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Abstract This paper deals with the controller design

problem for a class of delayed nonlinear systems by

introducing a delayed Takagi–Sugeno system with non-

linear consequent parts. It is assumed that the fuzzy Tak-

agi–Sugeno model contains disturbances or unstructured

uncertainties. Depending on whether the system has input

delay or not, two kinds of state-feedback controllers are

supposed. By the help of Lyapunov–Krasovskii stability

theory, some conditions in the form of linear matrix

inequalities are presented such that the closed-loop system

is asymptotically stable and achieves a prescribed H1
performance level. At the end, three examples are provided

to illustrate the effectiveness of the proposed method.

Keywords Nonlinear Takagi–Sugeno model � Time-delay

systems � Lyapunov–Krasovskii theory � Robust controller

1 Introduction

Among various kinds of fuzzy control methods, Takagi–

Sugeno (T–S) approach is the most popular one for its

ability to simplify the design procedure of robust con-

trollers and observers. In fact, linear subsystems of the T–S

model let us utilize such a powerful tool like linear matrix

inequality (LMI) in the design routine. A mighty review of

researches on these models has been made in [10, 22].

One major problem with T–S model is that for a bit

more complex systems or for those having a wide range of

variations of states, the number of subsystems needed to

have an accurate enough model will be increased. As a

result, huge number of LMIs will be obtained which cause

computational burden. A reasonable solution to face this

problem is the introduction of nonlinear terms in the sub-

systems. This idea has been investigated in two approa-

ches: the first one is using polynomial subsystems

suggested in [21, 24] and the second one is linear subsys-

tems plus sector-bounded nonlinearities [5, 19]. The first

method results in sum of squares (SOS) instead of LMIs

which may be a bit hard to solve when the degree of the

polynomial increases. Conversely, the latter still uses the

LMIs, which is followed in this paper.

Many practical systems suffer from the existing of delay

in state or input of the system. In this case, some special

considerations should be made in the design. The T–S-

based fuzzy control for nonlinear time-delay systems was

firstly introduced by Cao and Frank [2, 3]. Subsequently,

many researchers have used this idea and developed it

[20, 30]. Chen and Liu [4], applied an H1 control for T–S

fuzzy systems with time delay and parametric uncertainty.

Hsiao et al. [11], utilized T–S-delayed fuzzy systems for

control of nonlinear interconnected systems with multiple

time delays. Several articles have also addressed parametric

uncertainty in delayed T–S fuzzy systems [7, 15, 17]. Along

with these papers for continuous-time systems, the idea of

introducing delay in the T–S fuzzy system continued also

for discrete-time systems [18, 31, 33]. Recently, new con-

cepts for the development of these systems have been

introduced in various applications, including switching T–S

fuzzy systems [6] and network control of T–S fuzzy systems
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with time delay [32]. Many remarkable papers have been

published newly that try to achieve less conservative results

using various methods such as delay partitioning [16],

Wirtinger-based double integral inequality [23], and aug-

mented Lyapunov–Krasovskii functional [13]. These

papers, by applying their own methods on practical exam-

ples such as truck-trailer [25], nonlinear mass–spring–

damper [11, 15], and CSTR [2], have shown that these

methods are capable of controlling many real systems.

In contrast to the articles reviewed in the previous para-

graph that considered the fuzzy system to be linear, some

methods have been proposed based on changes on the T–S

fuzzy model and have shown that good results can be

achieved. Gassara et al. [8, 9] considered T–S with polyno-

mial subsystems and time delay, while Moodi and Farrokhi

[19] used nonlinear consequent parts for T–S fuzzy systems.

In this regard, very few results have been published with

nonlinear consequent parts, all of which do not take into

account the time delay. To the best of the authors’ knowl-

edge, no results have been reported yet on delayed T–S fuzzy

systems with nonlinear consequent part, which is the main

contribution of this paper. This type of T–S system can

reduce the number of rules in fuzzy modeling while

increasing accuracy.

This paper is organized as follows: In Sect. 2, the

intended nonlinear T–S model and the main problem is

stated. Section 3 discusses the controller design for the

proposed system. In Sect. 4, some practical examples are

presented and simulated. Section 5 concludes the paper.

Notations Throughout this paper, Rn denotes the n-di-

mensional Euclidean space and Rn�m is the set of real

n� m matrices. P[ 0 means that P is a real positive

definite and symmetric matrix. I is the identity matrix with

appropriate dimensions, AT denotes the transpose of the

real matrix A, and ½A�s ¼ Aþ AT. Symmetric terms in a

symmetric matrix are denoted by �.

2 Problem Formulation

Consider a class of nonlinear systems described by

_xðtÞ ¼ faðxðtÞ; xðt � sÞÞ þ fbðxðtÞ; xðt � sÞÞu
�
xðtÞ

�

þ fcðxðtÞ; xðt � sÞÞu
�
xðt � sÞ

�

þ gðxðtÞ; xðt � sÞÞuðtÞ;

yðtÞ ¼ fyaðxðtÞ; xðt � sÞÞ þ fybðxðtÞ; xðt � sÞÞu
�
xðtÞ

�

þ fycðxðtÞ; xðt � sÞÞu
�
xðt � sÞ

�
;

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where xðtÞ 2 Rnx , uðtÞ 2 Rnu , and yðtÞ 2 Rny , denote the

state vector, the control input vector, and the measurable

output vector, respectively. The fn:R
nx � Rnx ! Rnx ,

n 2 fa; yag, fm:R
nx � Rnx ! Rnx�nu , m 2 fb; c; yb; ycg,

and g:Rnx � Rnx ! Rnx�nu , are differentiable nonlinear

functions, and s represents a known constant time delay.

Furthermore, u:Rnx ! Rnu is a vector of sector-bounded

continuous nonlinear functions satisfying the following

cone condition:

uiðxðtÞÞ 2 cof0;EixðtÞg; 1� i� nu; ð2Þ

where Ei, i ¼ 1; . . .; nu, are known constant matrices. The

above condition is equivalent to

uT
i ðxðtÞÞ uiðxðtÞÞ � EixðtÞ½ � � 0; 1� i� nu: ð3Þ

Defining E ¼ ½ET
1 ;E

T
2 ; . . .;E

T
nu
�T and considering a

diagonal matrix H[ 0, it yields that

uTðxðtÞÞHuðxðtÞÞ � uTðxðtÞÞHExðtÞ� 0: ð4Þ

Note that to conclude (4) from (3), without extra prop-

erties on u, the matrix H has to be diagonal.

The system (1) can be represented by a delayed T–S

fuzzy model with nonlinear consequents as follows:

Plant Rule i:

if z1ðtÞ isli1ðzÞ; . . .; and zpðtÞ is lipðzÞ then:

_xðtÞ ¼ A1ixðtÞ þ A2ixðt � sÞ þGxiuðxðtÞÞ

þHxiuðxðt � sÞÞ þ BiuðtÞ þ DxivðtÞ;

yðtÞ ¼ C1ixðtÞ þ C2ixðt � sÞ þGyiuðxðtÞÞ

þHyiuðxðt � sÞÞ þ DyivðtÞ;

8
>>>>>><

>>>>>>:

ð5Þ

where Ani 2 Rnx�nx , Bi 2 Rnx�nu , Cni 2 Rny�nx ,

Gxi;Hxi 2 Rnx�nu , Gyi;Hyi 2 Rny�nu , Dxi 2 Rnx�nv , and

Dyi 2 Rny�nv , n ¼ 1; 2, i ¼ 1; . . .; r, are constant matrices,

r is the number of rules, and vðtÞ 2 Rnv is a disturbance

vector that belongs to energy-limited signals, i.e.,

vðtÞ 2 L2½0;1Þ. Moreover, zjðtÞ and lijðzÞ, i ¼ 1; . . .; r,

j ¼ 1; . . .; p, are the premise variables and the fuzzy sets,

respectively.

In this case, the whole fuzzy system (5) can be repre-

sented as

_xðtÞ ¼ A1zxðtÞ þ A2zxðt � sÞ þGxzuðxðtÞÞ

þHxzuðxðt � sÞÞ þ BzuðtÞ þ DxzvðtÞ;

yðtÞ ¼ C1zxðtÞ þ C2zxðt � sÞ þGyzuðxðtÞÞ

þHyzuðxðt � sÞÞ þ DyzvðtÞ;

8
>>>>><

>>>>>:

ð6Þ

where
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Xz ¼
Xr

i¼1

xiðzÞXi ð7Þ

X 2 fA1;A2;B;C1;C2;Gx;Hx;Gy;Hy;Dx;Dyg and

xiðzÞ ¼
hiðzÞPr
k¼1 hkðzÞ

; hiðzÞ ¼
Yp

j¼1

lijðzÞ: ð8Þ

The objective is to design a suitable controller for the

system (6), such that the resultant closed-loop system is

internally asymptotically stable and satisfies
Z 1

0

yTðtÞyðtÞdt� c2

Z 1

0

vTðtÞvðtÞdt; ð9Þ

for any nonzero vðtÞ 2 L2½0;1Þ under zero initial condi-

tions, where c[ 0 is a prescribed disturbance attenuation

level.

In the following section, the conditions for asymptotic

stability of the system (6) will be given. The following

lemmas are used in this paper.

Lemma 1 [26] If the following conditions hold:

Mii\0; 1\i\r;

1

r � 1
Mii þ

1

2
ðMij þMjiÞ\0; 1\i 6¼ j\r;

ð10Þ

then, the following inequality holds:

Xr

i¼1

Xr

j¼1

aiajMij\0; ð11Þ

where 0� ai � 1 and
Pr

i¼1 ai ¼ 1.

Lemma 2 (Jensen inequality [12]) Assume that the vector

function x : 0; r½ � ! Rn is well defined for the following

integrations. For any symmetric matrix R 2 Rn�n and

scalar r[ 0, one has

r

Z r

0

xT sð ÞRx sð Þds�
Z r

0

x sð Þds
� �T

R

Z r

0

x sð Þds
� �

:

3 Controller Design

In this section, based on whether the input signal comprises

time delay or not, two control structures are presented.

3.1 Systems Without Input Delay

Let us construct the fuzzy controller structure as

uðtÞ ¼ K1zxðtÞ þK2zxðt � sÞ
þ K3zuðxðtÞÞ þK4zuðxðt � sÞÞ;

ð12Þ

where K1z;K2z 2 Rnu�nx and K3z;K4z 2 Rnu�nu are the

controller gain matrices to be designed.

By inserting the controller (12) into the system (6), one

obtains the closed-loop system as

_xðtÞ ¼ ~A1zzxðtÞ þ ~A2zzxðt � sÞ þ ~GxzzuðxðtÞÞ

þ ~Hxzzuðxðt � sÞÞ þ DxzvðtÞ;

yðtÞ ¼ C1zxðtÞ þ C2zxðt � sÞ þGyzuðxðtÞÞ

þHyzuðxðt � sÞÞ þ DyzvðtÞ;

8
>>>>><

>>>>>:

ð13Þ

where ~A1zz ¼ A1z þ BzK1z, ~A2zz ¼ A2z þ BzK2z, ~Gxzz ¼
Gxzþ BzK3z, and ~Hxzz ¼ Hxz þ BzK4z.

The following theorem gives the conditions to guarantee

the asymptotic stability of the closed-loop system (13).

Theorem 1 For any given positive scalar c, and gain

matrices K1i, K2i, K3i, K4i, i ¼ 1; 2; . . .; r, the closed-loop

system (13) is asymptotically stable and satisfies the per-

formance index (9), if there exist nx � nx symmetric posi-

tive definite matrices P, Q, R, W, and positive definite

diagonal matrices H1, H2, such that the LMIs in (10) hold

with the following definition:

Mij

¼

R11 R12 R13 R14 W R16 s ~AT
1ijP

� R22 CT
2iGyj R24 �W CT

2iDyj s ~AT
2ijP

� � R33 GT
yiHyj 0 GT

yiDyj s ~GT
xijP

� � � R44 0 HT
yiDyj s ~HT

xijP

� � � � � R 0 0

� � � � � R66 sDT
xiP

� � � � � � � P

2

6666666666666664

3

7777777777777775

;

ð14Þ

where

R11 ¼ ½P ~A1ij�s þQþ s2Rþ CT
1iC1j � P;

R12 ¼ P ~A2ij þ CT
1iC2j þ P;

R13 ¼ P ~Gxij þ CT
1iGyj þ ETH1;

R14 ¼ P ~Hxij þ CT
1iHyj;

R16 ¼ PDxi þ CT
1iDyj;

R22 ¼ �Q� Pþ CT
2iC2j;

R24 ¼ CT
2iHyj þ ETH2;

R33 ¼ GT
yiGyj � 2H1;

R44 ¼ HT
yiHyj � 2H2;

R66 ¼ �c2Iþ DT
yiDyj:

Proof See ‘‘Appendix’’. h

Theorem 1 cannot be used directly for controller design

due to the existence of nonlinear terms such as PBzK1z and
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PBzK2z in (14). Therefore, the following theorem is pro-

vided to pave the way for solving the controller design

problem.

Theorem 2 For given positive scalar c, the closed-loop

system (13) is asymptotically stable and satisfies the per-

formance index (9), if there exist nx � nx symmetric posi-

tive definite matrices P̂, Q̂, R̂, Ŵ, general nu � nx matrices

K̂1i, K̂2i, general nu � nu matrices K̂3i, K̂4i, and positive

definite diagonal matrices Ĥ1, Ĥ2, such that the LMIs in

(10) hold with the following definition:

Mij

¼

R̂11 R̂12 R̂13 R̂14 Ŵ R̂16 R̂17 P̂CT
1i

� R̂22 0 P̂ET � Ŵ P̂CT
2iDyj R̂27 P̂CT

2i

� � � 2Ĥ1 0 0 Ĥ1G
T
yiDyj R̂37 Ĥ1G

T
yi

� � � � 2Ĥ2 0 Ĥ2H
T
yiDyj R̂47 Ĥ2H

T
yi

� � � � � R̂ 0 0 0

� � � � � R66 sDT
xi 0

� � � � � � � P̂ 0

� � � � � � � � I

2

66666666666666666664

3

77777777777777777775

;

ð15Þ

where

R̂11 ¼ ½A1iP̂þ BiK̂1j�s þ Q̂þ s2R̂� P̂;

R̂12 ¼ A2iP̂þ BiK̂2j þ P̂;

R̂13 ¼ GxiĤ1 þ BiK̂3j þ P̂ET;

R̂14 ¼ HxiĤ2 þ BiK̂4j;

R̂16 ¼ Dxi þ P̂CT
1iDyj;

R̂17 ¼ s P̂AT
1i þ K̂T

1jB
T
i

� �
;

R̂22 ¼ �Q̂� P̂;

R̂27 ¼ s P̂AT
2i þ K̂T

2jB
T
i

� �
;

R̂37 ¼ s Ĥ1G
T
xi þ K̂T

3jB
T
i

� �
;

R̂47 ¼ s Ĥ2H
T
xi þ K̂T

4jB
T
i

� �
;

R66 ¼ �c2Iþ DT
yiDyj:

Moreover, if the above LMI has feasible solution, the gains

K1i, K2i, K3i, and K4i are computed by K1i ¼ K̂1iP̂
�1,

K2i ¼ K̂2iP̂
�1, K3i ¼ K̂3iĤ

�1
1 , and K4i ¼ K̂4iĤ

�1
2 ,

respectively.

Proof See ‘‘Appendix’’. h

3.2 Systems with Input Delay

For the systems with input delay as

_xðtÞ ¼ A1zxðtÞ þ A2zxðt � sÞ þGxzuðxðtÞÞ

þHxzuðxðt � sÞÞ þ Bzuðt � sÞ þ DxzvðtÞ;

yðtÞ ¼ C1zxðtÞ þ C2zxðt � sÞ þGyzuðxðtÞÞ

þHyzuðxðt � sÞÞ þ DyzvðtÞ;

8
>>>>><

>>>>>:

ð16Þ

we shall construct the controller structure as

uðtÞ ¼ K1xðtÞ þK2uðxðtÞÞ; ð17Þ

where K1 2 Rnu�nx and K2 2 Rnu�nu are the controller gain

matrices to be designed. By inserting the controller (17)

into the system (16), one obtains the closed-loop system as

_xðtÞ ¼ A1zxðtÞ þ ~A2zzxðt � sÞ þGxzuðxðtÞÞ

þ ~Hxzzuðxðt � sÞÞ þ DxzvðtÞ;

yðtÞ ¼ C1zxðtÞ þ C2zxðt � sÞ þGyzuðxðtÞÞ

þHyzuðxðt � sÞÞ þ DyzvðtÞ;

8
>>>>><

>>>>>:

ð18Þ

where ~A2zz ¼ A2z þ BzK1z and ~Hxzz ¼ Hxz þ BzK2z.

The following corollary gives the conditions to guar-

antee the asymptotical stability of the closed-loop system

(18).

Corollary 1 For given positive scalar c, the closed-loop

system (13) is asymptotically stable and satisfies (9), if

there exist nx � nx symmetric positive definite matrices P̂,

Q̂, R̂, Ŵ, general nu � nx matrices ~K1i, general nu � nu

matrices ~K2i, and diagonal matrices Ĥ1 [ 0, Ĥ2 [ 0, such

that the LMIs in (10) hold with the following definition:

Mij ¼

R̂11 R̂12 R̂13 R̂14 Ŵ R̂16 sP̂AT
1z P̂CT

1i

� R̂22 0 P̂ET � Ŵ P̂CT
2iDyj R̂27 P̂CT

2i

� � � 2Ĥ1 0 0 Ĥ1G
T
yiDyj sĤ1G

T
xi Ĥ1G

T
yi

� � � � 2Ĥ2 0 Ĥ2H
T
yiDyj R̂47 Ĥ2H

T
yi

� � � � � R̂ 0 0 0

� � � � � R66 sDT
xi 0

� � � � � � � P̂ 0

� � � � � � � � I

2

66666666666666666664

3

77777777777777777775

;

ð19Þ

where
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R̂11 ¼ ½A1iP̂�s þ Q̂þ s2R̂� P̂;

R̂12 ¼ A2iP̂þ Bi
~K1j þ P̂;

R̂13 ¼ GxiĤ1 þ P̂ET;

R̂14 ¼ HxiĤ2 þ Bi
~K2j;

R̂16 ¼ Dxi þ P̂CT
1iDyj;

R̂22 ¼ �Q̂� P̂;

R̂27 ¼ s P̂AT
2i þ ~KT

1jB
T
i

� �
;

R̂47 ¼ s Ĥ2H
T
xi þ ~KT

2jB
T
i

� �
;

R66 ¼ �c2Iþ DT
yiDyj:

Moreover, if the above LMI has feasible solution, the gains

K1i and K2i are computed by K1i ¼ ~K1iP̂
�1 and

K2i ¼ ~K2iĤ
�1

2 , respectively.

Proof With substituting K̂1i ¼ 0, K̂3i ¼ 0, ~K1i ¼ K̂2i, and

~K2i ¼ K̂4i in Theorem (2), the proof is straightforward. h

Remark 1 Although some progress has been made in this

article, the established fuzzy control result has not con-

sidered any constraint on system transient performance. As

stated in [28, 29], finite-time control is also an important

challenge in the design. How to establish finite-time fuzzy

controller for time-delay systems, will be our future

research.

4 Simulation Results

In this section. three illustrative examples are given to

show the effectiveness of the proposed design methods. All

calculations are performed using Yalmip [14] toolbox.

Example 1 Suppose the problem of backing up the con-

trol of a truck-trailer is given in [3]. The following delayed

model is supposed:

_x1ðtÞ ¼ �a
v�t

Lt0
x1ðtÞ � ð1 � aÞ v�t

Lt0
x1ðt � sÞ þ v�t

Lt0
uðtÞ;

_x2ðtÞ ¼ þa
v�t

Lt0
x1ðtÞ þ ð1 � aÞ v�t

Lt0
x1ðt � sÞ;

_x3ðtÞ ¼
v�t

t0
sinðx2ðtÞ þ a

v�t

2L
x1ðtÞ þ ð1 � aÞ v

�t

2L
x1ðt � sÞÞ;

8
>>>>>>><

>>>>>>>:

where l ¼ 2:8, L ¼ 5:5, v ¼ �1, �t ¼ 2, t0 ¼ 0:5, s ¼ 1.

The constant a 2 ½0; 1� determines the amount of delay and

is set to a ¼ 0:7. By defining uðxÞ ¼ sinðx2Þ � x2, the

above system is modeled by fuzzy T–S with nonlinear

consequent part as follows:

Rule 1 : If zðtÞ ¼ x2ðtÞ þ a
vt

2L
x1ðtÞ þ ð1 � aÞ vt

2L
x1ðt � sÞ

is about 0 then

_xðtÞ ¼ A11xðtÞ þ A21xðt � sÞ þ B1uðtÞ

þ Gx1uðxðtÞÞ þ Dx1mðtÞ;

yðtÞ ¼ C11xðtÞ þ Dy1mðtÞ;

8
>>><

>>>:

Rule 2 : If zðtÞ ¼ x2ðtÞ þ a
vt

2L
x1ðtÞ þ ð1 � aÞ vt

2L
x1ðt � sÞ

is about p or � p then

_xðtÞ ¼ A12xðtÞ þ A22xðt � sÞ þ B2uðtÞ

þGx2uðxðtÞÞ þ Dx2mðtÞ;

yðtÞ ¼ C12xðtÞ þ Dy2mðtÞ;

8
>>><

>>>:

where

A11 ¼

�a v�t
Lt0

0 0

a v�t
Lt0

0 0

a v2�t2

2Lt0
v�t
t0

0

2

6664

3

7775
; A21 ¼

�ð1 � aÞ v�t
Lt0

0 0

ð1 � aÞ v�t
Lt0

0 0

ð1 � aÞ v2�t2

2Lt0
0 0

2

6664

3

7775
;

B1 ¼

v�t
lt0

0

0

2

664

3

775; Gx1 ¼

0

0

v�t
ðt0Þ

2

664

3

775; A12 ¼

�a v�t
Lt0

0 0

a dv�t
Lt0

0 0

a v2�t2

2Lt0
d v�t

t0
0

2

6664

3

7775
;

A22 ¼

�ð1 � aÞ v�t
Lt0

0 0

ð1 � aÞ v�t
Lt0

0 0

ð1 � aÞ dv2�t2

2Lt0
0 0

2

6664

3

7775
; B2 ¼

v�t
lt0

0

0

2

664

3

775; Gx2 ¼

0

0

dv�t
ðt0Þ

2

664

3

775;

C11 ¼ C12 ¼
1 0 0

0 1 0

" #

;Dx1 ¼ Dx2 ¼

0:05

0

0:01

2

664

3

775;

E ¼ 2=p 0 1 0½ �;Dy1 ¼ Dy2 ¼
0:01

0:01

" #

;

d ¼ 10 t0=p, mðtÞ ¼ e�0:05t sinð2tÞ, and the membership

functions are as follows:

h1ðzÞ ¼ 1 � 1

1 þ expð�3ðz� 0:5pÞÞ

� �
�

1

1 þ expð�3ðz� 0:5pÞÞ

� �
;

h2ðzÞ ¼ 1 � h1ðzÞ:

It can be seen that the open-loop system is unstable. By
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applying Theorem 2 with c ¼ 1, the control gains are

obtained as

K11 ¼ 1:7348 � 1:7725 0:090802½ �;
K12 ¼ 1:7627 � 1:9538 0:10806½ �;
K21 ¼ 0:46767 0:034505 � 0:00029401½ �;
K22 ¼ 0:49262 0:0065132 0:0012818½ �;
K31 ¼ � 0:11919; K32 ¼ � 0:2275:

By using these control gains, the state trajectories of the

closed-loop system are shown in Fig. 1 (solid line). For

comparison, the results of other published methods are also

shown in this figure. It is clear that our result has less

fluctuation and has more smooth movements than the

methods presented in [3] and [4]. The results of reference

[7] have a much bigger settling time than the other meth-

ods, including our method, which shows that this method

does not work efficiently. The methods of references [3]

and [4] have good performance results on controlling the

states, but have a large peak value in the control signal,

shown in Fig. 2. It can be easily understood that the peak

value of the control signal produced by our method is much

less than those methods and converges to zero at a faster

rate. Therefore, our method requires a smaller actuator and

is more practical than those methods.

Example 2 In this example, the problem of input delay is

considered. Supposed a two tank system with the following

model [27]:

_x1ðtÞ ¼ �a1x
2
1ðtÞ þ buðtÞ;

_x2ðtÞ ¼ a1x
2
1ðtÞ � a2x

2
2ðtÞ:

(

where a1 ¼ 1, a2 ¼ 1, and b ¼ 1. By defining

uðxðtÞÞ ¼ x2
1, the system is modeled by nonlinear T–S

fuzzy model as :

Rule 1 : If zðtÞ ¼ x2 isabout 0:1 then

_xðtÞ ¼ A11xðtÞ þ Buðt � sÞ þGxuðxðtÞÞ þ Dx1mðtÞ;

yðtÞ ¼ CxðtÞ þ Dy1mðtÞ;

8
<

:

Rule 2 : If zðtÞ ¼ x2 isabout 1 then

_xðtÞ ¼ A12xðtÞ þ Buðt � sÞ þGxuðxðtÞÞ þ Dx1mðtÞ;

yðtÞ ¼ CxðtÞ þ Dy1mðtÞ;

8
<

:

Rule 3 : If zðtÞ ¼ x2 isabout 2 then

_xðtÞ ¼ A13xðtÞ þ Buðt � sÞ þGxuðxðtÞÞ þ Dx1mðtÞ;

yðtÞ ¼ CxðtÞ þ Dy1mðtÞ;

8
<

:

where

A11 ¼
0 0

0 � 1:5811

� 	
; A12 ¼

0 0

0 � 0:5

� 	
; B ¼

1

0

� 	
;

A13 ¼
0 0

0 � 0:3536

� 	
; C ¼

0 0

0 1

� 	
; Gx ¼

� 1

1

� 	
;

Dx ¼
0:01

0:01

� 	
; Dy ¼

0

0:1

� 	
; E ¼ 1 0½ �:

Let s ¼ 1, c ¼ 0:01, mðtÞ ¼ e�0:05t sinð2tÞ, and the

membership functions are assumed to be triangular. Based

on Corollary 1, control gains are obtained as:

K11 ¼ � 0:37474 � 0:042158½ �;
K12 ¼ � 0:37078 0:027274½ �;
K13 ¼ � 0:35167 0:050723½ �;
K21 ¼ 0:0014774; K22 ¼ � 0:0010483;

K23 ¼ � 0:0020732:

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

x 1(t)

Proposed method
Cao & Frank, [2]
Chen & Liu, [3]
Gassara et al.,[6]

0 2 4 6 8 10 12 14 16 18 20
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0
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4

x 2(t)
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x 3(t)

Time(s)

Fig. 1 State trajectories resulted by Theorem 2 (solid line) and the other published methods
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Tracking performance of the closed-loop system is shown

in Fig. 3. Control effort is also shown in Fig. 3.

Example 3 Consider a fuzzy system in the form of (5)

with the following matrices [1]:

A11 ¼
a � 1

2 c

" #

;A12 ¼
aþ 4b � 1

2 cþ 4d

" #

;

A21 ¼ 0:1
a � 1

2 c

" #

;A22 ¼ 0:1
aþ 4b � 1

2 cþ 4d

" #

;

Gx1 ¼ Gx2 ¼
b 0

1 d

" #

;B1 ¼
1

� 2

" #

;B2 ¼
1

� 4

" #

;

C11 ¼ C12 ¼ 1 2½ �; C21 ¼ C22 ¼ 0:1 0:2½ �;

Dx1 ¼
0:01

0

" #

; Dx2 ¼
0:01

0:05

" #

; E ¼
0:5 0

0 0:5

" #

;

Dy1 ¼ 0:02; Dy2 ¼ 0:01; h2 ¼ x2
2=4; h1 ¼ 1 � l2; s ¼ 1:

In which a ¼ 10, b ¼ � 3, c ¼ � 0:25, d ¼ 0:3427,

x1 2 ½� 1; 1�, and x2 2 ½� 2; 2�. The premise variable is x2
2

and u
�
xðtÞ

�
¼ ½x3

1; sinðx2Þ�T . Applying Theorem 2 with c ¼
0:5 to this model, the control gains are obtained as

K11 ¼ 0:074252 0:5895½ �;

K12 ¼ � 0:040227 0:60678½ �;

K21 ¼ 0:057353 0:036026½ �;

K22 ¼ 0:026825 0:044516½ �;

K31 ¼ 0:18521 0:080762½ �;

K32 ¼ 0:13467 0:057182½ �:

Utilizing these control gains, the state trajectories of the

closed-loop system are shown in Fig. 4 (solid line). For

comparison, states of the open-loop system are also shown

in this figure.

5 Conclusion

By introducing a delayed Takagi–Sugeno system with

nonlinear consequent parts, a robust controller has been

proposed for a class of delayed nonlinear systems. It was

0 2 4 6 8 10 12 14 16 18 20
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Fig. 2 Control signals produced by Theorem 2 (solid line) and the other published methods
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Fig. 3 Up: state trajectories resulted by Corollary 1, x1 (solid line) and x2 (dash line). Down: control signal produced by Corollary 1
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assumed that the fuzzy T–S model contains unstructured

uncertainties. Depending on whether the system has input

delay or not, two kinds of state-feedback controller were

supposed. By the Lyapunov–Krasovskii stability theory,

some conditions in the form of linear matrix inequalities

were presented such that the closed-loop system is

asymptotically stable and achieves a prescribed H1 per-

formance level. Finally, three examples have been pro-

vided to illustrate the effectiveness of the proposed method.

Acknowledgements This research was supported by Quchan

University of Technology under Grant Number 7740.

Appendix

Proof of Theorem 1 Consider a Lyapunov–Krasovskii

functional as

VðtÞ ¼
X4

i¼1

ViðtÞ; ð20Þ

where

V1ðtÞ ¼ xTðtÞPxðtÞ þ
Z t

t�s
xTðsÞQxðsÞds;

V2ðtÞ ¼ s
Z 0

�s

Z t

tþh
_xTðsÞP _xðsÞdsdh;

V3ðtÞ ¼ s
Z 0

�s

Z t

tþh
xTðsÞRxðsÞdsdh;

V4ðtÞ ¼
Z t

t�s
xTðsÞds

� �
W

Z t

t�s
xðsÞds

� �
:

Taking the derivative of V1ðtÞ and V2ðtÞ along the solutions

of (13) yields

_V1ðtÞ ¼ 2xTðtÞP _xðtÞ þ xTðtÞQxðtÞ � xTðt � sÞQxðt � sÞ
¼ 2xTðtÞP ~A1zzxðtÞ þ ~A2zzxðt � sÞ




þ ~GxzzuðxðtÞÞ þ ~Hxzzuðxðt � sÞÞ þ DxzvðtÞ
�

þ xTðtÞQxðtÞ � xTðt � sÞQxðt � sÞ;
ð21Þ

_V2ðtÞ ¼ s2 _xTðtÞP _xðtÞ � s
Z t

t�s

_xTðsÞP _xðsÞds: ð22Þ

According to Lemma 2, one can obtain _V2ðtÞ as

_V2ðtÞ� s2 _xTðtÞP _xðtÞ

�
Z t

t�s

_xTðsÞÞP
Z t

t�s
_xðsÞÞ ¼ s2 _xTðtÞP _xðtÞ � ðxTðtÞ

��

� xTðt � sÞÞPðxðtÞ � xðt � sÞÞ:
ð23Þ

Taking the derivative of V3ðtÞ respect to t yields

_V3ðtÞ ¼ s2xTðtÞRxðtÞ � s
Z t

t�s
xTðsÞRxðsÞds:

Based on Lemma 2, the above equation can be written as

_V3ðtÞ� s2xTðtÞRxðtÞ �
Z t

t�s
xTðsÞ

� �
R

Z t

t�s
xðsÞ

� �
:

ð24Þ

Calculating _V4ðtÞ yields

_V4ðtÞ ¼ 2 xTðtÞ � xTðt � sÞ
� �

W

Z t

t�s
xðsÞ

� �
: ð25Þ

According to (4), the following inequalities are true:

� 2uTðxðtÞÞH1uðxðtÞÞ þ 2uTðxðtÞÞH1ExðtÞ� 0; ð26Þ
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Fig. 4 State trajectories of open-loop system in Example 1 (upper figure) and states of closed-loop system (lower figure)
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� 2uTðxðt � sÞÞH2uðxðt � sÞÞ
þ 2uTðxðt � sÞÞH2Exðt � sÞ� 0:

ð27Þ

From Eqs. (21)–(27), one has

_VðtÞ þ yTðtÞyðtÞ � c2vTðtÞvðtÞ�
X4

i¼1

_ViðtÞ þ yTðtÞyðtÞ

� c2vTðtÞvðtÞ � 2uTðxðtÞÞH1uðxðtÞÞ
þ 2uTðxðtÞÞH1ExðtÞ
� 2uTðxðt � sÞÞH2uðxðt � sÞÞ
þ 2uTðxðt � sÞÞH2Exðt � sÞ ¼ fTðtÞNfðtÞ;

ð28Þ

where

N ¼

R11 R12 R13 R14 W R16

� R22 CT
2zGyz R24 �W CT

2zDyz

� � R33 GT
yzHyz 0 GT

yzDyz

� � � R44 0 HT
yzDyz

� � � � � R 0

� � � � � R66

2

6666666664

3

7777777775

þ

s ~AT
1zz

s ~AT
2zz

s ~GT
xzz

s ~HT
xzz

0

sDT
xz

2

6666666664

3

7777777775

P

s ~AT
1zz

s ~AT
2zz

s ~GT
xzz

s ~HT
xzz

0

sDT
xz

2

6666666664

3

7777777775

T

;

fðtÞ ¼ xTðtÞ; xTðt � sÞ;uTðxðtÞÞ;uTðxðt � sÞÞ;



Z t

t�s
xTðsÞds; vTðtÞ

	T

:

and the other parameters are given in (14). If N\0, which

is the equivalent to the condition (14), based on the Schur

complement and Lemma 1, then (28) can be written as

_VðtÞ þ yTðtÞyðtÞ � c2vTðtÞvðtÞ� 0:

Integrating both sides of the above inequality from 0 to 1
with zero initial condition gives
Z 1

0

yTðtÞyðtÞ � c2vTðtÞvðtÞ

 �

dt� 0;

which means that the inequality (9) is satisfied. h

Proof of Theorem 2 By substituting ~A1zz ¼ A1z þ BzK1z,
~A2zz ¼ A2z þ BzK2z, ~Gxzz ¼ Gxz þ BzK3z, and ~Hxzz ¼
Hxz þ BzK4z from (13) into (14), pre- and post-multiply it

by diagfP�1;P�1;H�1
1 ;H�1

2 ;P�1; I;P�1g, and considering

P̂ ¼ P�1, Ĥ1 ¼ H�1
1 , Ĥ2 ¼ H�1

2 , Q̂ ¼ P�1QP�1,

R̂ ¼ P�1RP�1, Ŵ ¼ P�1WP�1, K̂1i ¼ K1iP
�1, K̂2i ¼ K2i

P�1, K̂3i ¼ K3iH
�1
1 , and K̂4i ¼ K4iH

�1
2 , the condition (14)

can be written as

R̂11 R̂12 R̂13 R̂14 Ŵ R̂16 R̂17

� � Q̂� P̂ 0 P̂ET � Ŵ P̂CT
2zDyz R̂27

� � � 2Ĥ1 0 0 Ĥ1G
T
yzDyz R̂37

� � � � 2Ĥ2 0 Ĥ2H
T
yzDyz R̂47

� � � � � R̂ 0 0

� � � � � R66 sDT
xz

� � � � � � � P̂

2

66666666666666664

3

77777777777777775

þ

P̂CT
1z

P̂CT
2z

Ĥ1G
T
yz

Ĥ2H
T
yz

0

0

0

2

6666666666666664

3

7777777777777775

P̂CT
1z

P̂CT
2z

Ĥ1G
T
yz

Ĥ2H
T
yz

0

0

0

2

6666666666666664

3

7777777777777775

T

\0;

where the parameters are given in (15). The Schur com-

plement follows that the above inequality is equivalent to

(15). h
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