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a b s t r a c t

This paper deals with the ∞ dynamic output feedback control problem of a seismic-excited

building. The control aims to reduce the vibration of a building caused by an earthquake.

Instead of system states, the system output measurements are used to design suitable ∞
controllers. Depending on whether the system measurements are sampled or not, two kinds

of dynamic output feedback control schemes are investigated. By the Lyapunov stability the-

ory, some bounded real lemmas are formulated such that the closed-loop system is asymptot-

ically stable and achieves a prescribed ∞ disturbance attenuation level. The cone comple-

mentary algorithm is employed to design ∞ controllers based on a solution to a nonlinear

minimization problem subject to a set of linear matrix inequalities. Finally, a three-storey

building model is given to show the effectiveness of the proposed method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An earthquake is a natural disaster that usually causes serious damage and destruction of buildings. Thus, it is important

to develop effective methods of construction against earthquakes, especially for high-rise buildings due to their inherent sus-

ceptibility from earthquakes. Up to date, several methods are proposed to protect buildings against earthquakes, which can be

classified into three categories: passive control, semi-active control, and active control. Tuned-mass-dampers (TMD), base iso-

lations, friction and viscous dampers, and structural energy dissipation devises are some examples of passive control techniques

[1–5]. Changing the structural parameters such as damping and stiffness is a kind of semi-active control technique [6–8]. Pump-

ing energy to structure by using appropriate actuators is regarded as an active control method [9–11]. Since the effectiveness,

this paper focuses on developing an active control method against earthquakes.

The active control of structures was first implemented in Kyobashi Center Building in 1989. Since then, several active control

methods are proposed, e.g., for vibration control of buildings [9–14]. Active controllers are designed usually using optimal

control methods [7,15,16], robust control methods for the structures in presence of structured and unstructured uncertainties

[17–19], and intelligent control methods based on neural networks and fuzzy systems [13,20–22]. Classical control methods

such as PID control and sliding mode control are also used to design active controllers [22–24]. The ∞ control method is a well-

known optimal control strategy that has been used for many years as well as applied for active control of building structures

[25–27]. It is worth pointing out that earthquakes have finite frequency spectrum characters, based on which, ∞ control for

buildings under earthquake excitation is studied [28]. Moreover, active fault tolerant control of buildings is also investigated for

seismic loads in finite frequency domain, and recently, equivalent-input-disturbance and energy-to-peak control of structures

are proposed [29–31]. However, most methods mentioned above are based on such an assumption that the system state is
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available. This assumption cannot be satisfied for some practical systems due to that only measurement outputs can be used for

control design. Thus, it is significant to develop an effective method to design output feedback controllers, especially in the case

where system states are not available, which motivates the present study.

In general, there are two ways for measurement signals to be transmitted from a building to a controller: analog signal

transmission and digital signal transmission [32–34]. Traditionally, analog signal transmission requires wirings to connect a

building to a controller. When the building and the controller are located in the same place, analog signal transmission is a good

way to transmit signals from the building to the controller continuously such that some better closed-loop performance can be

achieved. However, it is possible that the building and the controller are not located at the same place due to the fact that nobody

knows which buildings will suffer earthquakes when earthquakes happen. In this situation, digital signal transmission comes

to the fore, in which measurement signals are sampled first in a digital form and then transmitted to the controller through a

communication network. Compared with analog signal transmission, digital signal transmission has several advantages, such

as no wirings, high reliability, high signal-to-noise ratio (SNR) and suitability for sending data to long distances [35,36]. With

the rapid development of communication technology, modern industrial applications are based on digital signal transmission

rather than analog signal transmission.

In this paper, two kinds of dynamic output feedback control schemes are investigated for seismic-excited buildings. When

the building and the controller are located at the same place, a continuous-signal-based dynamic output feedback control

scheme is devised using analog signal transmission. When the building and the controller are located at different places, a

sampled-data-based dynamic output feedback control scheme is presented with digital signal transmission. By employing

Lyapunov-Krasovskii stability theory, some sufficient conditions on the existence of suitable dynamic output feedback con-

trollers are derived in terms of the solution to a nonlinear minimization problem subject to linear matrix inequalities. Simulation

results demonstrate the effectiveness of the proposed control schemes.

This paper is organized as follows. Section 2 describes the dynamic model of n-DOF seismic-excited building. Some useful

lemmas are also provided in this section. Two methods are presented in Section 3 to design suitable dynamic output feedback

controllers. The simulation results and some comparison with other methods are given in Section 4. Section 5 concludes the

paper, and the proofs of theorems proposed in this paper are provided in Appendix.

Notations. The notation in this paper is standard. A symmetric term in a symmetric matrix is denoted by *.

2. Problem statement

Consider a typical n-DOF building model shown in Fig. 1 [34]. The motion equations of the seismic-excited building can be

obtained by the Newton’s second law, which is given as

𝐌0𝐪̈ (t) +𝐂0𝐪̇ (t) +𝐊0𝐪 (t) = 𝐇0𝐮 (t) + 𝛏0ẍg (t) , (1)

where 𝐪 (t) = col{q1(t), q2(t),… , qn(t)} ∈ ℝn denotes the inter-storey relative drift vector between the floors, and qi(t) is the

relative drift between the ith and the (i − 1)th floor; 𝐮(t) = col{u1(t), u2(t),… , un(t)} ∈ ℝn is the control force vector produced

by n actuators, with each of them installed at the bottom of each storey; ẍg(t) ∈ ℝ represents the ground acceleration caused by

the earthquake. H0 is an n × n real matrix; and the matrices M0, C0, K0 and the vector 𝝃0 are given by

𝐌0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 · · · 0

m2 m2 0 · · · 0

⋮ ⋮ ⋱ ⋱ ⋮

mn−1 mn−1 mn−1 ⋱ 0

mn mn mn · · · mn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐂0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1 −c2 0 · · · 0

0 c2 −c3 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

⋮ ⋱ cn−1 −cn

0 · · · · · · 0 cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝐊0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k1 −k2 0 · · · 0

0 k2 −k3 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

⋮ ⋱ kn−1 −kn

0 · · · · · · 0 kn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝛏0 =

⎡⎢⎢⎢⎢⎢⎣

−m1

−m2

⋮

−mn

⎤⎥⎥⎥⎥⎥⎦
where the parameters mi, ci, and ki, (i = 1,2,… , n) are the mass, damping, and stiffness of each storey, respectively.

Let 𝐱(t) = col {𝐪 (t) , 𝐪̇ (t)} and w(t) = ẍg(t). Then the state space representation of (1) can be given as

𝐱̇ (t) = 𝐀𝐱 (t) + 𝐁𝐮 (t) + 𝐅w (t) , (2)

where

𝐀 =

[
𝟎 𝐈

−𝐌−1
0
𝐊0 −𝐌−1

0
𝐂0

]
, 𝐁 =

[
𝟎

𝐌−1
0
𝐇0

]
, 𝐅 =

[
𝟎

𝐌−1
0
𝛏0

]
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Fig. 1. A typical n-DOF building model.

In system (2), w(t) is an input disturbance, which is assumed to belong to 2[0,∞) with limited energy [28]. In this paper,

we focus on designing an ∞ controller via dynamic output feedback. In doing so, the measurement output 𝐲(t) ∈ ℝr and the

controlled output 𝐳(t) ∈ ℝp are supposed to be of form{
𝐲(t) = 𝐂1𝐱(t),
𝐳(t) = 𝐂2𝐱(t),

(3)

where the matrix 𝐂1∈ ℝr×2n depends on sensor types, velocity or displacement and their locations, and the matrix 𝐂2∈ ℝp×2n

is chosen to improve the control performance of the resultant closed-loop system, which will be discussed in the section of

simulation.

The objective of the paper is to design a dynamic output feedback controller for the seismic-excited building (2) and (3), such

that the resultant closed-loop system is internally asymptotically stable and satisfies

∫
∞

0

‖𝐳(t)‖2dt ≤ 𝛾2 ∫
∞

0

‖𝐰(t)‖2dt, (4)

for any non-zero w(t) ∈ 2[0,∞) under zero initial conditions, where 𝛾 > 0 is a certain disturbance attenuation level and ‖.‖
denotes the Euclidean norm.

Remark 1. From (3) and (4), it is clear that tuning the matrix C2 can improve the control performance. In fact, the emphasis

can be placed on some storeys’ displacement by choosing the appropriate matrix C2 in order to achieve some better control

performance. In other words, taking into account the first floor for short buildings and the middle floor for high buildings

usually yields better results. This will be further discussed in the simulation.

Fig. 2. The block diagram of the control system.
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Fig. 3. 1940 EI-Centro earthquakes real data for the input disturbance w(t).

The following lemmas are useful in deriving the main results of the paper [37].

Lemma 1. (A projection lemma). Let a symmetric matrix 𝚿 ∈ ℝn×n, two matrices 𝐏 ∈ ℝn×m and 𝐐 ∈ ℝk×n be given. There exists a

compatible real matrix X such that

𝚿 + 𝐏𝐗𝐐T +𝐐𝐗T𝐏T < 0, (5)

if and only if

𝐏T
⊥
𝚿𝐏⊥ < 0, (6)

𝐐T
⊥
𝚿𝐐⊥ < 0, (7)

hold, where 𝐏⊥ and 𝐐⊥ are the orthogonal complements of P and Q, respectively.

Lemma 2. ([38]) Let 𝐗 ∈ ℝn×n and 𝐘 ∈ ℝn×n be symmetric, positive definite matrices. Then, there exists a symmetric positive

definite matrix P > 0 satisfying

𝐏 =

[
𝐘 #

# #

]
, 𝐏−1 =

[
𝐗 #

# #

]
if and only if 𝐗 − 𝐘−1 ≥ 𝟎, where ‘#’ stands for some irrelative matrices.

Fig. 4. 1995 Kobe earthquakes real data for the input disturbance w(t).
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Fig. 5. The response of relative drifts in Case III to two earthquakes.

3. Design of dynamic output feedback controllers

In this section, two schemes are presented to design suitable dynamic output feedback controllers for the building model (2).

One is based on the continuous measurement output signals, and the other on sampled-data measurement output signals.

3.1. Continuous-signal-based dynamic output feedback control

If the controller and the building are located at the same place, measurement output signals can be transmitted continuously

from the building to the controller. Thus, the block diagram of the control system can be described in Fig. 2, where the controller

to be designed is a dynamic output feedback controller of the following form{
𝐱̇c(t) = 𝐀c𝐱c (t) + 𝐁c𝐲 (t)
𝐮(t) = 𝐂c𝐱c(t) +𝐃c𝐲(t)

(8)

where 𝐱c ∈ ℝ2n is the state vector of the controller, and 𝐀c ∈ ℝ2n×2n, 𝐁c ∈ ℝ2n×r , 𝐂c ∈ ℝm×2n, 𝐃c ∈ ℝm×r are the constant

controller gain matrices to be designed. Introduce an augmented vector as

𝛏 (t) = col
{
𝐱 (t) , 𝐱c (t)

}
.

Fig. 6. The open-loop responses in Case III of relative velocity drifts to two earthquakes.
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Fig. 7. The closed-loop responses in Case III of relative velocity drifts to two earthquakes.

Then we have

𝛏̇ (t) =
(
𝐀0 +𝐇𝐊𝐋

)
𝛏 (t) + 𝐄T𝐅w (t) , (9)

where E = [I, 0], and

𝐀0 =

[
𝐀 𝟎
𝟎 𝟎

]
, 𝐇 =

[
𝐁 𝟎
𝟎 𝐈

]
, 𝐋 =

[
𝐂1 𝟎
𝟎 𝐈

]
, 𝐊 =

[
𝐃c 𝐂c

𝐁c 𝐀c

]
. (10)

The following theorem provides a bounded real lemma for the closed-loop system (9).

Theorem 1. For a given 𝛾 > 0, the closed-loop system (9) is asymptotically stable and satisfies (4) if there exist a matrix

𝐊 ∈ ℝ(2n+m)×(2n+r) and 𝐏 ∈ ℝ2n×2n with P > 0 such that

𝚽 ≔
⎡⎢⎢⎣
𝚷1 𝐏𝐄T𝐅

∗ −𝛾2𝐈

⎤⎥⎥⎦ < 0 (11)

where 𝚷1=𝐏
(
𝐀0+𝐇𝐊𝐋

)
+
(
𝐀0+𝐇𝐊𝐋

)𝐓𝐏+𝐄𝐓𝐂𝐓
2
𝐂2𝐄.

Fig. 8. The open-loop responses in Case III of relative acceleration to two earthquakes.
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Fig. 9. The closed-loop responses in Case III of relative acceleration to two earthquakes.

Proof. See Appendix A. □

Theorem 1 presents a bounded real lemma for (9). However, it cannot be used directly to design suitable ∞ controllers due

to the nonlinear term PHKL. In order to deal with the nonlinear terms, using Lemma 1, the matrix inequality (11) is converted

as an equivalent form as follows.

Theorem 2. For a given 𝛾 > 0, there exist a matrix 𝐊 ∈ ℝ(2n+m)×(2n+r) and a positive definite matrix 𝐏 ∈ ℝ2n×2n such that (11) if

and only if there exist two positive definite matrices 𝐗 ∈ ℝn×n and 𝐘 ∈ ℝn×n such that[
𝐖T

1

(
𝐀𝐗 + 𝐗𝐀T + 𝛾−2𝐅𝐅T

)
𝐖1 𝐖T

1
𝐗𝐂T

2

∗ −𝐈

]
< 0 (12)

[
𝐖T

2

(
𝐘𝐀 + 𝐀T𝐘 + 𝐂T

2
𝐂2

)
𝐖2 𝐖T

2
𝐘𝐅

∗ −𝛾2𝐈

]
< 0 (13)

[
𝐗 𝐈
∗ 𝐘

]
> 0 (14)

where W1 and W2 are the orthogonal complements of B and 𝐂T
1

, respectively.

Proof. See Appendix B. □

Based on Theorem 2, we can design suitable ∞ controllers of form (8) using Algorithm 1 below.

Algorithm 1

1: Choose a small performance level 𝛾 > 0;

2: Find a feasible solution X and Y satisfying (12)–(14);

3: Calculate by the singular value decomposition 𝐌 ∈ ℝn×n and 𝐍 ∈ ℝn×n such that 𝐌𝐍T = 𝐈 −𝐗𝐘;

4: Compute the matrix P by solving the linear equation

𝐏 =
⎡⎢⎢⎣
𝐘 𝐈

𝐍T 𝟎

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐈 𝐗

𝟎 𝐌T

⎤⎥⎥⎦
−1

;

5: With the obtained P, solve the feasible problem (11) to get K;

6: If there is no feasible solution, change the value of 𝛾 > 0 and go to step 2.

3.2. Sampled-data-based dynamic output feedback ∞ control

For the practical point of view, especially when the system and the controller are located in different places, the measurement

output needs to be first sampled and then transmitted to the controller in the digital form [39–41]. Once the controller receives
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the sampled signal, a control signal is immediately generated and is sent to activate the system. Suppose that the measured out-

puts y(t) are sampled at the time instants 0 < t0 < t1 < · · · < tk < tk+1 < · · · with max{tk+1 − tk|k = 0, 1, 2, · · · } ≤ h, where

h is a known positive constant. Then

𝐲(t) = 𝐲(tk), tk ≤ t < tk+1, (15)

We design the dynamic output feedback controller as{
𝐱̇c(t) = 𝐀c𝐱c (t) + 𝐁c𝐲(tk)

𝐮(t) = 𝐂c𝐱c(t) + 𝐃c𝐲(tk)
, tk ≤ t < tk+1 (16)

where 𝐱c(t) ∈ ℝ2n, and the matrices𝐀c ∈ ℝ2n×2n, 𝐁c ∈ ℝ2n×r ,𝐂c ∈ ℝm×2n, 𝐃c ∈ ℝm×r , are the constant controller gain matrices

to be designed. Define a saw-tooth function as

d(t) = t − tk, tk ≤ t < tk+1,

which satisfies

0 ≤ d(t) < h

Thus, the dynamic output feedback controller (16) becomes{
𝐱̇c(t) = 𝐀c𝐱c(t) + 𝐁c𝐲(t − d(t))

𝐮(t) = 𝐂c𝐱c(t) + 𝐃c𝐲(t − d(t))
(17)

Denote 𝛏 (t) = col{𝐱(t), 𝐱c(t)}. Then the resultant closed-loop system associated with (2) and (17) can be given by

𝛏̇ (t) =
(
𝐀0 +𝐇𝐊𝐋1

)
𝛏 (t) +𝐇𝐊𝐋2𝛏 (t − d (t)) + 𝐄T𝐅w (t) , (18)

where A0, H, E, and K are given in (9) and (10), and 𝐋1 = diag{𝟎, 𝐈}, 𝐋2 = [𝐂T
1
, 𝟎]T .

We now state and establish a bounded real lemma for the closed-loop system (18).

Theorem 3. For given scalars 𝛾 > 0 and h > 0, the closed-loop system (18) is asymptotically stable with (4) being satisfied, if there

exist 𝐊 ∈ ℝ(2n+m)×(2n+r), matrices 𝐏 ∈ ℝ2n×2n with P > 0, 𝐐 ∈ ℝn×n with Q > 0, and 𝐑 ∈ ℝn×n with R > 0 such that

𝚽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝚵1 𝚵2 𝟎 𝐏𝐄T𝐅 h
(
𝐀0 +𝐇𝐊𝐋1

)T𝐄T𝐑
∗ −2𝐑 𝐑 𝟎 h

(
𝐇𝐊𝐋2

)T𝐄T𝐑
∗ ∗ −𝐐 −𝐑 𝟎 𝟎
∗ ∗ ∗ −𝛾2𝐈 h𝐅T𝐑
∗ ∗ ∗ ∗ −𝐑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (19)

Fig. 10. Comparison results for |qi| (i = 1,2,3) under the 1940 El-Centro earthquakes.
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Fig. 11. Comparison results for |q̇i| (i = 1,2,3) under the 1940 El-Centro earthquakes.

where 𝚵1 = 𝐏
(
𝐀0 +𝐇𝐊𝐋1

)
+
(
𝐀0 +𝐇𝐊𝐋1

)T𝐏 + 𝐄T𝐐𝐄 − 𝐄T𝐑𝐄 + 𝐄T𝐂T
2
𝐂2𝐄, 𝚵2 = PHKL2 + ET R.

Proof. See Appendix C. □

Due to existence of nonlinear terms in (19), the controller gain K cannot be easily solved out from Theorem 3. An equivalent

version to (19) is presented as follows.

Theorem 4. For given constants 𝛾 > 0 and h > 0, there exists a real matrix K such that the matrix inequality (19) is satisfied if and

only if there exist n × n real matrices X > 0, Y > 0, Q > 0 and R > 0 such that

𝚪 =
⎡⎢⎢⎢⎣
𝚿 𝐖T

1
𝐗𝐑 𝟎

∗ −2𝐑 𝐑
∗ ∗ −𝐐 − 𝐑

⎤⎥⎥⎥⎦ < 0, (20)

Fig. 12. Comparison results for |qi| (i = 1,2,3) under the 1995 Kobe earthquakes.
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Fig. 13. Comparison results for |q̇i| under the 1995 Kobe earthquakes.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐘𝐀 + 𝐀T𝐘 +𝐐 −𝐑 + 𝐂T
2
𝐂2 𝐑𝐖3 𝟎 𝐘𝐅 h𝐀T𝐑

∗ −2𝐖T
3
𝐑𝐖3 𝐖T

3
𝐑 𝟎 𝟎

∗ ∗ −𝐐 −𝐑 𝟎 𝟎
∗ ∗ ∗ −𝛾2𝐈 h𝐅T𝐑
∗ ∗ ∗ ∗ −𝐑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (21)

[
𝐗 𝐈
∗ 𝐘

]
> 0, (22)

where [𝐖T
1
,𝐖T

2
]T and W3 are the orthogonal complements of [BT ,BT]T and 𝐂T

1
, respectively, and

Fig. 14. Comparison results for |ui| (i = 1,2,3) under the 1940 El-Centro earthquakes.



A. Kazemy et al. / Journal of Sound and Vibration 411 (2017) 88–10798

Fig. 15. Comparison results for |ui| (i = 1,2,3) under the 1995 Kobe earthquakes.

𝚿 = 𝐖𝐓
1
(𝐀𝐗+𝐗𝐀𝐓+𝐗(𝐐−𝐑+𝐂𝐓

2
𝐂2)𝐗)𝐖1+𝐖𝐓

2
𝐀𝐗𝐖1+𝐖𝐓

1
𝐗𝐀𝐓𝐖2

−𝐡−2𝐖𝐓
2
𝐑−1𝐖2+𝛄−2(𝐖1+𝐖2)

𝐓𝐅𝐅𝐓(𝐖1+𝐖2)

Proof. See Appendix D. □

It is clear to see that the matrix inequality (20) is still nonlinear. However, we can convert this nonlinear matrix inequality

(20) into an LMI with some equality constraints. In fact, let

𝐉 =
⎡⎢⎢⎢⎣
𝐈 𝟎 𝟎
∗ 𝐗 𝟎
∗ ∗ 𝐗

⎤⎥⎥⎥⎦

Fig. 16. Comparison of |qi| (i = 1,2,3) for different values of h under the 1940 El-Centro earthquakes.
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Fig. 17. Comparison of ui (i = 1,2,3) for different values of h under the 1940 El-Centro earthquakes.

Then

𝐉T𝚪𝐉 =
⎡⎢⎢⎢⎣
𝚿 𝐖T

1
𝐗𝐑𝐗 𝟎

∗ −2𝐗𝐑𝐗 𝐗𝐑𝐗
∗ ∗ −𝐗𝐐𝐗 − 𝐗𝐑𝐗

⎤⎥⎥⎥⎦ < 0. (23)

Now let S>0 and Z>0 satisfy 𝐗𝐑𝐗 ≥ 𝐒 and 𝐗𝐐𝐗 ≥ 𝐙 Then[
𝐑 𝐗−1

𝐗−1 𝐒−1

]
≥ 0,

[
𝐐 𝐗−1

𝐗−1 𝐙−1

]
≥ 0.

Thus, the matrix inequality [23] holds if

⎡⎢⎢⎢⎣
𝚿 𝐖T

1
𝐒 𝟎

∗ −2𝐒 𝐒
∗ ∗ −𝐙 − 𝐒

⎤⎥⎥⎥⎦ < 0 (24)

Set 𝐑 = 𝐑−1, 𝐐 = 𝐐−1, 𝐙 = 𝐙−1, 𝐒 = 𝐒−1, 𝐗 = 𝐗−1. Then the nonlinear matrix inequality (20) is converted into an LMI with

some equality constraints as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝚿 𝐖T
1
𝐒 𝟎 𝐖T

1
𝐗 𝐖T

1
𝐗𝐂T

2

∗ −2𝐒 𝐒 𝟎 𝟎
∗ ∗ −𝐙 − 𝐒 𝟎 𝟎
∗ ∗ ∗ −Q 𝟎
∗ ∗ ∗ ∗ −𝐈

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (25)

[
𝐑 𝐗
∗ 𝐒

]
≥ 0,

[
𝐐 𝐗
∗ 𝐙

]
≥ 0 (26)

𝐑𝐑 = 𝐈,𝐗𝐗 = 𝐈,𝐒𝐒 = 𝐈,𝐙𝐙 = 𝐈,𝐐𝐐 = 𝐈, (27)

where
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𝚿 =𝐖T
1

(
𝐀𝐗 + 𝐗𝐀T − 𝐒

)
𝐖1 + 𝐖T

2
𝐀𝐗𝐖1 +𝐖T

1
𝐗𝐀T𝐖2 − h−2𝐖T

2
R𝐖2

+ 𝛾−2
(
𝐖1 + 𝐖2

)T𝐅𝐅T
(
𝐖1 +𝐖2

)
In summary, we arrive at the following result.

Theorem 5. For given two constants 𝛾 > 0 and h > 0, a desired dynamic output feedback controller can be obtained if there exist n

× n real matrices X > 0, X > 0, Y > 0, Q > 0, Q > 0, R > 0, R > 0, S > 0, S > 0, Z > 0, and Z > 0, such that (21), (22), and [25–27].

Using the cone complementary algorithm, we convert the above non-convex feasibility problem to the following nonlinear

minimization problem

Minimize Tr
(
𝐐𝐐 + 𝐑𝐑 + 𝐗𝐗 + 𝐙𝐙 + 𝐒𝐒

)
, Subject to (21) , (22) , (25) , (26) , and[

𝐑 𝐈
∗ 𝐑

]
≥ 0,

⎡⎢⎢⎣
𝐗 𝐈

∗ 𝐗

⎤⎥⎥⎦ ≥ 0,
⎡⎢⎢⎣
𝐙 𝐈

∗ 𝐙

⎤⎥⎥⎦ ≥ 0,
⎡⎢⎢⎣
𝐒 𝐈

∗ 𝐒

⎤⎥⎥⎦ ≥ 0 (28)

Algorithm 2 below can be used to calculate suitable ∞ controllers.

Algorithm 2

1: Choose small 𝛾 > 0 and h > 0;

2: Find a feasible set (𝐗0,𝐘0,𝐑
0
, 𝐒

0
,𝐐0,𝐑0, 𝐒0,𝐙0,𝐗

0
,𝐐

0
,𝐙

0
) satisfying (21), (22), (25), (26) and

(28). Set l = 0;

3: Solve the following optimization problem with respect to
(
𝐗,𝐘,𝐑, 𝐒,𝐐,𝐑, 𝐒,𝐙,𝐗,𝐐,𝐙

)
:

Minimize Tr

(
𝐗

l
𝐗 + 𝐗l𝐗 + 𝐑

l
𝐑 + 𝐑l𝐑 +𝐐

l
𝐐 +𝐐l𝐐+ 𝐙

l
𝐙 + 𝐙l𝐙 + 𝐒

l
𝐒 + 𝐒l𝐒

)
subject to (21),

(22), (25), (26) and (28). Set 𝐙
l+1

= 𝐙, 𝐗l+1 = 𝐗, 𝐗l+1 = 𝐗, 𝐐l+1 = 𝐐, 𝐑l+1 = 𝐑, 𝐙l+1 = 𝐙, 𝐒l+1 =
𝐒, 𝐗

l+1
= 𝐗,𝐐

l+1
= 𝐐, 𝐑

l+1
= 𝐑, 𝐒

l+1
= 𝐒;

3: Solve the following optimization problem with respect to
(
𝐗,𝐘,𝐑, 𝐒,𝐐,𝐑, 𝐒,𝐙,𝐗,𝐐,𝐙

)
:

Minimize Tr

(
𝐗

l
𝐗 + 𝐗l𝐗 + 𝐑

l
𝐑 + 𝐑l𝐑 +𝐐

l
𝐐 +𝐐l𝐐+ 𝐙

l
𝐙 + 𝐙l𝐙 + 𝐒

l
𝐒 + 𝐒l𝐒

)
subject to (21),

(22), (25), (26) and (28). Set 𝐙
l+1

= 𝐙, 𝐗l+1 = 𝐗, 𝐗l+1 = 𝐗, 𝐐l+1 = 𝐐, 𝐑l+1 = 𝐑, 𝐙l+1 = 𝐙, 𝐒l+1 =
𝐒, 𝐗

l+1
= 𝐗,𝐐

l+1
= 𝐐, 𝐑

l+1
= 𝐑, 𝐒

l+1
= 𝐒;

4: If |Tr(𝐗
l
𝐗 + 𝐗l𝐗 + 𝐑

l
𝐑 + 𝐑l𝐑 +𝐐

l
𝐐 +𝐐l𝐐+ 𝐙

l
𝐙 + 𝐙l𝐙 + 𝐒

l
𝐒 + 𝐒l𝐒) − 60| < 𝜀, where 𝜀 > 0 is

sufficiently small, is satisfied, then go to Step 5. Otherwise, set l = l + 1 and go to Step 3. If the

above condition is violated within a number of iterations, then exit;

5: Compute by the singular value decomposition 𝐌 ∈ ℝn×n and 𝐍 ∈ ℝn×n such that 𝐌𝐍T = 𝐈 −𝐗𝐘;

6: Determine the matrix P by

𝐏 =
⎡⎢⎢⎣
𝐘 𝐈

𝐍T 𝟎

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐈 𝐗

𝟎 𝐌T

⎤⎥⎥⎦
−1

;

7: With the obtained P, Q, and R, solve the controller gain K from (19);

8: If there is no feasible solution to (19), change the values of 𝛾 and h, and go to step 2.

4. Simulation study

In this section a three-storey building model [28] is studied, where the masses, damping and stiffness coefficients for each

storey are given by mi = 345.6 ton, ci = 2973 kNs/m, and ki = 3.404 × 105 kN/m, i = 1, 2, 3, respectively. Three actuators, each

of them for a storey, are located in the building, which leads to H0 = I. It is also assumed that the velocity sensors are the only

available outputs for measurement, i.e. C1 = [03×3, I].

For practice, the 1940 El-Centro and 1995 Kobe earthquakes real-data, shown in Figs. 3 and 4, are utilized for the input

disturbance w(t) introduced in (2). When the earthquake force is applied to the building model without a controller, the peak

of absolute relative drift for the first storey is about 20 mm and 60 mm for the El-Centro and Kobe earthquakes, respectively.

Since this building is a short one, as mentioned in Remark 1, the peaks of absolute relative drift of second and third storeys are

smaller than the first storey. Therefore, we should emphasize the performance index (4) on the first floor by selecting a proper

matrix C2. In the following, the objective is to design suitable dynamic output feedback ∞ controllers under two schemes.

4.1. Continuous-signal-based dynamic output feedback ∞ control design

In this subsection, suppose that the continuous output measurements are available for control design. Then, we use Algo-

rithm 1 to design a dynamic output feedback controller. In the sequel, it is shown that choosing a proper matrix C2 can improve
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Fig. 18. Comparison of |qi| (i = 1,2,3) for different values of h under the 1995 Kobe earthquakes.

the control performance in the sense of the peaks of the absolute values of relative drifts and their derivatives in each storey, i.e.|qi| and |q̇i| (i = 1,2,3). For this purpose, we consider three cases of C2.

Case I: C2 = [I, 03×3]. Under Case I, we aim to control the relative drifts for each storey with equal importance degree.

Applying Theorem 2, the minimum ∞ performance 𝛾 can be obtained as 𝛾min = 0.02. The corresponding controller can be

solved out by Algorithm 1, whose gains are given as follows

𝐀c = 107 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3919 0.0016 −0.0020 0 0 0.0019

0.0018 −0.3898 −0.0039 0 0.0019 0

−0.0017 −0.0039 −0.3887 −0.0018 0 0

−0.0062 −0.0135 −1.5742 −0.0074 0.0001 0

−0.0072 1.5974 0.0175 0.0001 −0.0077 0

1.6030 −0.0068 0.0086 0 0 −0.0078

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bc = 105 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2277 0.5170 −0.4155

−0.4128 0.2244 0.5157

0.5011 0.4202 0.2371

2.0328 1.6997 0.9579

1.6895 −0.9217 −2.1139

0.9306 −2.1150 1.6996

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Cc = 108 ×

⎡⎢⎢⎢⎣
0.0227 0.0173 0.0001 −1.4156 −1.8987 −1.0920

−0.0283 0.0077 −0.0006 −2.5004 −0.8723 1.3365

0.0126 −0.0139 −0.0010 −3.1179 1.4494 −0.6092

⎤⎥⎥⎥⎦
Dc = 108 ×

⎡⎢⎢⎢⎣
−1.6687 1.4012 0.0364

−0.2593 −1.6240 1.4046

−0.2194 −0.2557 −1.6603

⎤⎥⎥⎥⎦ .
Under the obtained controller, the peak of absolute relative drift of the first floor is 1.1 mm and 2.8 mm for El-Centro and Kobe

earthquakes, respectively, which is about twenty times smaller than those when no controller is imposed on the building. Notice

that the derivatives of the relative drifts are not considered under Case I.
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Fig. 19. Comparison of ui (i = 1,2,3) for different values of h under the 1995 Kobe earthquakes.

Case II: C2 = I. In this case, both the relative drifts and their derivatives are taken to be the control objective with identical

degree of importance. Applying Theorem 2 gives the minimum ∞ performance level 𝛾min = 0.02, and the corresponding

controller gains can be derived using Algorithm 1, which are omitted for space saving. Under this controller, the peak of absolute

relative drift of the first floor is decreased to 0.5 mm and 1.1 mm for El-Centro and Kobe earthquakes, respectively. Thus, one

can see that taking the derivatives of the relative drifts into account can result in some better control performance if compared

with Case I.

Case III: 𝐂2 = diag{3,1,1,3,1,1}. From the analysis in Cases I and II, it is seen that the peak of relative drift for the first floor

is about two and three times bigger than the second and third floors, respectively, for both earthquakes. Thus, the first floor

is important for this short building. In order to enhance the relative drift of the first floor and its derivative, we increase the

value of corresponding gain of x1(t) (= q1(t)) and x4(t) (= 𝐪̇1 (t)) in the matrix C2 from 1 to 3 such that Algorithm 1 is solvable.

Then, employ Theorem 2 to get the minimum 𝛾 = 0.03 and an ∞ controller of form (8) whose gains are omitted. Under the

controller, the responses of relative drifts of the first floor are depicted in Fig. 5, from which the peak of absolute relative drift

of the first floor are decreased to 0.4 mm and 0.8 mm for El-Centro and Kobe earthquakes, respectively. Thus, tuning the matrix

C2 indeed can help improve the control performance of the building. Moreover, both closed-loop and open-loop responses of

relative velocity drifts and relative acceleration of the first floor for El-Centro and Kobe earthquakes are plotted in Figs. 6–9,

from which it is shown that the relative velocity drifts and relative accelerations are significantly decreased under the proposed

Fig. 20. The responses of relative drift of the first floor to 1940 El-Centro earthquakes.
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controller.

In order to further demonstrate the effectiveness of the above results, we compare with the method proposed in Ref. [28],

where state feedback control is considered with the control gains KfA and KfB being given in Ref. [28]. Under the controllers

obtained in this paper and [28], the peaks of absolute value of the relative drifts and their derivatives for three floors are shown

in Figs. 10–13 for El-Centro and Kobe earthquakes, respectively. Besides, the maximum absolute values of control forces for

each storey are also depicted in Figs. 14 and 15. From Figs. 10–15, one can see that

• The controller designed in Case III can produce some smaller peaks of absolute values of relative drifts of all storeys than

those in Ref. [28]; and

• The peaks of absolute values of control signals, i.e. |ui|, in Case III are almost equal to those in Ref. [28] except for the third

floor, which means that the same size of actuators is needed for the first and the second floors.

Overall, the controller under Case III achieves better control performance in controlling the peaks of absolute values of relative

drifts of all storeys if compared with the method in Ref. [28], while the size of actuators needed and the energy consumption of

the controllers are almost the same.

4.2. Sampled-data-based dynamic output feedback controller design

This subsection aims at designing dynamic output feedback controllers for the building in the case where the output

signals are sampled in the digital form. Set 𝛾 = 0.1 and 𝐂2 = diag{3,1,1,3,1,1}. For different sampling periods of h ∈
{1ms, 3ms, 6ms, 10ms, 20ms}, by Algorithm 2, it is found that the ∞ control problem is solvable and corresponding ∞
controllers can be designed. Under these controllers, the peaks of absolute relative drift and the peaks of control force of each

storey are illustrated in Figs. 16–19 for the El-Centro and Kobe earthquakes, respectively. From these figures, a smaller sampling

period is expected to achieve better control performance, which is reasonable from the practical point of view.

For comparison with the method in Ref. [19], we design the ∞ controller of form (16) for h = 0.02ms using Algorithm 2,

and the corresponding controller gains are given by

𝐀c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−17.249 −4.9196 16.316 0.0031 2.3301 −1.3134

4.0104 −13.330 −8.3408 −7.8418 13.592 −16.590

2.1380 −0.6848 −22.768 −15.622 −32.293 27.396

−23.177 1.8515 20.446 −1.7450 −18.072 19.601

36.300 −24.405 −77.541 −42.048 −23.193 6.7753

17183 −9432.1 −28012 −12676 3117.5 −8373.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0147 0.0057 0.0427

1.0432 1.1277 0.43579

−1.1996 −1.3965 −0.6142

−1.2237 −1.3983 −1.2981

2.4925 2.3023 1.2999

1097.6 1011 623.97

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Cc = 108 ×

⎡⎢⎢⎢⎣
−3.5511 2.2502 3.4881 1.1727 2.7738 −2.2110

5.3760 0.9860 1.1460 0.6024 0.6047 −0.2397

−2.1858 −2.6712 −2.4091 −0.3038 −0.3418 0.2950

⎤⎥⎥⎥⎦
Dc = 107 ×

⎡⎢⎢⎢⎣
0.2497 0.4971 0.3751

−0.9488 −0.8245 −0.3394

−1.1209 −1.0709 −0.7656

⎤⎥⎥⎥⎦
Associated with the above controller and that in Ref. [19], the peaks of absolute relative drifts for each storey are plotted in

Figs. 16–19, and the relative drifts of the first floor are given in Figs. 20 and 21 for El-Centro and Kobe earthquakes, respectively.

Based on these figures, the proposed method can provide better control performance in controlling the peak of absolute relative

drifts for each storey.
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Fig. 21. The responses of relative drift of the first floor to 1995 Kobe earthquakes.

5. Conclusion

The problem of dynamic output feedback control for a seismic-excited building has been investigated. Two kinds of schemes

have been devised depending on whether the system measurements are sampled or not. The Lyapunov stability theory has

been employed to formulate some criteria on the existence of such controllers. The cone complementary algorithm has been

used to design suitable ∞ controllers. In the simulation study, a three-storey building model has finally given to illustrate

the advantages of the proposed results, where two earthquakes real-data was utilized as the input disturbance imposed on

the building model. It has been shown that the proposed controllers can reduce the relative drifts of the floors significantly.

Moreover, it has been shown that choosing a proper matrix C2 can improve the control performance in the sense of the peaks of

the absolute values of relative drifts and their derivatives in each storey. Compared with some existing methods, the proposed

method can not only achieve better performance but also require less control effort and less energy in a couple of floors.

Appendix A. Proof of Theorem 1

Choose a Lyapunov function as

V(t) = 𝛏T(t)𝐏𝛏(t) (29)

Calculating V̇(t) yields

V̇ (t) = 2𝛏T (t)𝐏𝛏̇ (t) = 2𝛏T (t)𝐏
((
𝐀0 +𝐇𝐊𝐋

)
𝛏 (t) + 𝐄T𝐅𝐰 (t)

)
. (30)

From Eqs. (4) and (30), one has

V̇ (t) + 𝐳T (t) 𝐳 (t) − 𝛾2𝐰T (t)𝐰 (t) ≤ 𝛇T (t)𝚽𝛇 (t) , (31)

where 𝜻(t) = [𝝃T (t),wT(t)]T and 𝚽 is defined in (11). If condition (11) is satisfied, i.e. 𝚽 < 0, then from Eq. (31), one obtains

V̇ (t) + 𝐳T (t) 𝐳 (t) − 𝛾2𝐰T (t)𝐰 (t) < 0. (32)

A zero initial condition gives

∫
∞

0

[
𝐳T (t) 𝐳 (t) − 𝛾2𝐰T (t)𝐰 (t)

]
dt ≤ 0, (33)

which means that the inequality (4) is satisfied. □

Appendix B. Proof of Theorem 2

For eliminating the matrix K from (11), we use Lemma 1. The matrix 𝚽 in (11) can be rewritten as

𝚽 = 𝚽0 + 𝚺𝚷𝐊𝚯T +𝚯𝐊T𝚷T𝚺T < 0, (34)

where 𝚺 = diag{𝐏, 𝐈}, 𝚷 = [HT , 0]T , 𝚯 = [L, 0]T , and

𝚽0 =

[
𝐏𝐀0 +𝐀T

0
𝐏 + 𝐄T𝐂T

2
𝐂2𝐄 𝐏𝐄T𝐅

∗ −𝛾2𝐈

]
< 0
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From Lemma 1, there exists K such that (34) if and only if

𝚷T
⊥𝚺

−1𝚽0𝚺−1𝚷⊥ < 0, (35)

𝚯T
⊥𝚽0𝚯⊥ < 0, (36)

where 𝚷⊥ and 𝚯⊥ are the orthogonal complements of 𝚷 and 𝚯, respectively. To simplify the expressions in (35) and (36), we

partition P and P−1 as

𝐏 =

[
𝐘 𝐍
𝐍T #

]
, 𝐏−1 =

[
𝐗 𝐌
𝐌T #

]
(37)

where 𝐗,𝐘,𝐍,𝐌∈ ℝn×n and # denotes an irrelevant matrix. Let W1 and W2 be the orthogonal complements of B and 𝐂T
1
,

respectively. Then,

𝚷⟂ =
⎡⎢⎢⎢⎣
𝐖1 𝟎
𝟎 𝟎
𝟎 𝐈

⎤⎥⎥⎥⎦ , 𝚯⟂ =
⎡⎢⎢⎢⎣
𝐖2 𝟎
𝟎 𝟎
𝟎 𝐈

⎤⎥⎥⎥⎦ .
Consequently, the inequality (35) becomes[

𝐖T
1

(
𝐀𝐗 + 𝐗𝐀T + 𝐗𝐂T

2
𝐂2𝐗

)
𝐖1 𝐖T

1
𝐅

∗ −𝛾2𝐈

]
< 0, (38)

which is equivalent to

𝐖T
1

(
𝐀𝐗 +𝐗𝐀T +𝐗𝐂T

2
𝐂2𝐗

)
𝐖1 + 𝛾−2𝐖T

1
𝐅𝐅T𝐖1 < 0. (39)

The Schur complement follows that the inequality (39) is equivalent to (12). Similarly, the inequality (36) is equivalent to (13).

Moreover, from Lemma 2, there exists a P > 0 satisfying (37) if and only if 𝐗 −𝐘 ≥ 0, which is equivalent to (14). □

Appendix C. Proof of Theorem 3

Take a Lyapunov-Krasovskii functional as

V (t) = 𝛏T (t)𝐏𝛏 (t) + ∫
t

t−h

𝛏T (s)𝐄T𝐐𝐄𝛏 (s) ds + h∫
0

−h ∫
t

t+𝜃
𝛏̇T (s)𝐄T𝐑𝐄𝛏̇ (s) dsd𝜃. (40)

The time-derivative of V (t) gives

V̇(t) = 2𝛏T (t)𝐏𝛏̇ (t) + 𝛏T (t)𝐄T𝐐𝐄𝛏 (t) − 𝛏T (t − h)𝐄T𝐐𝐄𝛏 (t − h) + h2𝛏̇T (t)𝐄T𝐑𝐄𝛏̇ (t)

−h∫
t−d(t)

t−h

𝛏̇T (s)𝐄T𝐑𝐄𝛏̇ (s) ds − h∫
t

t−d(t)
𝛏̇T (s)𝐄T𝐑𝐄𝛏̇ (s) ds.

(41)

From (4), (18), (30), and together with the Jensen inequality, one has

V̇ (t) + 𝐳T (t) 𝐳 (t) − 𝛾2𝐰T (t)𝐰 (t) ≤ 𝛇T (t) 𝚽̃𝛇 (t) , (42)

where 𝛇 (t) =
[
𝛏T (t) 𝐄𝛏T (t − d (t)) 𝐄𝛏T (t − h) 𝐰T (t)

]T

, and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Φ̃ =

⎡⎢⎢⎢⎢⎢⎣

𝚵1 𝚵2 𝟎 𝐏𝐄T𝐅
∗ −2𝐑 𝐑 𝟎
∗ ∗ −𝐐 − 𝐑 𝟎
∗ ∗ ∗ −𝛾2𝐈

⎤⎥⎥⎥⎥⎥⎦
+ 𝐔𝐑−1𝐔T < 0,

𝐔 =

⎡⎢⎢⎢⎢⎢⎣

h
(
𝐀0 +𝐇𝐊𝐋1

)T𝐄T𝐑
h
(
𝐇𝐊𝐋2

)T𝐄T𝐑
𝟎

h𝐅T𝐑

⎤⎥⎥⎥⎥⎥⎦
,

(43)

which is equivalent to (19). The rest of proof is similar to Theorem 1. □
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Appendix D. Proof of Theorem 4

For eliminating the design matrix K from Eq. (19), we use Lemma 1. Rewrite the matrix 𝚽 in (19) to get

𝚽 = 𝚽0 + 𝚺𝚷𝐊𝚯T +𝚯𝐊T𝚷T𝚺T < 0, (44)

where 𝚺 = diag{𝐏, 𝐈, 𝐈, 𝐈, 𝐈}, 𝚷 = [HT , 0, 0, 0, hHT ET]T , 𝚯 = [L1, L2, 0, 0, 0]T , and

Φ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝚵1 𝐄T𝐑 𝟎 𝐏𝐄T𝐅 h𝐀T
0
𝐄T𝐑

∗ −2𝐑 𝐑 𝟎 𝟎
∗ ∗ −𝐐 − 𝐑 𝟎 𝟎
∗ ∗ ∗ −𝛾2𝐈 h𝐅T𝐑
∗ ∗ ∗ ∗ −𝐑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

𝚵1 = 𝐏𝐀0 + 𝐀T
0
𝐏 + 𝐄T𝐐𝐄 − 𝐄T𝐑𝐄 + 𝐄T𝐂T

2
𝐂2𝐄.

Based on Lemma 1, the matrix K, satisfying Eq. (44), exists if and only if

𝚷T
⊥
𝚺−1Φ0𝚺−1𝚷⊥ < 0, (45)

𝚯T
⊥Φ0𝚯⊥ < 0, (46)

where 𝚷⊥ and 𝚯⊥ are orthogonal complements of 𝚷 and 𝚯, as follows:

𝚷⟂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐖1 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝐈 𝟎 𝟎
𝟎 𝟎 𝐈 𝟎
𝟎 𝟎 𝟎 𝐈

1

h
𝐖2 𝟎 𝟎 𝟎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝚯⟂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐈 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝐖3 𝟎 𝟎 𝟎
𝟎 𝟎 𝐈 𝟎 𝟎
𝟎 𝟎 𝟎 𝐈 𝟎
𝟎 𝟎 𝟎 𝟎 𝐈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The rest of proof is similar to Theorem 3. □
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