23 ¼ -0:9359 0:0562

0:3442 -0:8670

h i
;

W33 ¼ 3:2938 0:5580
0:5580 2:1613

h i
;R ¼ 5:5789 -0:6518

-0:6518 5:7221

h i
;

Z ¼ 7:0642 1:5795
1:5795 2:5261

h i
;O ¼ 8:5843 2:3035

2:3035 2:8893

h i
;

L1 ¼ diag 0:0257;0:0257f g;L2 ¼ diag 0:1092;0:1092f g;
J1 ¼ diag 0:2927;0:2927f g; J2 ¼ diag 0:2425;0:2425f g:

It is shown that this system can achieve global synchro-
nization with τ = τc=0.21. For f(x) = 0.5(|x+1|� |x� 1|) and
τ = τc=0.21 the state’s trajectories and the synchronization
errors are shown in Figs. 2 and 3, respectively.
V. CONCLUSION

This paper considered the problem of synchronization
of complex dynamical networks with state and coupling
time-delays. Based on the Lyapunov-Krasovskii functional
some delay-independent and delay-dependent criteria were
obtained and formulated in the form of LMIs to ascertain
the synchronization between each node of the CDN. The ef-
fectiveness of the proposed method was illustrated using
some numerical simulations.
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