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Abstract The global synchronization of coupled neural
networks with hybrid coupling has been studied in this
paper. The hybrid coupling is formed from constant
coupling, discrete-delay coupling, and distributed-delay
coupling. In this regard, a larger class and more compli-
cated coupled neural networks lead in the synchronization
problem procedure. According to the new augmented
Lyapunov—Krasovskii functional and the idea of M-seg-
mentation of delay length, a less conservative delay-de-
pendent criterion is obtained and expressed in the form of
linear matrix inequalities. In many cases, due to the
increasing segmentation number, the delay length M-
segmentation method could give an opportunity to the
user to find a bigger upper bound of the maximum
allowable time delay. The effectiveness of suggested
method above is proved by simulating a numerical
example on a typical chaotic cellular neural network. The
results show that the above-mentioned method is less
conservative than the other methods reviewed in this
article.
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1 Introduction

Since dynamical recurrent neural networks contain vari-
ous applications such as pattern recognition and classifi-
cation, associative memories, and dynamical systems
modeling, they are likely to have inspired considerable
researchers to study their behaviors [1-5]. Many phe-
nomena in these areas such as bifurcation, chaotic
behavior, and many other are studied extensively in these
networks [6, 7]. On the one hand, these neural networks
have the potential to be coupled together and as a result
create a complex network [8]. On the other hand, the
neural networks should cooperate and communicate with
each other so that to create a complex network of net-
works [9].

In complex network science, synchronization behavior
is probably one of the most noticeable phenomena among
other network’s nodes [10-17]. The synchronization
problem between two chaotic systems was first introduced
by Pecora and Carroll [18], and then, enormous attentions
were guided to apply this problem in many complex net-
works, due to its potential applications in real-world
practice such as secure communication, harmonic oscilla-
tion generation in human heartbeat regulation, and agent’s
synchronization in association management used to
improve their work efficiency [19-24]. For instance, an
architecture to store and retrieve complex oscillatory pat-
terns in the synchronized states of a coupled neural net-
works is presented in [1].

Furthermore, time delay in practice for the coupling
connections in the neural networks is inevitable because
of the finiteness of signal transmission speed over the
links. This issue causes in many difficulties such as poor
performance, stability margin reduction, and increasing
complexity [25-27]. Thus, synchronization of coupled
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neural networks with time delays in coupling connec-
tions seems considerably significant [21, 23, 28-30].
Moreover, the problem of networks based synchroniza-
tion of delayed neural networks is discussed in [31] and
references therein. In general, the time delay can be
classified as discrete (lumped) time delay and distributed
time delay. Most papers appear to consider discrete time
delays in their coupling connections between the neural
networks [23, 32-34]. In [35], it shows that introducing
distributed delays can solve more problems in general
pattern recognition. Therefore, both discrete and dis-
tributed time delays have been studied for the synchro-
nization problem in coupled neural networks in
[21, 36, 37]. In [21], less conservative criteria are given
in comparison with those given in [36, 37]. In this paper,
based on the new augmented Lyapunov—Krasovskii
functional, a less conservative delay-dependent criterion
is obtained and expressed in the form of linear matrix
inequalities. In this method, the delay interval is dis-
cretized into M-equal segments and for each segment,
and a different constant weighting matrix is considered
for LKF. The main advantage of this method is better
approximation of time-varying weighting matrices in
LKF and giving more weighting matrices to the Lya-
punov functional [38, 39].

Generally, for this problem, some criteria are given to
the user as LMIs and he/she can check their feasibility for
his/her own case. If these LMIs are feasible, the synchro-
nization is guaranteed for a known maximum time delay.
However, the problem arises when the user needs larger
time delay due to his/her application. Usually, these criteria
do not have any mechanism giving the user any choice to
expand the maximum allowable time delay. The introduced
criterion in this paper, in comparison with the above-
mentioned methods, gave an opportunity to the user to
increase the maximum allowable time delay by increasing
the segmentation number of the time delay interval. In
proof, an illustrative example, including a typical chaotic
cellular neural network, is simulated in order to demon-
strate the efficiency of the results in comparison with the
other methods.

This paper is organized as follows. In Sect. 2, the
problem formulations for the coupled neural networks
structure along with a number of lemmas are pre-
sented. In Sect. 3, based on a new augmented LKF, a
criterion is given to ascertain the synchronization
between the nodes of the coupled networks. Section 4
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provides the simulation results. Lastly, Sect. 5 con-
cludes the paper.

Notations Throughout this paper, R" denotes the n-di-
mensional Euclidean space and R"*™ is the set of real n x
m matrices. P > 0 means that P is a real positive definite
and symmetric matrix. I is the identity matrix with
appropriate dimensions and diag{Wy, ..., W,,} refers to
a real matrix with diagonal elements Wy, ..., W,,. AT
denotes the transpose of the real matrix A. Symmetric
terms in a symmetric matrix are denoted by *, and the sign
® is stand for the Kronecker product.

2 Problem statement and preliminaries

Consider coupled neural networks as follows:

xi(1) :—CX,-(t)+Af(x,-(t))+Bf(xi(z—f))+§N:G§;>r1x,»(t)

N N t
#2670+ 6T [ x(s)as,
J=1 J=1 =r
i=12,...N

(1)
where x;(t) = [xi1 (1)  xp(7) xin(t)]"€ R" denote
the state vector of the ith neural network, f: R" — R” is
the neuron activation function, C, A, B € R"*" are constant
matrices, and 7 >0 denotes the state delay. Gl =
(ngq))NxN, (g =1,2,3) denotes the coupling connec-
tions and I'y,T»,I'5 € R™" represent the inner coupling

matrices. It is assumed that the discrete-delay and the
distributed-delay are identical [36, 37].

Assumption 1 The coupling connection matrices should

satisfy
(@) _ ~(a) AT
Glj _Gji NZO» z#],q—l,Z,S,

Throughout this paper, the following assumption on
f(.) is made.

Assumption 2 For any xj,x, € R, there are some con-
stants, o, ¢, which the nonlinear function satisfies.

roYroe

ar SM <df,

X1 — X2

r=12

y 2, ...,
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Definition 1 The coupled neural networks (1) is said to
be globally synchronized for any initial conditions
Hy(s), i=1,2,...,N), such that lim,_]e?)| =
lim, o ||x;() —s()]| =0, (i=1,2,...,N), where ||.||
stands for the Euclidean vector norm and s(7) € R" is a
synchronization manifold, which can be either an equilib-
rium point, a periodic orbit, or an orbit of a chaotic
attractor and satisfies

$(t) = —Cs(t) + Af(s(t)) + BE(s(t — 1)). 2)

With defining error vectors as follows:
e;(r) =x;(t) —s(t), i=1,2,..,N, (3)
and substituting in (1), the error dynamics would be

é:(1) = —Ce;(1) + Af(e;(t)) + Bf (e;( — 7))

N N
1 2
+ Z GT1ei(1) + Z G Taej(t — 1) W
j= j=

N t
3 .
—+ El G§j>l"3/t e(s)ds, i=1,2,...,N,
j= -t

where f(e;(r)) = f(x,(r)) — £(s(¢))
f(x;(r—1)) —f(s(r — 1)).
For notation simplicity, let
e(t) = [e](1) el(n) - ef(O)]". Fle)
= [T(ei (1) fT(es(1)) f(en(r)] -
With the help of the matrix Kronecker product, the

coupled neural network (4) can be written as the following
form:

é(1) = —(Iy® C)e(r) + (Iy @ A)F(e(t)) + (Iy @ B)F (e(t— 7))
+ (G(‘)®F1)e(t)+ <G<2)®F2>e(t—r)

+(G<3>®r3) /t
t

) e(s)ds. (5)

and f(e;(r—1)) =

The following lemmas are needed in the derivations of
the main results.

Lemma 1 ((Jensen Inequality), [14]) Assume that the
vector function o : [0,r] — R" is well defined for the fol-
lowing integrations. For any symmetric matrix R € R""
and scalar r > 0, one has

, /0 "o (s)Roo(s)ds > ( A , (x)(s)ds> 'R < /0 r (u(s)ds) .

Lemma 2 According to [40] and Assumption 2, for any
diagonal matrices J > 0,L > 0, it follows that:

Lemma 3 ([23]) Let 1=[1,1,...,1]", Ey =117, and
U=NIy—Ey, PeR"™, x= [XT,...,XI,]T, and 'y =
v, ¥5]" with i,y € R, (k=1,2,...,N), then

N

x'"(U®P)y = Z

1<i<j<N

(x —x,) P(y, —¥,).
3 Main results

In this section, stability of the error dynamic (5) which
guarantees the synchronization between the neural net-
works in (1) is discussed.

Theorem 1 For given t and m, the coupled neural net-
works (1) is globally synchronized if there exist positive
definite matrices Q<k) >0, W >0, R® > 0, real matrices
Ty, Py, Y, Hy, g=1,...,5, k=1,...,m, and positive
diagonal matrices J > 0, L > 0, such that the following
LMIs hold for all 1 <i<j<N:

Cy ) 171,10
N 1722 11210
Y= o .| <0
. . H(16.10)
'z o o®@
W=+ WO wo|>0 QY
| * « WO (7)
Qi Q) Qf
=]+ Q) Q>0
| * * leg)
) ORY R
R® — « Rg;) Ré’? >0, k=1,...,m,
| * * Rg];)
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1m
(9) (9)
* W - W
o=[o of . ofy],0P=[of of ... of | W= T =13),
o @
2 2 2
Wi oW Wi

w2 W W)

10 =3 (<hQfC - heT Q) — NGy (@I + 1T ) + R + Y + (QiF )+
T
+0+ (01") —JA = ToC - €17 = NG{)(ToT'y + TTT3) + P, + P,

7012 — {Hgm Hf,:fl)}vnz(cl’2>ZQ(SH)_QY;)_O( >+01(<+17

09 =3~ (-NnGQT2 ) ~ Q1Y - 0 = NG TaTs — P — €T} — NG| TTT] + P,
k=1

09 =" (hoff A+ 1PRY ) + Q1 +QlY + 1A + O + ToA - €11 - NG 'TTT! + P,
k=1

H(1,5):{H(11.5) H(l,s)}7H£1,5):Qk+l Q1z+0k+1 Oliz)’

-1

3

9 =3~ (hQ{{B) - QY ~ 0P + ToB— C"T1 - NG| 'TT] + P!,
k=1

n0) = g0 | = ~aNG QI T - NG T + WY,
708 — {HELS) Hﬁ;,g)} ’Hl(cl 8) _ _C"H' - NG( )FTHZa

7110 — H<11'10> 175111’10)}7171((178):_1)2*‘{{’

2‘2)} H]Ez,z): (k+l) sz

1
2,5 2,5 k+l
mfl)}7 HIE ) = ( Q23 ’

)\ T 1 1) 1 ) ]
(W)Wl whewe o whwl
n\T \T 1 1 1 1
den_ | (W) —(wi) (W(23)) Wy W - W)
NT (ol T \T 1 T . 1)
6y = QY — LA, — NG (T4F2 +I0T)) — Py - P4T, %9 = NG TIT! — P14 TuA,
T
¥ = QY + LA, +TyB _ch?>rgT§ - Py, 1% = [nm om0 1 = NGy - (w))
ne8 = [gP¥ .. g ], 1y = NGy, 109 = -NGJ' 1] - Pl -1,
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7310 — [H(mo)

3,10
1 176310 }7 HI(( ) _

m

149 = T,B +ATT'5["H(4,7) _ [H(lm) ) }7 HI(:; 7 _

(48) _ 4.8

m

419 = _[p,
() ()

29\ T 29\ T
(W) = (W)

Py, 1159 = diag{H§5~5>, -
)\ T 2\ T
- (0)

)\ T 2\ T
(W) - (we)

k=1

T
~NGITsTs + (W( >) ,

k=1

5.5 5.5 k+1 k
1 S = Q) - Qi

(wi2) -(w)’

29\ T 2\ T
(W)~ (w2)

757 — ,
@) @ \T D\ _(w® " NT_(w® \'
L (Wlm> - (Wl(mfl)) (WZm) - (WZ(mfl)) (WSnr)n) (Wm(mfl)) i
H\T 3 3 3 3 3) ]
W)W W W we - wi
3\ T H\T H\T 3 3 3
e | ) (e ewg we W)
' _(w® ! N _(w® \T 3 (3)
L <W1m> - (Wl(mfl)> (W2m> - (WZ(mfl)) Winrzt - W(mfl)m_
n©9 = QM — L+ TsB + BTTI, 167 = [ng,n e )} me” — NG“)T I — (
T
17068) — {H(s,z;) 169 }7 H]({G,S) —B™H! - (W’(‘?D , 109 = BTTT _ T,
19 — _[p; Ps], 107 — —diag{R{},... R},
s = —diag{Rig), ..,Rﬁ’;”} -1 1 }T[NGEJ.3>F§H$ NGE].3)F§HH7
) = [ Hf,f’%} = QY —NG'TiTs, 1171 = —diag{R(Y, .. R} |,

o ], A i, e - 5 () )47,

wo

km

m
YT =Py, 1199 =3 (1RY) + QU — I+ TiA + AT,

X

% — —diag{RY, ..., } e = [ s H§1§79>] , 1% = Q) —HT,
10 — —dlag{R } no9 =" (thgkz)) —T, =T, 119 = _[p, P,
k=1
T
o) — dlag{Rg‘z,... VY- YT v =[1 - 1]7[yT Y1),
m m
and the other elements in the matrix W;; in (7) which is not V(t) = Vi(t) + Va(t) + Va(1), (8)

defined above are zero matrices with appropriate
dimension.

Proof Consider the following Lyapunov—Krasovskii

functional:

where,
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T
m e | €0
Vi(t) = Z/ e(s)
S R Gels)
UxQl) UzQf usqQy e(t)
* U®Q(2k2) U®Qg§) e(s) |ds,
% » U QY | LF(e(s))
en] [usz U0 Uz0®][el)
Vz(l) = T * U ®W(1) U®W(2) s ,
e * * U WO o]
T
m o —(k—1)h ' e(s)
=S [ [ ] e
s Fes))
UxRY UaRY UeRY]T e
«  URRY UzRY || ék) |dsdo
* * U® Rg’;) F(e(s))
where U is defined in Lemma 3, 7 = t/m, and
T= (e [ o [T as]
= g T 1— h ot—(m—1)h T
=[S enas [ F s - T el))as |

Remark 1 The segmentation number m should be selected
incrementally. Start choosing from m =1 and then keep
increasing it until the maximum allowable time delay ()
does not improve significantly. Note that increasing m
causes computational burden.

For the rest of the proof, let:

e;(1) = ei(t) —e(1), €;(r) = (1) — ¢&(1),

fii(e(r)) = f(ei(r)) — £(e;(1)),

-0, 1—0, 1—0,
/ e;(s)ds :/ e;(s)ds —/ e;(s)ds,
Jt—0, t—0, 10

t—0, rt—0y rt—0,
/ €;(s)ds = / é;(s)ds — / €;(s)ds,
t—0, J1—0, J1—0,

/tr(:Z f;(e(s))ds = /tH?z f(e;(s))ds — /fﬁez £(e;(s))ds.

—0, —0,

Taking the derivative of V;(¢) in (8) with respect to ¢
yields:

Vi(r) = Z {2ne" () (Ve Q) et +2¢" (0 (U Q)
k=1
t—(k—1)h

—(k—1)h
/Hh e(s)ds + 26" (1) (U= QYY) /Hh

2671 (U@ Q) (elt — (k — 1)) — (s — k)
+267(0) (U QY ) (F(e(t — (k — 1)h)) — Fle(r — kh)))

et — (k— Dk )(U®Q(k)> (t— (k- 1)h)
feT(tfkh)(U®Q22)e(tfkh)

+2eT(r = (k — i) (U QY ) Fle(r — (k— 1))
—2¢"(t — k) (U@ QW) ) F(e(r — ki)

+F(e( — (k= 1)) (U@ QY ) F(e(r — (k— 1)h)
—F"(e(r — kh)) (U@ Q) Fle(r — ki) }

F(e(s))ds

©)
With reformulating (5) as:
e(t)=—(IyCle(r)+(Iy®A)F(e(t))+(Iy@B)F(e(t—1))
+ (G(1)®F1)e(t)+ (G<2)®r2)e(t—‘[)

m t—(k—1)h
G<3>®r3) 3 / e(s)ds, (10)
k=1 t—kh

and substituting in (9) and considering Lemma 3, (9) can
be written as the following:

m N-1 N
Vi) =y { > > [2nef(0)] - Q) Cey(r) + QI AL (e(1) + QITBE (et — 7)) — NG QT re; (1)

k=1 i=1 j=i+1
@) (0) B e w [E
—NG;”Q;/T2¢;(t — 1)—NG;; Q11F3/kh e;(s)ds +2éiTj<t)Q12/tkh e;(s)ds
. ~
®) ®) Tk [
+ 2} (1)Qy; e;(t — (k — 1)h) — 2} (1)Qy; e (t — kh) + 2€;(1) Q)3 /tikh f;;(e(s))ds (11)

+ 26 (QE el — (k— 1) — 2¢](0Q Ty el

— €l (1 — kh) QY e (1

— kh)) + el(t — (k — 1)h) QY ey (1
— kh) +29iTj(t_ (k= 1)h )Qn fi(e(t

— (k—=1h)
— (k= 1)h))

—2el(r — kh)QYt;(e(t — kh)) + £L(e(t — (k — 1)h)QY £ (e(r — (k — 1)h))

— £ (e(t — k) QU t; (e(r — kn))| }.
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The second term of (8) becomes:

en]' [usz U0V U0 [
Vz(t):zlrl [ +  UswWlD Usgsw? I] (12)
o * * UeWw® || e
where,
T =1[e"(t)—e"(t—h) e"(t—h)—eT(t—2h) --- eT(tf(mfl)h)feT(tfr)]T,
O = [F"(e(r)) — F™(e(r — h)) FT(e(r—h)) —F"(e(r—2h)) -~ F'(e(t— (m—1)h)) —F(e(t — 7))]".

According to Lemma 3 and considering (10), (12) can
be written as the following:

e,:,-(t) T V4 O(]) 0(2) e,,(t)
2 Ti/ + W w® Tij
o] L« « wolle

—1

[ elds [ el(sds o [T el (ods]
. i Jt—2h Yij Ji—1

Joathe)ds [ a5 e(s)ds o [T @@)}7
eT(z)—eiTj(t—h) e,.Tj(t—h)—e(t—zh) e(t (m—1)h) — .(z—r)]T,
£ (e(0)) — £5(elc — 1) E)(elc — k) — £ (et —20) - £T(e(r— (m— 1)) ~ £ (elr — 1)) |

Taking the derivative of V3(¢) with respect to ¢ yields:

B e() 1"[UeRY UeRY UsRY]T o)
Vi)=Y | &) +  UsRY UsRY || é0)
= F(e(r)) * «  UsRY | [Fle@)
INEORE UeRY UsRY URY|T e
—h / é(s) +  UsRY UsRY || €t |ds
t—kh
F(e(s)) * «  UcRY | LFe())
(13)
According to Lemma 1, (13) can be written as the

following:

B er) 1"[ueRY UsRY UsRY]T e@
Vs() < Y S| €(r) «  UsRY very || é0

k=1 F(e(?)) « % U R( ) | | F(e(r)) (14)
k k k
1=(k=1)h e(s) ! U®R(“) U®R<12) U®R() t—(k=1)h e(s)
- / é(s) |ds +  UeRY UeRY / ; é(s) |ds
.
F(e(s)) : . UsRrY Fle(s))
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According to Lemma 3, (14) can be written as the
following:

m | N-1 N ei(r) 1 Riﬁ) R(lg) RY;) e;(1)
V(<> ST é) « RY RY|| &)
=1 | =1 j=it1 f;i(e; (1)) N N Rg];) f;(ei(r))
Uk 6 (s)ds rRY RO RW DR 6 (s)ds (15)
Vo Meeas || e REORE |0 eg()as
JoE e enas] Lo+ o« RE LSS gy e(s))ds

According to Lemma 2 and Assumption 2, for any

o . . In addition, based on Leibniz—Newton formula, the
positive diagonal matrices J and L, one has:

following equation holds for any matrices P, € R"*" and

07(1) [—J*Al J_Aﬂe(z) Y. eR™ (g=1,....5, k=1,....m):
07— 9| A VR o020, (16) = z{éT(’)('” SR niver)
B T T +F(e(r)) (Iy @ P3) + €' (1 — 7)(Iy ® Py)
where 0(r) = [e,.Tj(t) fij(e(t))} . CFelt— 1)1y & P
From Eq. (5), the following equation holds for any m 1—(k—=1)h (18)
matrices T, € R and Hy € R, (g=1,...,5, k= + (/ ; éT(AV)d;v(Izv@Yk))}
1,...,m): k=t AT
m t—(k=1)h
—e(t—1) — i(s)ds | |
0= Z{QT(Z‘) (IN & T]) + eT(l’)(IN (24 Tz) + FT(e(t))(IN ® T3) e(t) e(t T) k; ([kh e(S) S):|
+e'(r — 1) (Iy ® Ts) + FT(e(r — 1)) (Iy ® Ts) Considering (9)—(18), it is straightforward to show that:
m t—(k—=1)h N-1 N
2 </ Fea ®H"))} V=YD [E0E0)]. (19)

i=1 j=it1

where W;; is defined in (7) and

[—€(1) — (Iy ® C)e(r) + (Iy ® A)F(e(t)) + (Iy @ B)F(e(r — 1))
+(6V e Je(n) + (6P T, )e(r—1)

+(G(3) ® 1“3> i ji(kil)h e(s)ds} .
(17)
&) = [ef(n) ef(t—h) -+ ef(t—(m—1h) ef(1—7) f(e(r))
fle(r—h) - fle(r—(m—1)h) fhe(r—1) [ els)ds - [T el(s)ds
S e(s))ds - [T e e(s))ds € [ 6l (s)ds tt__;héiTj(s)dsr.
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If ¥;<0 for V1 <i<j<N, then V(t)<0. From Defi-
nition 1, this implies that the system (1) has a global
synchronization which leads in completing the proof. [

4 Illustrative example

Example Consider the chaotic cellular neural network
with the following equations which is presented in [36]:

(1) = —Cx(1) + Af(x(1)) + BE(x(r — 7)), (20)

where x(1) = [x] (1) xg(t)]T is the state vector of the
network, f(x;(¢)) = 0.5(|x; + 1| — |x; — 1]) is the activation
function, and

T
1o I+7 20
o= A= 21
01 0.1 1+-
1372
_13mv2 o,
B— 4 .
1.37v2
0.1 -

For t = 0.97 and initial condition as xo(r) = [10, —15]",
the chaotic behavior of (20) is shown in Fig. 1.

Let couple three number of identical neural networks
(20) as (1) with the following coupling parameters:

-8 2 6
GW=6P=6¥=|2 -4 2|,
6 2 -8

30 1 0 1 0
rlz 7r2: 7r3: .
0 3 0 1 0 1

X,

Fig. 1 Chaotic trajectory of (20)

Table 1 Maximum allowable time delay for different methods

Methods Maximum allowable Computation
time delay (1) time (s)

[36] 0.699 0.046

[21] (hy =0, u=0) 1.050 3.822

Theorem 1 (m = 1) 2.028 0.764

Theorem 1 (m = 2) 5.568 4.773

Theorem 1 (m = 3) 8.586 21.902

o)
°
2
-E_ -~
g
<
-10 ¢
15 . . . . . . .
0 5 10 15 20 25 30 35 40
Time(sec)
Fig. 2 State trajectories of the coupled neural networks:
x;(t); i=1,2,3

Maximum allowable time delay for different methods
which guarantees the synchronization between the neural
networks is shown in Table 1. It is obvious that the
theorem introduced in this paper is less conservative
than those proposed in [21, 36]. Note that the results for
Theorem 1 can be more considerable by increasing the
segmentation number (m). As shown in Table 1, the
main disadvantage of segmentation method is the com-
putation time of solving the LMIs which are increasing
rapidly.

With different initial conditions for the neural networks,
the state trajectories of them are shown in Fig. 2. The
synchronization errors are shown in Fig. 3, where

e(1) = (xi;(1) — x5(1)), i =2,3; j=1,2.
S Conclusion
This paper studied the problem of global synchronization

of coupled neural networks with hybrid coupling. Based on
a new augmented Lyapunov—Krasovskii functional and the
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3 Synchronization errors for the networks: e;(r), j = 1,2

idea of M-segmentation of delay length, a less conservative
delay-dependent criterion was obtained and expressed in

the

form of linear matrix inequalities. As an example, a

typical chaotic cellular neural network was utilized to show
that the proposed method is less conservative than the
mentioned common methods described in this paper.
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